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ABSTRACT

DATA-DRIVEN APPROACH TO IMAGE
CLASSIFICATION

MAY 2019

VENKATESH N. MURTHY

B.E., SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY, BANGALORE

M.E., INDIAN INSTITUTE OF SCIENCE, BANGALORE.

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: R. Manmatha

Image classification has been a core topic in the computer vision community.

Its recent success with convolutional neural network (CNN) algorithm has led to

various real world applications such as large scale management of photos/videos on

cloud/social-media, image based search for online retailers, self-driving cars, building

robots and healthcare. Image classification can be broadly categorized into binary,

multi-class and multi-label classification problems. Binary classification involves as-

signing one of the two class labels to an instance. In multi-class classification problem,

an instance should be categorized into one of more than two classes. Multi-label clas-

sification is a generalized version of the multi-class classification problem where each

image is assigned multiple labels as opposed to a single label.

In this work, we first present various methods that take advantage of deep repre-

sentations (fully connected layer of pre-trained CNN on the ImageNet dataset) and

vii



yield better performance on multi-label classification when compared to methods that

use over a dozen conventional visual features. Following the success of deep represen-

tations, we intend to build a generic end-to-end deep learning framework to address

all three problem categories of image classification. However, there are still no well

established guidelines (in terms of choosing the number of layers to go deeper, the

number of kernels and the size, the type of regularizer, the choice of non-linear func-

tion, etc.) to build an efficient deep neural network and often network architecture

design is specific to a problem/dataset. Hence, we present some initial efforts in

building a computational framework called Deep Decision Network (DDN) which is

completely data-driven. DDN is a tree-like structured built stage-wise. During the

learning phase, starting from the root network node, DDN automatically builds a

network that splits the data into disjoint clusters of classes which would be handled

by the subsequent expert networks. This results in a tree-like structured network

driven by the data. The proposed approach provides an insight into the data by

identifying the group of classes that are hard to classify and require more attention

when compared to others [146, 49, 117, 76]. This feature is crucial for people trying

to solve the problem with little or no domain knowledge, especially for applications

in medical domain [97, 155]. Initially, we evaluate DDN on a binary classification

problem and later extend it to more challenging multi-class and multi-label classifi-

cation problems. The extension of DDN to multi-class and multi-label involves some

changes but they still operate under the same underlying principle. In all the three

cases, the proposed approach is tested for its recognition performance and scalability

on publicly available datasets providing comparison to other methods.
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CHAPTER 1

INTRODUCTION

In recent times, we have witnessed an exponential growth in visual data, creating a

huge demand for automatic digital image analysis. For example, this growth includes

diverse sources such as the millions of photos/videos uploaded everyday to social

networks as well as the increase in medical images due to advancements in imaging

technologies. Further, the free unlimited cloud storage service for multimedia data

offered by companies like Google and Amazon suggests a strong continuing growth

of data. Such large volumes of data require an advanced recognition/classification

system to automatically organize and summarize them. Several attempts [150, 44, 78]

have been made toward this goal and recent advances in the field of deep learning

technology have made it possible to achieve satisfactory performance in real world

applications. However, since each classification problem/application is unique, there

is still a requirement to build an efficient and effective network architecture to further

improve the performance. For instance, Convolutional Neural Network (CNN) based

methods have consistently been the top performers on large scale image classification

benchmarks such as the ImageNet Large-Scale Visual Recognition challenge (ILSVRC

2012, 2013 and 2014) [64, 116, 125]. The success of CNNs is partly due to the

availability of large datasets and high-performance computing systems and partly due

to the recent technical advances in learning methods and regularization techniques like

dropout [122], dropconnect [139], maxout [38] and batch normalization [56]. However,

there are still no well established guidelines to train a performant network. One way

to overcome this is by cross-validation, but that becomes too expensive since there
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are too many design choices to make. Some of the recent work tried to address this

using bayesian optimization for tuning the hyperparameters of the network [119] but

still the design choice (in terms of number and type of layers) has to be in place.

Hence, we take a small step towards addressing this issue and propose a data-driven

computational framework for building the neural networks.

Figure 1 shows an example of how understanding/summarizing an image problem

is defined in the computer vision community. The problem is categorized based on

the use case and its complexity. For instance, the binary classification problem can

be defined as distinguishing whether it’s an indoor or outdoor image [128, 68, 131]

or in the medical/machine-vision applications, it’s mostly focused on separating pos-

itive samples from negative ones [80]. In fact, most of the classical machine learning

algorithms such as logistic regression, neural network, linear discriminant analysis

and Support Vector Machines (SVM) [94] were initially formulated to solve the bi-

nary classification and were later extended to the multiclass classification problem.

Following the same trend, we validate our data-driven approach of building a neural

network for the binary classification problem first and later extend it for more com-

plex problems. The multiclass classification can be defined as a problem of assigning

one label chosen from a large predefined vocabulary that summarizes or identifies

the main interest in an image [45, 11], in Figure 1 it could be “swimming pool”. In

case of the multi-label classification, the problem involves assigning multiple labels

to an image that identifies all the objects of interest in an image [78, 150]. In in-

creasing order of complexity, we have binary, multiclass and multilabel classification.

Multi-label classification is more challenging and interesting because of the following

a) Manual annotation of all the objects of interest in an image is labor intense and

expensive, b) there exists a strong correlation and dependencies between labels, c)

annotated images are scarce resulting in data imbalance and d) user defined tags on

social media data or Flickr are incomplete and they often expresses individuality or
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emotions (which isn’t of much help for solving image annotation problem). Multi-

label classification is also known by other names such as image annotation and image

tagging, hence we use them interchangeably.

Figure 1.1: Example showing various ways of addressing the image understanding
problem. Binary classification: [Indoor, Outdoor]. Multi-class classification:
[Kitchen, Dining area, Bedroom, Swimming pool, . . . ]. Multi-label classification:
[Water, Windows, Chairs, plants, Ball, Sky, Grass, Car, Beach, . . . ].

In this dissertation, we start off by studying the effectiveness of deep representa-

tions versus multiple handcrafted features with our proposed models for addressing

the multi-label classification problem. Following the advantages of deep learning

features, we aim to design an end-to-end deep learning network to solve the image

annotation problem. But since network architecture design can be problem/dataset

specific, we propose a data driven approach for designing an efficient network. Ini-

tially, we test our data-driven hypothesis on a relatively simpler problem such as

binary classification and later extend them to more complex multi-class and multi-

label (image annotation/tagging) classification problems.

The contributions of this dissertation are as follows:
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• Three different models for image annotation - a hybrid model (SVM-DMBRM),

a Canonical Correlation Analysis (CCA) model and a hypergraph model, all of

them use deep representations and yield similar or better performance than most

of the existing methods that use over dozens of handcrafted features. One of

the proposed approaches (CCA-KNN) is shown to outperform all other existing

techniques on four standard publicly available datasets: Corel-5K, ESP-Game,

IAPRTC-12 and NUS-WIDE.

• A novel deep learning architecture known as a Cascaded Deep Decision Net-

work (CDDN) for addressing the binary classification of endoscopic images for

diagnosing medical images.

• A novel data-driven deep learning architecture called a Deep Decision Network

(DDN) that provides an alternative approach towards building an efficient deep

learning network for multi-class classification. This is shown to yield state-of-

the art performance (at the time of publication of this work [92]) on two publicly

available datasets: CIFAR-10 and CIFAR-100. The proposed approach is tested

for scalability, yielding competitive results on large scale ImageNet dataset.

• DDN principle is extended to address the more complex multi-label classification

problem. The proposed approach is tested for both scalability and performance

on publicly available image annotation datasets.

The contributions and scope of the work presented in this thesis reflect the trends

in the computer vision community (particularly image classification task) around late

2017 or before that time period. Since then there have been many advances because

the field is moving rapidly (partially due to the success of deep learning techniques).

For example, the number of paper submissions for one of the top conferences in the

computer vision community (CVPR) grew from 1724 (461 accepted) in 2010 to 5100

(1300 accepted) in 2019, that’s more than double [1]. In terms of progress made,
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the current state-of-the-art (Gpipe [55]) yields a top-5 error rate of 3% in image

classification task on ILSVRC 2012 dataset [23], which is almost a 33% (relative)

error reduction when compared to ResNet-152 (single model testing) [48]. That’s a

significant amount of error reduction in less than 2 years when compared to pre-deep

learning period (before 2012) that only reduced the top-5 error rate by 7% (28% to

26%) [106]. Overall, the trend suggests that building deeper networks seems to help

improve the classification accuracy. Moreover, the best results in the competition

seems to use ensemble of models to improve the performance, but training ensemble

of networks is both time consuming and computationally expensive. Hence, as an

alternative we provide a data-driven framework for designing an efficient deep neural

network built on the idea of mixture of experts (is based on the divide-and-conquer

principle). Our generic framework can be applied to any state-of-the-art network (as

root node), and hence it remains applicable even with the current research trends in

the field. It has the potential to further boost the performance along with providing

some valuable insights into the data.

The outline of the dissertation is as follows:

Chapter 1 is about introduction to the problem that we are trying to solve.

Chapter 2 provides the literature overview along with some required background.

Chapter 3 introduces three kind of models to address the multi-label (Image An-

notation) classification problem. In the first section, a hybrid model which combines a

discriminative (SVM) and a generative model (DMBRM) is proposed and we show its

effectiveness compared to a model with fourteen handcrafted features. In the second

section, we present a CCA based model which incorporates both a visual feature (deep

learning feature) and a text feature (word embedding vector) to build a better image

annotation system. Following that, we propose a novel multi-scale hypergraph heat

diffusion framework for the automatic image annotation task. This last technique

enables us to model the higher order relationship among images in the feature space
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and provides a multi-scale label diffusion mechanism to address the class imbalance

problem in the data.

Chapter 4 presents a novel data driven framework CDDN that builds a deep

neural network on the fly for classifying endoscopic images. During the learning phase,

CDDN automatically builds a network which discards samples that are classified with

high confidence scores by a previously trained network and concentrates only on the

challenging samples which are handled by the subsequent expert shallow networks.

CDDN is validated on a publicly available ISBI 2014 Polyp challenge dataset.

Chapter 5 introduces a novel Deep Decision Network (DDN) that provides an

alternative approach towards building an efficient deep learning network. During the

learning phase, starting from the root network node, DDN automatically builds a

network that splits the data into disjoint clusters of classes which are handled by

the subsequent expert networks. The proposed method provides an insight into the

data by identifying the group of classes that are hard to classify and require more

attention when compared to others. In DDN’s evaluation on standard public datasets

(CIFAR-10 and CIFAR-100) for the multi-class classification problem is shown to

yield state-of-the-art performance (at the time of publication of this work [92])). The

system is also shown to be scalable to one of the largest publicly available ImageNet

dataset yielding competitive results. Later, the data-driven deep neural network idea

is extended to solve the multi-label classification problem and we call it as DDN-annot.

Following the underlying principle of the DDN, the root node strategy remains the

same, the subsequent expert network or cluster of samples are identified by applying

unsupervised K-means to the feature space (preferably the last layer before the soft-

max). The hope is that the clusters would capture the coexistence of labels and thus

giving a better chance for the expert network to predict more meaningful labels based

on the visual content. DDN-annot is evaluated on two publicly available datasets:

IAPRTC-12 and relatively large NUS-WIDE dataset. DDN-annot yielded comparable
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results to the state-of-the-art results when compared to deep learning based methods

in 2017.
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CHAPTER 2

RELATED WORK

Before we present the related work, we would like to provide background about

statistical methods that get used in building the image annotation models. In the first

section, we discuss relevance models concept which were inspired by its application

in information retrieval, followed by Support Vector Machines (SVM) and Canoni-

cal Correlation Analysis (CCA). We then discuss the recently popular deep learning

based feature representation techniques for both images and text. The second sec-

tion discusses related work on (multi-label classification). This is followed by binary

classification work that is specific to endoscopic images and finally multiclass image

classification work that includes the latest developments in deep learning techniques.

2.1 Background

In this section, some of the techniques that are found to be useful for the image

annotation task are briefly explained. First, we talk about relevance models in the

immediate subsection, followed by SVM and CCA. In the final subsection, we briefly

discuss image/text embeddings (created using neural network) that are used as fea-

tures and they are shown to be quite successful in recent times for various computer

vision and NLP tasks.

2.1.1 The Relevance Model

The relevance model is used for determining the probability P (w|R) of observing

a word w in a document that is relevant to a query, where R represents the class
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Table 2.1: Summary of generative models

Method Word distribution P (w|J) Image distributionP (I|J)

CMRM (1− αj)
#(w, j)

|j|
+ (α)

#(w, τ)

|τ |
(1− βj)

#(b, j)

|j|
+ (β)

#(b, τ)

|τ |

CRM
µpw,j +Nw

µ+N

1

n

n∑
i=1

exp−(g − gi)TΣ−1(g − gi)√
2kπk|Σ|

MBRM
µδw,j +Nw

µ+N

1

n

n∑
i=1

exp−(g − gi)TΣ−1(g − gi)√
2kπk|Σ|

of documents that are relevant to the query. In the context of image annotation, it

involves determining P (w|I), probability of a word given an image. The relevance

models used for image annotation are CMRM [58], CRM [67] and MBRM [27] that

produced strong baselines in the early years of image annotation research.

In order to obtain P (w|I), we need a good estimate of the joint distribution

P (w, I) of observing image features with possible annotation words. As shown in [27]

and [67], one possible way of determining it is by computing the expectation over

training images. The annotations for a test image are obtained by maximizing the

expectation:

w∗ = arg maxw∈V P (w, It) (2.1)

w∗ = arg maxw∈V
∑
J∈T

P (w, It|J)P (J) (2.2)

where J is an image in the training set T , w is a word or a set of words in the

vocabulary V , and It is the test image.

Assuming that the probabilities of observing word w and the image It are mutually

independent then the above equation can be rewritten as:

w∗ = arg maxw∈V
∑
J∈T

P (w|J)P (It|J)P (J) (2.3)
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where P (J) indicates the prior distribution of an image, and usually assumed

to be uniform. P (w|J) is the likelihood of w given the training image J , in other

words, it models the word distribution in the training set. For modeling the words,

a multinomial distribution was used in case of CRM [67] and a multiple Bernoulli

distribution was used for MBRM [27]. P (It|J) represents the likelihood of the test

image given the training image J . This is estimated using visual similarity. Both

P (It|J) and P (w|J) are estimated using a maximum likelihood estimate smoothed

with the background model. The summary of these models are captured in table 2.1.

From table 2.1, in case of CMRM, #(w, J) denotes the actual number of times

the word/tag/label w occurs in the caption of image J . #(w, τ) is the total number

of times w occurs in all captions in the training set τ . Similarly, #(b, J) reflects the

actual number of times some region of the image J is labeled with visual word b, and

#(b, τ) is the cumulative number of occurrences of visual word b in the training set.

|w| stands for the aggregate count of all tags and visual words occurring in image J ,

and |τ | denotes the total size of the training set. The smoothing parameters αJ and

βJ determine the degree of interpolation between the maximum likelihood estimates

and the background probabilities for the tags and the visual words respectively.

In the case of CRM and MBRM models as shown in table 2.1, Gaussian kernel is

used for representing feature gi of every region of image J . Σ represent feature co-

variance matrix. For approximating the word distribution, CRM and MBRM differs

only by parameter pw,J (representing the probability of occurrence of word)and δw,J

(it takes a value 1 if that word is present or else 0). µ is the smoothing parameter,

Nw is the number of training images that contain w in the annotation and N is the

total number of training images.
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2.1.2 Support Vector Machines

For a classification problem with labels y and and features x, a support vector

machine (SVM) is one of the popular machine learning algorithms for classifying

the samples into one of the finite set of discrete categories. Here we provide a brief

description of a binary class SVM, but for more details please refer to [20].

Let (xi, yi) be the training samples, where i = 1, ...N, yi ∈ {−1, 1} is the class

label (binary-class problem). SVM tries to find a hyperplane w that better separates

the positive and negative samples with a maximum margin. In order to find the

hyperplane one has to solve the following optimization problem:

minw
1

2
‖ w ‖2 (2.4)

s.t yi(w
Txi + b) ≥ 1, i = 1, ..., N

When the training samples are not linearly separable, we introduce a slack variable

ξ ≥ 0 to relax the constraint on every sample.

Now the optimization involves, minimizing the following equation

1

2
‖ w ‖2 +

1

N
C

N∑
i

ξi (2.5)

subject to ξ ≥ 0 and the following equation

yi(w
Txi + b) ≥ 1− ξi ∀i (2.6)

Here, C is used to control the tradeoff between the two terms and ‖ . ‖2 denotes

the L2 norm squared.
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Having found the optimal hyperplane, the decision function for classifying a sam-

ple is given by

f(x) = sign(wTx+ b) (2.7)

This yields the distance from the hyperplane and the sign indicates the category

type (positive implies class label 1 and negative implies class label -1).

2.1.3 Canonical Correlation Analysis

Let’s assume, X and Y are p-dimensional and q-dimensional random vectors re-

spectively, such that the joint variate Z = (XT ,YT )T has a joint distribution with

mean zero and positive definite covariance matrix
∑

. Without loss of generality,

assume that p ≤ q.

Consider an arbitrary linear combination U = αTX of the components of X and

an arbitrary linear combination V = γTY of the components of Y .

The correlation between U and V is given by

ρ =
cov(U, V )√
var(U)var(V )

=
cov(αTX, γTY )√
var(U)var(V )

=
αT cov(X, Y )γ√

var(αTX)var(γTY )
(2.8)

Canonical correlation analysis seeks to find the U and V that have maximum

correlation. The basic theory of the analysis was developed by Hotelling [52].The

following derivation is obtained from [53], for more details please refer to it.

Since scaling does not change correlation, one typically normalizes the arbitrary

vectors such that U and V have unit variance, that is,

1 = var(U) = cov(αTX,αTX) = αTΣxxα ≡ αTΣxxα (2.9)

1 = var(V ) = cov(γTY, γTY ) = γTΣyyγ ≡ γTΣyyγ (2.10)

Here, Σ denotes the covariance.
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Since E(U) = E(V ) = 0 and with 2.9 and 2.10, the correlation between U and V

Eq. 2.8 reduces to

ρ = E(UV ) = αTΣxyγ. (2.11)

The problem then becomes one of finding α and γ to maximize Eq. 2.11 subject to

the constraints in Eq. 2.9 and Eq. 2.10. Let,

φ = αTΣxyγ −
1

2
δ(αTΣxxα− 1)− 1

2
w(γTΣyyγ − 1), (2.12)

where δ and w are Lagrange multipliers. Differentiating φ with respect to the

elements of α and γ and setting the result to zero, we obtain

∂φ

∂α
= Σxyγ − δΣxxα = 0 (2.13)

∂φ

∂γ
= Σ′xyα− wΣyyγ = 0 (2.14)

Hence we have,

Σ−1xxΣxyγ = δα (2.15)

and

Σ−1yy Σ
T

xyα = wγ (2.16)

Substituting Eq. 2.16 in 2.15 yields

Σ−1xxΣxyΣ
−1
yy Σ

T

xyα = Mαα = λα. (2.17)

with λ = δw. Similarly, substituting Eq. 2.15 in 2.16 gives

Σ−1yy Σ
T

xyΣ
−1
xxΣxyγ = Mγγ = λγ. (2.18)

Both these equations can be viewed as eigenvalue equations, with Mα and Mγ

sharing the same non-zero eigenvalues λ.
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As Mα and Mγ are known from the data, α can be found by solving the eigenvalue

problem Eq. 2.17.

wγ can then be obtained form Eq. 2.16. Since w is unknown, the magnitude of γ

is unknown, and the normalization conditions Eq. 2.9 and 2.10 are used to determine

the magnitude of α and γ.

The Matrix Mα is of dimension nx×nx, while Mγ is ny×ny, so generally we pick

the smaller of the two to solve the eigenvalue problem.

From Eq.2.11,

ρ2 = αTΣxyγγ
TΣT

xyα = δw(αTΣxxα)(γTΣyyγ) (2.19)

From Eq. 2.9 and 2.10, the above equation reduces to

ρ2 = λ (2.20)

The eigenvalue problems Eq. 2.17 and 2.18 yield n λs, with n = min(nx, ny).

Assuming the λ′s to be all distinct and nonzero, we have for each λj (j = 1, .., n),

canonical variates, uj and vj, with correlation ρj =
√
λj between the two, and eigen-

vectors, αj and γj.

2.1.4 Image and Text Embeddings

In this section, we look at recently proposed techniques to efficiently represent im-

ages and text using neural networks. Though we don’t provide all the technical details

here, we do try provide a overview of how image and text features are extracted using

pre-trained neural networks. In recent times, there is a large improvement in various

tasks in both computer vision [64] [82] [34] [110] and natural language processing

(NLP) fields [87] [62, 100] [43] due to the recent advances in deep learning techniques.

Deep learning’s success can be attributed to high performance computing (like GPU’s

and clusters), massive parallelization and publicly available large datasets.
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2.1.4.1 Image Embeddings

From 90’s until the deep learning era (2012), many vision related tasks involved a

two step approach [51, 61, 11]. The first step involved finding a good representation

for images and the second involved choosing the best machine learning algorithm

to either classify or segment (pixel-wise classification) them. The performance of

the system largely depends on a better representation of the images and these are

handcrafted and task-specific. To overcome this, [70] proposed to build an end-to-end

system which operates directly on the raw input data to yield the end result (class-

label or labeling a region). In [70] , they made use of the back-propagation algorithm

to effectively train the convolutional neural network (CNN) showing it’s effectiveness

on MNIST (isolated handwritten digits) dataset when compared to the traditional

two step approach.

Even though CNNs were shown to be successful for relatively smaller tasks, they

weren’t able to effectively recognize generic objects that required deeper/larger CNNs.

Larger CNNs were hard to train because it required a lot of computation time and

memory and during 1990’s the resources (lack of powerful CPU’s or GPU’s) were also

limited. In addition, larger networks also suffered from overfitting problems (limited

availability of labeled data) and there was no efficient technique to overcome this

problem.

Thankfully the above mentioned limitations are being overcome to an extent by

the following advancements in the field. Since 2010, the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [23] is being conducted annually. ILSVRC consists

of around 1.4 million images publicly made available, and they are all manually

labeled with the presence or absence of 1000 object categories. This really benefited

most of the machine learning algorithms that requires large data. Especially CNNs

were able to take advantage of this and as a result in ILSVRC 2012, Krizhevsky et

al.,[64] used graphical processor units (GPU) for fast and efficient implementation
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of larger CNNs and won the competition by a large margin (achieved 15.3% top-5

error rate compared to the second best top-5 error rate of 26.2%). The following are

some of the factors that contributed for CNN to be successful: large dataset, parallel

computations (GPU’s), ReLu (non-linear activation function), data augmentation

(affine transformations) and dropout [122] (to avoid overfitting). Neural networks are

in general trained using backpropagation algorithm. It involves updating the weights

of the network based on the gradients of the loss function.

Following by the success of CNNs at ILSVRC, [104] showed that the output of

fully-connected layer in CNNs (such as AlexNet) trained on ILSVRC 2012 dataset can

be effectively used as a feature representation for images. They empirically showed

its effectiveness for most of the computer vision tasks and in many cases exceeded

the performance of state-of-the-art algorithms that used hand-crafted features.

In our work, we use the variant of a CNN known as Visual Geometry Group

16 layered network (VGG-16) [116]. This was designed mainly for competing in

ImageNet ILSVRC-2014, and eventually VGG secured the first and the second places

in the localization and classification tasks respectively. Recent advances include many

variants of CNNs that have large number of layers [116, 34]. Recently CNNs with

more than 150 layers [48] have been proposed achieving a top-5 error rate of 4.49%

on the imagenet classification task.

The main contribution in VGG-16/VGG-19 work involves rigorous evaluation of

networks of increasing depth, which shows that a significant improvement on the

prior-art configurations (AlexNet) can be achieved by increasing the depth to 16-19

weight layers, which is substantially deeper than what has been used in the prior art.

Further they reduce the number of parameters in such deep networks by using small

3x3 filters in all convolutional layers (the convolution stride is set to 1) as opposed

to 5x5 filters. Extensive use of non-linear layers might have been one more factor in

the increased efficiency. For more details please refer to their paper [116]. Figure 2.1
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and Table 2.2 provides the network architecture for VGG-16. We use the output of

fc-4096, a layer before fc-1000 as a feature representation for images.

Following is a brief description of some of the important layers in the VGG net-

work:

Convolutional layer: It consists of a set of learnable filters (weights and biases).

As the name suggest, the filters are convolved (dot product) with every spatial point

in the input region producing a 2-dimensional activation/feature maps. Though the

filters are small in dimension (width x height), the number of filters (depth) are usu-

ally large in number. Intuitively, these filters learn to fire when they see a distinctive

visual features such as edges, curves and colors in the beginning layers and more part

like or object like features deep down the network [149].

Pooling layer: This is mainly used for downsampling, in other words to reduce

the spatial dimension. Hence, it helps in reduced computations (because of reduced

parameters) and also avoids overfitting. It will also provide some translation invari-

ance.

Fully connected layer: In this layer, each neuron is connected to all the activa-

tion units (neurons) of the previous layer. The spatial information is lost but these

features are more invariant. This layer maybe used as a feature from a pre-trained

network for various applications.

Softmax layer: The softmax function typically remains as the last layer in the

network for classification problems. It provides a probabilistic values over all the K

classes to make a decision as defined in equation 2.21. It’s generally accompanied by

cross-entropy (log) loss for computing the gradients and updating the weights using

backpropagation algorithm.

σ(z)j =
ezj∑K
k=1 e

zk
(2.21)

Rectified Linear Unit (ReLU) layer: This is used as an activation function
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Convolution	+	ReLu

max	pooling

Fully	connected	+	ReLu

softmax

224	x	224	x	64

7 x	7	x	512

Figure 2.1: Macroarchitecture of VGG16.

which is non-linear in nature. A rectified linear unit has output 0 if the input is less

than 0, and it takes the same value as the input otherwise (as defined in equation 2.22).

ReLu(x) = max(0, x) (2.22)

Table 2.2: Network architecture for VGG-16. The convolutional layer parameters
are denoted as conv(receptive field size)-(number of channels). The ReLU activation
function is not shown for brevity.
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2.1.4.2 Text Embeddings

Classical approaches for modelling words and sentences uses n-gram conditional

probabilities based on the co-occurrence frequencies of words in a document. The

main drawback of this approach is the curse of dimensionality, as n grows, context

grows exponentially thus making the models intractable. As an alternative, [141]

proposed a neural network approach to learn a distributed representation of words
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which is also known as a word embedding. Here the goal was to jointly learn the

word feature vectors and the parameters of the probability function using a com-

mon global objective function (maximizing log likelihood). As a result of this, each

word in the vocabulary is represented by a real valued feature vector that provides a

syntactic and semantic meaning. Recently, the most popular and widely used word

representation known as word2vec [87] was proposed. They took an unsupervised

approach and proposed a skip gram model which optimizes the objective function

of maximizing the average log probability of the neighboring words conditioned on

the center word. The most interesting feature of this model is that it preserves lin-

ear regularities among the word representations. For example, the word vectors:

vec(king)-vec(man)+vec(woman) is close to vec(queen) in feature space. In some of

our proposed work, we represent all tags/labels by a real valued vector using the

word2vec tool.

2.2 Image Annotation and Retrieval Models

A large number of models have been proposed for automatic image annotation

task by researchers in the past decade. Early work involved a machine translation

based approach [26], in which the images were represented as vocabulary of blobs

(through image segmentation) and the task was to translate it into set of words. Sub-

sequent models further improved the results and they may be broadly divided into

three groups - generative models, discriminative models and nearest neighbor based

models. Generative model approaches consists of both mixture and topic based mod-

els. Examples of mixture models are the Cross Media Relevance Model (CMRM) [58],

the Continuous-space Relevance Model (CRM) [67] and the Multiple Bernoulli Rel-

evance Model (MBRM) [27] . These models estimate the joint probability of words

and visual features. Given visual features of a test image, the model is then used

to compute conditional probability scores for words. Visual features are represented
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either by discretizing and clustering them or by using a kernel density estimate. The

words in the vocabulary maybe modeled using a multinomial distribution but the best

results are obtained by modeling the words using a multiple Bernoulli distribution.

The parameters of these models are estimated using smoothed maximum likelihood

estimates. Along the same lines, a Markov Random Field [143] based approach was

proposed that could boost the potential of traditional generative model approaches

by modeling context relationship among semantic concepts. Recently an attempt

was made to improve the performance of CRM using Sparse Kernel Learning (SKL-

CRM) [90] , in which they try to learn the optimal combination of kernels for over a

dozen visual features. In the case of topic models, each annotated image is modeled

as a mixture of topics over visual and tag features, where the mixture proportions are

shared between different features or views. Some of the work related to this include

latent Dirichlet allocation [9], probabilistic latent semantic analysis [89], hierarchical

Dirichlet processes [144].

Most of the earlier proposed models [26] [58] [67] took block/region based ap-

proach for extracting visual features. The images were segmented using segmentation

algorithm such as normalized cuts [113]. Since most of the images were unconstrained

the segmentation results were inconsistent and this had an impact on the final results.

Later, researchers [27] showed that features computed over a simple rectangular re-

gion on the image instead of segmentation can yield superior performance. And in

most recent models [83] [41] [132], it was shown that simply using multiple global

features can yield better performance over all the existing methods.

Discriminative based approaches like support vector machines (SVM) [102], su-

pervised multi-class learning (SML) [14] and multiple instance learning [39] involve

building a classifier for each annotation tag by treating them as multi-class multi-

labelling problem (either one-versus-all or one-versus-one). In the passive aggressive

model for image retrieval (PAMIR) [39] they optimize an image ranking loss inspired
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by ranking SVM. A random forest based approach was also explored in [31]. In a

recent paper [133], they modified the hinge-loss in SVM to gain tolerance against

confusing labels. Scalability is an issue in this type of setup as it requires pre-defined

set of models per word.

Several successful nearest neighbor based models have been inspired by MBRM in-

cluding the Joint Equal Contribution (JEC) model [83], TagProp [41] and the 2PKNN

model [132]. JEC was the first to utilize nearly dozens of local and global features.

JEC proposed to consider equal contributions from different features (mean of dis-

tances) while transferring annotations from the nearest neighbors to the test image.

Followed by JEC, the authors of tag propagation (Tag-prop) introduced the standard

multiple-feature (15 local and global visual features) image annotation dataset.

They also introduced weighted K-Nearest Neighbor (KNN) which assign labels to

the test image based on the learned weights of the tags from neighboring training

images. In addition, to address the class-imbalance problem and to effectively com-

bine multiple features, metric learning along with label-specific models in the nearest

neighbor setup was proposed. The state-of-the-art 2PKNN (two-pass K-Nearest-

Neighbor) technique is a two-step approach. Given a test image, it tries to find K

neighboring images from each semantic group (images are grouped according to their

annotation labels thus resulting in L overlapping clusters for a vocabulary of size L)

to form a subset of training set. In the second step, the tags are predicted based

on the weighted combination of distances from multiple features of images in the

training subset. The optimal weights to combine base distances and features was

determined via metric learning, which involves a large margin set-up by generaliz-

ing a single-label classification metric learning algorithm for multi-label prediction.

2PKNN yielded better performance partly because it was able to effectively handle

the data imbalance problem by finding a subset of training images for every test im-

age. But, however it adds extra computation at test time making it a weak candidate
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for practical applications. In a recent paper [7], the performance of the nearest neigh-

bor based methods was significantly improved using kernelized canonical correlation

analysis (KCCA) embeddings of both visual and textual features. NMF-KNN ap-

proach in [60] fused multiple features using weighted multi-view nonnegative matrix

factorization in conjunction with NN approach.

Most of the recent techniques are based on deep learning, CNN with Weighted

Approximate Ranking (WARP) [36] loss was introduced to leverage the CNN feature

representations and rank the candidate tags for a given test image using ranking ob-

jective. Fast0Tag [151] involved end-to-end learning for embedding both visual and

textual information but their main focus was to solve zero-shot multi-label classifica-

tion problem (labels for which there exists no training images). Recent attempt [140]

was made to combine semantic representation obtained from CNN with RNN (cap-

turing label dependency) model to capture both image-label relationship and label

dependency.

2.3 Binary Classification of Endoscopic images

The automatic analysis of endoscopic images plays a vital role in visual diagnosis

of medical conditions. In most cases, the medical conditions are completely curable

if they are detected early. Towards this end, conventional computer vision based

techniques have demonstrated reasonable success [32, 138, 137]. Most of the meth-

ods [75, 6, 5, 152, 74] (dealing with endoscopic images) typically involve extraction of

features from images, followed by a vector quantization step based on a pre-defined

visual vocabulary (usually constructed by k-means clustering) which results in an

intermediate compact representation of an image that can be ingested as a training

sample for supervised classifiers. While these methods are effective, they consistently

fail to leverage the data-driven aspect of the problem as all three steps - feature ex-
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traction, generation of intermediate representation, and finally the classification, are

mutually independent.

Recently, deep learning based approaches [64] have demonstrated a significant

performance boost on generic image classification tasks [23] by addressing the final

classification objective in an integrated framework using layered neural networks.

This has motivated many researchers to apply deep neural network based methods

in the field of medical image analysis [17, 15, 95, 16, 33, 153]. In an early work [69]

pertinent to classification, the authors introduce a two-layer network which utilizes

independent subspace analysis to reconstruct a natural representation of tumor images

captured through cell-microscopy.

With that being said, training networks for medical image classification tasks is

a challenging task as it often requires thorough experimentation on large datasets.

Due to the lack of large amount of good quality training data, the trained network

architecture often overtly optimizes itself for only training data, and performs poorly

on unseen test samples. The authors of [8] avoid this issue by employing a pre-trained

convolutional neural network [64] whose parameters are learned from a large database

of images from non-medical cases [23]. Their research demonstrates high performance

on a medical application of chest pathology detection in X-ray images. While such a

pre-trained architecture has demonstrated success in a specific cross-domain exercise,

the generalization aspect is still inconclusive.

2.4 Multiclass Image Classification using CNN

Deep Learning in general has shown to be an effective framework advancing

the state-of-the art performance on various tasks [108] in the field of computer vi-

sion [82, 116, 130, 93, 109, 34]. In particular, CNN based models have been the top

performers in computer vision related tasks till date and recent work show that Re-

current Neural Networks [RNN] [101] with CNN (as the image recognition backend)

23



can be effective for some of the tasks dealing with sequence data. This is made pos-

sible due to publicly available large image datasets such as ImageNet [23] and also

due to high performance computing systems like GPU’s and large scale distributed

clusters. For any given problem, the real challenge exists in coming with an effective

architecture, and this could vary based on the domain requirements (medical-field,

autonomous-driving, machine-vision etc.). Various attempts have been made to come

up with an effective CNN network architecture either by going deeper (see [116, 125]

which were the top performers in the 2014 ImageNet challenge) or by introducing new

components:- 1. Activation units such as (a) rectified linear unit (ReLu) [64] helped

in accelerating the learning and have a great influence on the performance of large

models trained on large datasets, (b) Parametric rectified linear units (PReLu) [47]

which replace the parameter-free ReLU activation by a learned parametric activa-

tion unit to further improve the classification performance; 2. Regularizers like

(a) dropout [122] randomly set some activation units to zero in a given layer and

provides the effect of model averaging, (b) dropconnect [139] sets the weights to zero

instead of activation units, (c) maxout [38] outputs the maximum of a set of in-

puts and this can be used as an alternative to dropout; 3. Normalization such as

batch normalization [56] that normalizes the layer inputs providing an accelerated

learning and improved performance. We propose an alternative generic deep learning

framework which helps in improving the classification performance by leveraging any

of the existing networks (with a mixture of new components) as the starting root

node in our proposed tree structured deep decision network. Our work is inspired by

decision trees [103] and the idea of sample partitioning [13], which are both classi-

cal approaches in machine learning. There have been a few related papers that are

tree-like structured CNNs, starting with [123] aimed towards improving the classifi-

cation performance of classes with limited training dataset by transferring knowledge

among similar classes. A recent paper [50] attempted to build a hierarchical CNN
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but the main objective was to transfer knowledge from a large network to a small

network to achieve scalability but without compromising on the performance. In our

proposed work, we aim to provide a generic framework that automatically discovers

data-hierarchy and improve the performance by separating out the easily separable

data from the hard ones. The hard confusion cases will be routed deep down the

tree to be handled by the expert network nodes. This framework reflects the well

established idea of mixture of experts [86] machine learning algorithm. Mixture of

experts is developed based on the divide-and-conquer principle. Here the input space

is divided and handled by the respective experts (can be any learner). The final deci-

sion may be based on a weighted experts decision or it can also be a gated function.

In our case, we use error based (confusion matrix to be specific) for partitioning the

input data into different clusters. For each cluster we assign an expert network and

during inference, the final decision is based solely on the expert.
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CHAPTER 3

MULTI-LABEL CLASSIFICATION (IMAGE
ANNOTATION) AND RETRIEVAL MODELS USING

DEEP REPRESENTATIONS.

3.1 Introduction

Automatic image annotation is a labeling problem wherein the task is to pre-

dict multiple textual labels for an image describing its contents or visual appearance.

Automatic image/video annotation plays an important role in managing the expo-

nentially increasing number of images/videos being uploaded to the internet. For

instance in the year 2017, people uploaded 350 million photos on an average to Face-

book each day [2] and more than 400 hours of videos were uploaded to YouTube every

minute [3]. Some of this data is tagged by the users, but these tags may be ambiguous

or incomplete. Researchers have tried to make use of the metadata associated with

the images/videos to build a better image classification or object detection system.

Image classification system has also been used to transfer the tags to unannotated

images based on their similarities and vice versa [83, 27, 41, 91, 67]. Our objective

here is to predict a fixed number of tags for a given test image which accurately

describes the visual content.

Most existing techniques are based on supervised learning which involve learning a

mapping function between low level visual features (color, local descriptors, etc) and

high-level semantic concepts (sun, sky, etc). However, the problem of poor annotation

(training images not being annotated with all relevant keywords) and class-imbalance

(large variations in the number of positive samples/class) make automatic image

annotation a difficult problem to solve. Existing methods use dozens of handcrafted
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features such as quantized Scale Invariant Feature transform (SIFT), quantized color

histograms in different color spaces (RGB, LAB, HSV) to build a tag prediction model.

These models may be generative [27, 67, 142], discriminative [14, 133, 41, 132] or

nearest neighbor-based ones; among these, nearest neighbor based models are shown

to be the most successful [83, 41, 132].

Multiple features with the right type of model are shown to improve the annotation

performance significantly in the current state of the art system [132]. Yet, these dozens

of handcrafted features serve as a bottleneck in designing scalable realtime systems.

Hence, we propose a set of models in the following sections which uses a deep learning

representation (based on a single CNN based feature representing an image) yielding

better results. CNN features are shown to be successful for many vision tasks (object

detection, classification and segmentation) producing significantly improved results

on the most challenging datasets such as PASCAL VOC and ILSVRC2012 [35, 105].

The rest of the chapter is organized as follows: First, the proposed models are

described in the following order - SVM-DMBRM ( a hybrid) model that combines

both discriminative and generative approaches in Section 3.2, a method based on

Canonical Correlation Analysis (CCA) with deep learning embeddings (for both im-

ages and labels) in Section 3.3 and a hypergraph based model in Section 3.4. A brief

introduction to all the datasets that are being used in our experiments are provided

in Section 3.5; the details of evaluation metrics are given in Section 3.6. Section 3.7

presents the experimental results of all our proposed models and the findings. Fi-

nally in Section 3.8, we provide additional experimental results on one of the largest

dataset (NUS-WIDE) using our best performing models, which helps in validating

the scalability factor.
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3.2 Hybrid (SVM-DMBRM) Model

Here we present a hybrid model combining a generative and a discriminative model

for the image annotation task. A Support Vector Machine (SVM) is used as the

discriminative model and a Discrete Multiple Bernoulli Relevance Model (DMBRM)

is used as the generative model. The idea of combining both the models is to take

advantage of the distinct capabilities of each model. The SVM tries to address the

problem of poor annotation (images are not annotated with all relevant keywords),

while the DMBRM model tries to address the problem of data imbalance (large

variations in the number of positive samples). In practice, DMBRM does not work

well with high-dimensional data, hence a Latent Dirichlet Allocation (LDA) model

is used to reduce the dimensionality of vector quantized feature before using it. The

results of the hybrid model compare well with the state-of-the-art results on three

standard datasets: Corel-5k, ESP-Game and IAPRTC-12 (see section 3.5).

In addition, we show that deep learning (DL) features when combined with the

SVM-DMBRM model yield comparable results to the state-of-the-art system. Image

features are extracted using Convolutional Neural Networks (CNN) pre-trained on

the ImageNet dataset (ISVRC12). The SVM-DMBRM model with powerful deep

learning features results in a simple, efficient and scalable system because it uses a

single feature as opposed to dozens of handcrafted features used in the state-of-the-art

system. We also provide the SVM-DMBRM performance results with DL feature on

a large dataset (NUS-WIDE).

3.2.1 Discriminative Model

Image annotation may be viewed as a variation of a multi-class problem in which

a number of words are employed to annotate a test image. However, in the case of

images sharing the same annotations, the creation of multi-class models is very diffi-

cult because different classes sharing the same descriptors yield noisy discriminative
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hyper-planes; here we focus on binary models rather than a multi-class model. In the

case of binary models the intra-class dependencies are ignored unlike the multi-class

models. Here we create a binary classification model per word in the vocabulary and

then make use of its responses for annotation. While creating a model Mwi
for word

wi we assume that the images (in the training set) annotated with wi are positive

examples (i.e. yi = +1) and similarly the images that are not annotated with wi

are assumed to be negative examples (i.e. yi = −1). Employing binary classification

models for words enables us to deal with the issue of images sharing the same word

annotations.

If our vocabulary consists of a number of words W = {w1, w2, ..., wn} then we

create n binary models each of which provides a discriminative model for its corre-

sponding word. For a test image we get n responses representing the probability of

having an annotation of each word. The standard evaluations [67, 58, 27, 41, 132]

require five word annotations per image, hence we annotate a test image with the five

words having the highest responses. Imbalanced positive examples might be a prob-

lem for the image annotation task since every word might have a different number

of annotated images. We normalize the responses of each binary model to deal with

this imbalance problem. We first take the normal inverse cumulative distribution of

the responses (i.e. the probabilities of having a word as an annotation) and then we

map them back to [0,1].

3.2.2 Generative Model

We use a discrete MBRM model as opposed to the continuous model proposed in

[27]. The reason for the discrete version is due to the fact that it helps in reducing the

computational complexity. The following derivation follows [27, 58]. Let V represent

the annotation vocabulary and W be any arbitrary set of words. Also, Let J be an

image in the training dataset T . Each image is associated with a set of dimensionality
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reduced feature vector and annotation words where, each feature vector f has a

dimension m and annotation words have dimension n (W = w1, w2 · · ·wn). For a test

image, we extract its features and its distribution is known but we need to predict

the words associated with it, formally given by P (w|f). From Bayesian theory,

P (w|f) = arg max
w

P (w, f)

P (f)
(3.1)

One possible solution to computing the joint distribution P (w, f) is by taking an

expectation over the entire training set of images. Following the formulation in [58],

the joint probability is given by:

P (w, f) =
∑
J∈T

{PT (J)
m∏
i=1

P (fi|J)
∏
wi∈w

P (wi|J)×∏
wi /∈w

(1− P (wi|J))} (3.2)

PT (J) is kept uniform for all images in the training dataset. P (fi|J) are estimated

using smoothed maximum likelihood estimates [58] as follows:

P (fi|J) = (1− αJ)
n(fi, J)

n(f, J)
+ (αJ)

n(fi, T )

n(f, T )
(3.3)

Here n(fi, J) represents the number of times the visterm (quantized feature value)

occurs in the training image J , n(f, J) denotes the total number of visterms in image

J , n(fi, T ) denotes the number of times the visterm occurs in the entire training

dataset T and n(f, T ) indicates the total number of visterms in the entire training

dataset T . The smoothing parameter α is estimated using a validation dataset.

P (wi|J) for each word is estimated using a Bayes estimate given by [27]

P (wi|J) =
β ∗ 1wi,J +Nwi

β +N
(3.4)
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Here, 1wi,J is a indicator function for word wi occurring in image J . The smoothing

parameter β is estimated using a validation dataset. Nw is the number of training

images containing wi and N is the total number of training images.

3.2.2.1 LDA for Dimensionality Reduction

In our experiment, the feature sets are vector quantized and generally are large

dimensional vectors. One of the main limitation of generative models such as CMRM,

CRM or MBRM model is that their performance is limited by the dimensionality

of the feature vector. Consider equation (3.2), in order to compute P (fi|J) we

take a product over all the feature values because of the independence assumption.

Even though we use the log-sum-exp trick, its performance gets degraded. In order

to overcome this we used a Latent Dirichlet Allocation model [66] to reduce the

dimensionality. We treat each feature value in an image as a word and summarize

the words in the document using fewer topics. In other words, the LDA model

gives us a compact representation of feature vectors. Experimentally, we fixed the

dimensionality of the feature vectors to be around 100 for all 14 features. These

dimensionality-reduced features were used only in the case of the generative model

whereas the feature dimensionality remained unchanged for the SVM model.

3.2.3 Fusion of Models

To get the best of both the techniques, we combine discriminative and generative

models as follows. Let F = {f1, f2, ..., fm} be a set of descriptors that we use in this

work. Let Pd(fi) be the response of a discriminative model in terms of probabilities

created for the descriptor fi. Please note that we create separate models for each

of the descriptors. Similarly let Pg(fi) be the response of a generative model in

terms of probabilities created over the descriptor fi. Then the final response PD for

discriminative models is provided below;
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PD =
1

m

m∑
i

Pd(fi) (3.5)

Similarly, the final response G for generative models is as follows:

PG =
1

m

m∑
i

Pg(fi) (3.6)

The final response PR is based on the linear combination of discriminative and gen-

erative scores as follows:

PR = (1− λ)PD + λPG (3.7)

Here, λ is determined empirically.

3.3 Canonical Correlation Analysis model

Here we propose simple and effective models for image annotation that make

use of Convolutional Neural Network (CNN) features extracted from an image and

word embedding vectors to represent their associated tags. Our first set of models is

based on the Canonical Correlation Analysis (CCA) framework that helps in modeling

both visual features (CNN feature) and textual features (word embedding vectors)

of the data. Results on all three variants of the CCA models, namely linear CCA,

kernel CCA and CCA with k-nearest neighbor (CCA-KNN) clustering are reported.

The best results are obtained using CCA-KNN which outperforms previous results

on the Corel-5k and the ESP-Game datasets and achieves comparable results on

the IAPRTC-12 dataset. In our experiments, we evaluate CNN features on existing

models which bring out the advantages of it over dozens of handcrafted features. We

also demonstrate that word embedding vectors perform better than binary vectors as

a representation of the tags associated with an image. In addition we compare the
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CCA model to a simple CNN based linear regression model, which allows the CNN

layers to be trained using back-propagation.

3.3.1 Feature Extraction

Here, we provide details about how the CNN features are extracted from images,

followed by details on how to use word embedding vectors to represent the tags.

3.3.1.1 CNN features

Given an image, we extract a 4096-dimensional feature vector (X) (last fully

connected layer before softmax) using a pre-trained CNN on the ILSVRC-2012 dataset

as described in Simonyan et al. [116]. We explored both VGG-16 and VGG-19 layered

architecture features (more details in section 2.1.4). Since both of them gave similar

results, we used VGG-16. Features extracted from Caffe-Net provided by Caffe [59]

(similar to AlexNet [65]) did not work as well as VGG-16, hence we used VGG-16

features for all our experiments. The features are computed by forward propagating

a mean-subtracted 224x224 RGB image through eight convolutional layers and three

fully connected layers. In our case, we resize all the images irrespective of their aspect

ratio to 224x224 to make it compatible with the CNN.

3.3.1.2 Word embeddings

For each tag associated with an image, we represent the tag (word) by a 300 di-

mensional real valued feature vector using a Word2Vec tool and we call it as a word

embedding vector (E ∈ Rl×q), where l is the number of labels and q = 300 dimen-

sions. These word vectors are obtained from a pre-trained skip-gram text modeling

architecture introduced by Mikolov et al. [87]. It was shown that the model learns

similar embedding vectors for semantically related words. Therefore, we use it to

represent the annotations. We take the average of all the word embedding vectors

(Y ) associated with multiple tags representing an image. Formally, if there are k tags
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associated with an image I then Y = 1
k

∑k
i=1Ei and their association is represented

as {I, Y }. While reporting the result, we refer to word embedding vectors as W2V.

3.3.2 Proposed Method

Here we present the details of our proposed model and its variant.

3.3.2.1 Canonical Correlation Analysis (CCA)

Given a pair of views for an image – a visual feature (X, i.e., CNN feature) and a

textual feature (Y , word embedding vector), CCA computes projections wx and wy

for X and Y respectively to maximize their correlation. Concretely, for M samples,

let X ∈ Rm×p and Y ∈ Rm×q be the two views of the data, then, the projection

vectors wx and wy are computed by maximizing the correlation coefficient ρ

ρ = arg max
wx,wy

wTxXY
Twy√

(wTxXX
Twx)(wTy Y Y

Twy)
(3.8)

The dimensionality of these new projection vectors is less than or equal to the small-

est dimensionality of the two variables. The canonical correlations are invariant to

affine transformations of the variables. The solution is found by formulating it as a

generalized eigenvalue problem [46]:

XY T (Y Y T )−1Y XTwx = ηXXTwx (3.9)

where η is the eigenvalue corresponding to the eigenvector wx. Thus, multiple projec-

tion vectors can be found which form a projection matrix Wx ∈ Rp×l ∈ and similarly

Wy ∈ Rq×l. where, l is the number of eigenvectors corresponding to the top l eigen-

values. In the case of regularized CCA (rCCA), L2 regularization is used and it

constrains the norms of canonical weights wx and wy and thus avoids overfitting.

Thus for rCCA we have:
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ρ = arg max
wx,wy

wTxXY
Twy√

(wTxXX
Twx + ‖λwx‖2)(wTy Y Y Twy + ‖λwy‖2)

(3.10)

The following is the generalized eigenvalue problem of rCCA:

XY T (Y Y T )−1Y XTwx = η(XXT + λI)wx (3.11)

3.3.2.2 Kernel CCA (KCCA)

Since CCA can only capture linear relationships, we propose to use a χ2 kernel

for exploiting non linear relationships. The χ2 kernel was found to be well suited in

our experiments. The visual feature X is mapped to a high dimensional feature space

Hx using a function φx. The φx mapping is achieved using a positive definite kernel

function Kx = 〈φx, φx〉 ∈ Rm×m, where 〈: , :〉 is an inner product in Hx. Similarly, the

word embedding vector Y is mapped to Hy using the kernel function Ky = 〈φy, φy〉 ∈

Rmxm. Kernel CCA finds the solution of wx and wy as a linear combination of the

training data:

wx =
∑m

i=1 αiφx(xi) andwy =
∑m

i=1 βiφy(yi). Since feature vector dimensions are

large, overfitting is an issue. To avoid this, we used a regularized kernel CCA [46]

which finds α̂, β̂ by maximizing the following objective function that involves penal-

izing the norms of the projection matrix:

arg max
α,β

αTKxKyβ√
(αTK2

xα + rxαTKxα)(βTK2
yβ + ryβ

TKyβ)
(3.12)

where, rxα
TKxα and ryα

TKxα are the additional partial least square term added to

the KCCA for regularization. The solution yields top l eigenvectors Wx = [α1 . . .αl]

and Wy = [β1 . . .βl] which form the projection matrix.
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3.3.2.3 Implementation details

CCA and KCCA with regularization were implemented as explained in [46]. Reg-

ularization was found to be important to avoid overfitting resulting in better perfor-

mance. In the case of linear CCA, we project X onto Wx, project Y onto Wy and

project E onto Wy:

U = (X − µX)Wx , V = (Y − µY )Wy and Z = EWy (3.13)

Given a test image It, we extract deep learning visual features X and project it

using Wx as U = (X − µ)Wx and compute the correlation distance to V using d =

1−( (U−µU )(V−µV )√
(U−µU )(U−µU )

√
(V−µV )(V−µV )

). The corresponding tags associated with the closest

matching Vi (ith training sample with lowest distance value) are assigned to the test

image (tags are also ranked according to their frequency in the training dataset). If

the tags are less than the fixed annotation length, we pick the next closest match and

transfer the tags, we repeat this until we obtain the required set of tags - in our case

its five (to compare with previous work).

Similarly, in the case of KCCA, we kernelize X, Y and Z and later project onto

Wx,Wy,Wx respectively. For a test image, we kernelize the visual features and follow

the same procedure as above.

In CCA with KNN clustering (CCA-KNN) setup, we initially create clusters of

images grouped according to its labels. The resulting clusters will be overlapping and

the number of clusters will be equal to the number of labels. The only difference

from our CCA/KCCA implementation is that, after finding the correlation distance

of U with V , we choose K semantic neighbor samples from each cluster for that

particular test image and now all their associated tags form a subset of tags Zk

(potential candidates for a test image). Later, we rank the words w for a test image

It according to the probability score:

36



P (It|w) =
∑
k

exp(−D(U,Zk))1k(w) (3.14)

where, D(U,Zk) is the correlation distance between U and Zk and 1k(w) is an

indicator function which takes a value 1 if the tag is present among neighbors and 0

otherwise.

3.3.3 CNN-based regression model

Inspired by the success of deep CNN architectures [65, 116, 35] on the large scale

image classification task, we use it to solve the task of automatic image annotation.

To the best of our knowledge, this is the first attempt to formulate this problem based

on a CNN. The idea is to formulate the problem as a linear regression. We achieve this

by replacing the last layer of Caffe-Net (very similar to AlexNet except that pooling is

done before normalization) with a projection layer (fully connected layer) and we call

it as a CNN regressor (CNN-R). CNN provides the mapping function which regresses

the fixed size of the input image to a word embedding vector. The network consists

of five convolutional layers and two fully connected layers with some series of non-

linear transformation (rectified linear unit) and pooling layers. Most importantly, it

uses some dropout layers in addition to avoid overfitting. For further architecture

details, please refer to [65]. In this setup, we increased the learning rate for the

newly introduced layer while reducing it for all the other previous layers, the reason

being that we are trying to fine-tune the network previously trained on 1.2 million

images. The input image size was fixed to be 227x227 and the final regressed output

was a 300 dimensional vector. The output dimensional vector is 300 because we chose

to represent the tag by a 300 dimensional real valued feature vector using Word2Vec

and multiple tags associated with an image were handled by taking their average.

Since we have chosen to do linear regression, we use Euclidean loss (L2) instead of

Softmax loss during the training phase. The prediction layer tries to predict the
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word embedding vector by minimizing the L2 loss depending on which, the model

parameters are updated using the back-propagation algorithm.

3.4 Hypergraph model

We propose to solve the automatic image annotation task using a novel multi-

scale hypergraph heat diffusion framework. This enables us to first capture the higher

order similarity among multiple images in the feature space and subsequently exploit

the topology of the underlying hypergraph. Such topological analysis enables us

to perform simultaneous diffusion of the training labels at multiple scales in the

transductive setup thereby addressing the key problem of class imbalance (by diffusing

under-represented labels at relatively large scale).

This is realized as follows: First, we model the higher order feature similarity

among images using the nearest-neighbour hypergraph modelling. We use Convo-

lutional Neural Networks (CNN) features as visual features. Secondly, we compute

the spectrum of the associated hypergraph Laplacian matrix and use it to derive the

hypergraph heat-kernel matrix. Third, we diffuse the training image labels using the

heat-kernel matrix at multiple scales and infer the test labels. Finally, we provide

empirical validation of the proposed technique.

3.4.1 Proposed Method

Here, we provide details of the key steps of novel multi-scale hypergraph heat diffu-

sion (HHD) framework which addresses the class imbalance problem in the automatic

image annotation task using a single CNN feature.

3.4.1.1 Feature Extraction

CNN feature are extracted as described in section 3.3.1.1.
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Let xi be the 4096-dimensional feature vector representing the ith image, the

entire dataset consisting of n images (including both training and testing sets) can

be represented as:

X =
[
x1, . . . ,xn

]
.

We can rewrite this by separately representing the training set of images with Xtrain

and the test set of images with Xtest such that:

X = {Xtrain ∪Xtest}.

3.4.1.2 Hypergraph Construction

A hypergraph enables capturing more information using hyperedges by linking

multiple nodes as compared to simple graphs where only dyadic relationships are

captured by the edges. In the context of the image annotation task, we have adopted

the hypergraph construction from [147] where each image is considered as a node.

Each node has one (or multiple) corresponding hyperedge(s) which connect k nearest-

neighbor nodes in the feature space (for varying values of k). The set of hyperedges

stacked together is known as the incidence matrix of the hypergraph. Let,

Π =
[
he1, . . . ,hep

]
(3.15)

be the incidence matrix of the nearest-neighbour hypergraph induced on the image

feature set X. Here, each hyperedge hei =
[
he1i , . . . , he

n
i

]T
is an indicator vector of

size n where each element heji = 1 if node xj participate in hyperedge hei or else

zero. Thus, multiple 1’s suggest that the respective nodes contribute to the same

hyperedge. The total number of hyperedges (p) is a multiple of n.
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3.4.1.3 Hypergraph Heat Diffusion (HHD) Framework

Traditionally, a Gaussian function is used as a convolution kernel for scale-space

analysis of a scalar function defined over Euclidean domains (eg., images), where the

scale parameter is associated with the variance of this function. The reason being that

the Gaussian corresponds to the closed-form solution of the heat diffusion equation

on Euclidean domains [28].

A similar kernel framework exists for simple graphs in the transductive setup

where both training and test data points are treated as graph nodes. The heat-kernel

is a non-linear (exponential) family of kernels, and for simple graphs it is derived from

the spectra (constituted by both eigenvalues & eigenvectors) of the Laplacian graph

matrix [112]. Thus, the heat kernel is a symmetric kernel (analogous to a Gaussian

kernel) for non-Euclidean spaces represented as graphs and is used as a diffusion tool

for multi-scale label or information diffusion on graphs [127].

Interestingly, the Laplacian for hypergraph was derived in [154] where it was shown

to be analogous to a simple graph Laplacian. We extend this work to define the

heat diffusion framework for hypergraphs using the spectra of hypergraph Laplacian.

This framework enables multi-scale (topological) analysis of hypergraphs. Using the

definition of hypergraph incidence matrix in Eq.3.15, the hypergraph Laplacian is

subsequently defined [154] as:

L = I−
(
D
− 1

2
v ΠWheD

−1
he ΠTD

− 1
2

v

)
(3.16)

where,

• Π is n× p incidence matrix of the hypergraph with p hyperedges,

• Dv is n× n degree matrix of nodes defined as Dv = diag
(∑

p Π
)

,

• Dhe is p× p degree matrix of hyperedges defined as Dhe = diag
(∑

n ΠT
)
,

40



• Whe is p× p hyperedge weight matrix defined as Whe = diag(w1, . . . , wp).

The Whe matrix can be used to enforce the relative significance of certain hyperedges

over others by setting larger values but throughout our experiment, we set it to

uniform values. The eigen-decomposition of L matrix is written as:

L = UΛUT (3.17)

where, U = [u1, . . . ,un] be the matrix formed by the eigenvectors of L matrix and,

Λ = diag(λ1, . . . , λn) be the diagonal eigenvalue matrix, these together define the

Laplacian spectra.

The hypergraph heat diffusion framework can be derived using the associated

Laplacian spectra. The n×n heat-kernel matrix for hypergraph can be computed as:

H(t) = U exp(−Λt)UT (3.18)

where, t is the scale parameter which govern the heat diffusion. One can show that

the H(t) matrix is indeed a kernel matrix as it satisfies Mercer’s kernel property, i.e.,

it is a real, positive semi-definite matrix with real and positive eigenvalues (exp(−Λt)

for t ≥ 0). This property is based on the proof presented in [154] that the hypergraph

Laplacian matrix (L) is a positive semi-definite matrix.

In practice, a low rank approximation of the heat kernel matrix in Eq. 3.18 is

computed using a subset of (� n) smallest eigenvalues/eigenvectors of the L matrix.

However, it is important to be cautious while choosing the rank size because the

rank of the heat kernel matrix and the scale of diffusion have a complex relationship

empirically analysed in [112].
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3.4.1.4 Multi-scale Label Diffusion & Inference

Here, we present the formulation for multi-scale diffusion of training image labels

using the HHD framework to infer the labels for test images. The label diffusion over

a graph in the transductive setup is accomplished by computing the pseudo-inverse

of the graph Laplacian matrix [81]. A similar approach is adopted for the hypergraph

variant [147]. This kind of diffusion automatically decides a fixed scale at which labels

are diffused in the local neighbourhood over the (hyper-)graph.

To overcome this limitation, in our HHD framework, the scale of diffusion is

governed by the parameter t (see Eq. 3.18). This provides an explicit control over the

scale of diffusion that is more powerful in the sense that, it would allow one to diffuse

over-represented and under-represented labels separately. Thus, this kind of setup

helps in addressing the prevalent class imbalance problem in real data. Here, the

value of t can vary from zero to infinity (approximated by a relatively large value). A

small scale diffusion (t closer to zero) would enforce the label diffusion in the smaller

neighbourhood while a large scale diffusion (t closer to infinity) would enforce the

label diffusion in a very large neighbourhood.

Let, the ground truth labels for both train and test be represented as:

Y =
[
y1, . . . ,ym

]
where each yi is an n-dimensional indicator vector (0’s and 1’s) for the multi-label

annotation setup with label vocabulary of size m. Let Ytrain ⊂ Y be the set of known

labels (training set) and Ytest be the complementary set of unknown labels (testing

set). Thus, a scale dependent label diffusion can be accomplished as:

Yt = H(t)Y. (3.19)

Here, Yt is the resultant matrix after diffusion of labels.
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Let YOR ⊂ Y be the subset of labels from over-represented class and YUR be the

complementary set of under-represented class labels. The multi-scale (ms) diffusion

to address the class imbalance problem can be achieved by diffusing over-represented

labels at tsmall and under-represented labels at tlarge as:

YOR
tsmall

= H(tsmall)Y
OR, (3.20)

YUR
tlarge

= H(tlarge)Y
UR, (3.21)

These diffused label matrices can further be combined to

Yms = YOR
tsmall

⋃
YUR
tlarge

.

Here, Yms is the resultant matrix after diffusing the labels at different scales.

Finally, we select the subset of multi-scale diffused labels for test set images (i.e.,

Ytest
ms ⊂ Yms) apply multi-label inference by taking the q largest entries of each row

of Ytest
ms for inferring q labels for each test image. However, before inferring test image

labels, we propose to normalize Ytest
ms with L1-normalization using Ytrain

ms . This type

of normalization further helps in addressing the class imbalance problem.

3.4.1.5 Implementation Details

In regard to hypergraph Laplacian parameter, we set Whe (hyperedge weight ma-

trix) to the identity matrix thereby giving equal importance to all hyperedges. Thus,

we did not exploit the formulation completely by using a cross validation based tuning

of Whe matrix which could probably yield better results. This was done intentionally,

because we wanted to report generalized results and therefore a tuning which can be

regarded as overfitting to datasets was avoided. Instead of using all eigenvectors of

the Laplacian matrix, we used only 10% of the smallest eigenvectors for constructing a
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low rank heat kernel matrix for computation efficiency reasons. The scale parameters

were empirically chosen for each dataset.

3.5 Dataset

We evaluate on four standard publicly available image annotation datasets - Corel-

5k [26], ESP-Game [136], IAPRTC-12 [136] and NUS-WIDE [19]. These datasets

contain a variety of images such as natural scenes, games, sketches, transportation

vehicles, personal photos and so on, thus making image annotation a challenging

task.

3.5.1 Corel 5k

The dataset consists of 5000 images, among which 4500 are used for training and

the remaining 500 images are used for testing [25]. The label vocabulary consisted

of 260 labels used for image annotation. Each image is annotated with a varying

number of labels from 1 to 5 and an average of 3.5.

3.5.2 ESP Game

It consists of 20,770 images in total. Images are annotated via an online gaming

setup [84]. If the images are annotated with the same key words by two distinct

players, then they score a point. The training dataset consists of 18,689 images and

the test set consists of 2081 images. The image annotation vocabulary consists of 268

labels and on an average each image is annotated with 4.7 labels.

3.5.3 IAPRTC-12

It is a collection of 19,627 images of natural scenes which are split into a training

set consisting of 17665 images and a testing set consisting of 1962 images [40]. The
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label vocabulary consists of 291 labels with an average of 5.7 labels used for annotat-

ing each image.

3.5.4 NUS-WIDE

It’s a web-image dataset that originally consists of 269,648 images and 5018 tags

from Flickr. Amongst them, 223,821 image links were active on Flickr and hence we

ended up using only them. We follow the exact same train (134,281 images) and test

(89,603 images) split as provided by [151]. There are three sets of annotations/tags

assigned to these images. The first set of tags are very noisy and consist of a lot of

rare tags that account for nearly 5000 tags. The second set consists of 1000 tags after

removal of some noisy and rare tags. The third set comprises 81 manually annotated

tags with relatively less noise. These 81 concepts were carefully chosen from Flickr

such that they are among the frequently occurring tags and they have both general

concepts such as “vehicle” and specific concepts such as “statue” and “dancing”.

Each of these tags belong to different set of categories.

Table 3.1: Statistical details of the datasets used in this study. In labels per image
column, the mean/max values are provided. In the distribution of labels column,
label frequency greater than mean frequency (over-represented)/label frequency less
than mean frequency (under-represented) are provided.

Dataset Number of Vocab. Training Test Labels Images Distribution
images size images images per image per label of labels

Corel-5K 5,000 260 4,500 500 3.4/5 58.6 195(75%)/65(25%)
ESP Game 20,770 268 18,689 2,081 4.7/15 362.7 201(75%)/67(25%)
IAPRTC-12 19,627 291 17,665 1,962 5.7/23 347.7 217(74.6%)/74(25.4%)
NUS-WIDE 223,821 81 134,281 89,603 1.7/20 2428.7 57(70%)/24(30%)
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3.6 Evaluation Metric

We follow the standard evaluation metrics as reported in most of the previous

work [91, 90, 132, 84, 27, 67]. Each test image is annotated with a fixed number

of five labels. For a given label, let α be the number of images predicted, β be

the number of images correctly predicted and let γ represent the number of images

present in the ground truth set. Then, the recall and precision can be computed as

β
γ

and β
α

respectively. Finally, the average of recall (R) and precision (P) over all the

labels are reported along with their first harmonic mean (F). In addition, N+ which

represents the number of labels with non-zero recall value is also reported.

3.7 Experimental Results

In order to have a fair comparison with the previously reported results, we follow

the same train and test split as reported in [41] and also fix the length of the anno-

tations (five tags) for a test image. Table 3.2 provides the results of our proposed

models on all three datasets- Corel-5K, ESP Game, and IAPRTC-12 in comparison

with previously reported numbers. In addition, we also show the effectiveness of us-

ing CNN features in our proposed models as compared to their usage in some of the

existing models, 2PKNN, JEC and TagProp. For reporting these results, we imple-

mented the JEC method as described in [84], for 2PKNN [132] (reported results

are obtained using the default parameter values, k = 4 and w = 1) and TagProp [42]

we made use of the code provided by the authors. In the table 3.2, P represents the

average precision, R represents the average recall, and N+ represents the non-zero

recall (number of distinct words that are correctly assigned to the test image set).

3.7.1 Quantitative Analysis

SVM-DMBRM with handcrafted features performance is consistently better in

terms of N+ measure and it is comparable to state of the art in F measure to all
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Table 3.2: Experimental results of our proposed models with previously reported best
scores on all three datasets. P: Average Precision, R: Average Recall, N+: Number
of distinct words that are correctly assigned to at least one test image.

Feature Corel-5K ESP Game IAPRTC-12
Method Visual text P R F N+ P R F N+ P R F N+

JEC [83] HC - 27 32 29 139 22 25 23 224 28 29 29 250
MBRM [27] HC - 24 25 25 122 18 19 19 209 24 23 24 223

TagProp(σML) [41] HC - 33 42 37 160 39 27 32 239 46 35 40 266
2PKNN [132] HC - 39 40 40 177 51 23 32 245 49 32 39 274

2PKNN+ML [132] HC - 44 46 45 191 53 27 36 252 54 37 44 278
KCCA-2PKNN [7] HC - 42 46 44 179 - - - - 59 30 40 259

SKL-CRM [90] HC - 39 46 42 184 41 26 32 248 47 32 38 274

JEC VGG-16 - 31 32 32 141 26 22 24 234 28 21 24 237
2PKNN VGG-16 - 33 30 32 160 40 23 29 250 38 23 29 261

TagProp (σ) VGG-16 30 35 32 149 31 28 30 246 38 30 34 260

Below are our models

SVM-DMBRM HC - 36 48 41 197 55 25 34 259 56 29 38 283
SVM-DMBRM VGG-16 - 42 45 43 186 51 26 35 251 58 27 37 268

HHD VGG-16 - 31 49 38 194 35 36 34 257 32 44 36 280

CCA VGG-16 W2V 35 46 40 172 29 32 30 250 33 32 33 268
KCCA VGG-16 W2V 39 53 45 184 30 36 33 252 38 39 38 273

CCA-KNN VGG-16 BV 39 51 44 192 44 32 37 254 41 34 37 273
CCA-KNN VGG-16 W2V 42 52 46 201 46 36 41 260 45 38 41 278

CNN-R Caffe-Net W2V 32 41 37 166 45 29 35 248 49 31 38 272

other previous work. N+ is a measure of how well the system performs with the

imbalanced positive example problem and also it indicates the number of distinct

words that were used for annotating the test images.

The experimental results of using our proposed models (SVM-DMBRM, Hyper-

graph and CCA) with CNN features are comparable to the state of the art result

(2PKNN) and in particular, CCA-KNN with single CNN feature yields a significant

improvement over all the existing methods on Corel-5k and ESP-Game datasets. Our

proposed methods with CNN features outperforms the TagProp’s performance which

specifically studied the usage of a bunch of hand crafted features and multiple metric

learning (combining different weighted features) to yield better results. The current

state of the art system (2PKNN) uses more than a dozen hand-crafted (HC) features
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which are computationally expensive and serve as a bottleneck for use in large scale

applications. Here we show that one single CNN feature per image is scalable and

effective for image annotation task. Also, we overcome the difficulty of choosing the

best set of features and finding the best feature score fusion techniques. Interestingly,

the CNN features used in JEC, TagProp and 2PKNN methods perform poorly in

terms of both F and N+ measures when compared to even using the same techniques

with traditional features. This is presumably because the strength of the techniques

(JEC, TagProp and 2PKNN) depends on using metric learning with multiple features

and in the case of single CNN feature, it lacks that advantage. This demonstrates

that the improvement in the performance is attributed to our proposed models and

not just the feature alone.

Table 3.2 also shows that word embedding vectors (W2V) work better than binary

vectors (BV) with our best performing model CCA-KNN. This suggests that word

embedding vectors provide a better representation for words than their binary form

presumably because semantically related words tend to have similar word embedding

vectors.

From Table 3.2, we see that CNN-R outperforms JEC and MBRM but not our

best performing CCA-KNN model. CNN-R is competitive to TagProp and has a

clear advantage over all the existing methods for the following reasons: (a) no need

to extract multiple low level features and to incorporate high level semantics (b) no

metric learning is required (c) can use transfer learning technique [111] for smaller

datasets and (d) has the ability to generalize to unseen classes with the help of word

embeddings vectors [120].

3.7.2 Results on NUS-WIDE dataset

To verify the scalability of our proposed models, we test it on one of the largest

dataset (NUS-WIDE). Since the characteristics and distribution of NUS-WIDE is
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similar to the other three datsets (Corel-5K, IAPRTC-12, ESP-Game), we believe

that different model and feature combinations would yield similar performance trends

and hence we decided to experiment with only the best performing feature and model

combination instead of trying out all other possibilities.

From Table 3.3, we clearly see that among our proposed models, CCA-KNN out-

performs all other models. This is consistent with the earlier results on smaller

datasets. In general, this data also suffers from skewed class label distribution and

as a result finding a smaller subset of data (approx. balanced) in the first step of

CCA-KNN method helps in boosting the performance as compared to CCA. Most

popular methods like TagProp and 2PKNN underperform. One of the possible reason

would be that, without multiple features and metric learning it just turns out to be

a simple nearest neighbor technique. SVM-DMBRM and HHD model performance

is better than TagProp and 2PKNN but it is still behind CCA-KNN method. This

assures that our proposed model was able to make use of the CNN feature effectively

and the improvement is not solely attributed to the CNN feature. Almost all the

methods have same N+ score (using all the tags in the vocabulary) for annotating

the test images, probably because it is relatively a small vocabulary.

The success of the CNN feature paved the way for us to further explore new

deep learning architectures to solve the image annotation problem more effectively.

In order to achieve this, we propose an alternative approach called Deep Decision

Network (DDN) to build an efficient CNN architecture which is completely data-

driven. We would like to first test its effectiveness in the order of difficulty of the

problem - binary, multi-class classification and then further extend the framework to

solve more challenging multi-label classification problem. The details are provided in

the following chapters.
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3.7.3 Qualitative Analysis

Figure 3.1 on page 53 provides some examples of randomly sampled images from all

four datasets. These images are all automatically annotated with CCA-KNN (best

among all our proposed models) method. The labels in green (bold) are correctly

matched with the groundtruth labels, marked in blue are the semantically meaningful

labels that are missing in the groundtruth, the labels marked in black (normal text)

are the ones which our model failed to predict because of the fixed annotation length

restriction and the labels in red color are predicted incorrectly by our model. We can

clearly see that some images are poorly annotated (missing labels) but our method is

still able to retrieve those semantically meaningful labels. In the other case, since we

are restricted to a fixed length of annotation (five per image), our model might miss

some of the labels present in the groundtruth.

Table 3.3: Experimental results of our proposed models with previously reported best
scores on relatively large dataset (NUS-WIDE). P: Average Precision, R: Average
Recall, N+: Number of distinct words that are correctly assigned to at least one test
image.

Feature NUS-WIDE
Method Visual text P R F N+

JEC VGG-16 - 19 39 25 81
2PKNN VGG-16 - 18 44 26 81

TagProp (σ) VGG-16 18 41 25 81

Below are our proposed models

SVM-DMBRM VGG-16 - 23 58 33 81

HHD VGG-16 - 21 49 29 81

CCA VGG-16 W2V 22 55 31 81
CCA-KNN VGG-16 W2V 26 64 37 81
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3.8 Model parameters and its effectiveness

Model parameter settings largely affect the performance of the proposed models.

Hence, in all our experiments the parameters are set using the validation dataset.

Here we study the effects of varying different parameters in our proposed models and

also try to understand it’s significance.

3.8.1 Parameters of SVM-DMBRM model

3.8.1.1 Varying parameter λ

In Figure 3.2 we provide the precision, recall, and N+ scores for different values of

λ. This study shows the unique capability of the model to get the desired performance

for fixed number of annotation words just by varying the λ parameter. When the

λ value is close to 0, SVM models dominate the final scores. On the other hand,

if the parameter is close to 1, then the DMBRM models dominate the final scores.

The precision score decreases when λ gets larger. The Recall scores increase when λ

gets larger. In our experiments, we set the λ parameter to a value of 0.5 (provides

good balance for recall and precision) which was determined based on the validation

dataset.

3.8.2 Parameters of Hypergraph based model

3.8.2.1 Varying parameter k

Figure 3.3 provides the effects of varying k neighborhood parameter during the

construction of the hypergraph. The plot shows the performance of our method in

terms of F measure for varying sets of k. Parameter k on x-axis is varied in the set of

powers of 2, like {4},{4,8},{4,8,32} and so on. The best results obtained here are the

ones reported in the Table 3.2. We can see that our method is able to take advantage

of multiple neighborhood sizes while constructing the hypergraph. However, the

performance is too low for very small size of k and it reaches a plateau or decreases

after a point when k is relatively large. In the former case, the hypergraph tends to
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capture less information (relationship between the images) while in the latter case,

this might introduce large noise in the hypergraph construction.

3.8.3 Parameters of CCA based model

3.8.3.1 Varying parameter K

The effects of varying parameter K is shown in Figure 3.4. If the number of

neighbors K chosen in the first stage of CCA-KNN model happens to be small, then

the subset of images with their associated tags might not be sufficient for tagging

the unknown image in the second stage. In other words, it would not generalize well

to the unknown images and hence the test performance is low. In the case of K

being too large, then it’s equivalent to just the CCA method without KNN, which

considers all the training images for annotating the test image. Hence, it’s crucial

to determine the right neighborhood size based on the validation dataset. In our

experiments, we chose K to be 4, 2, and 2 for Corel-5k, ESP-Game and IAPRTC-12

datasets respectively.

3.8.3.2 Importance of word embeddings

Table 3.2 also shows that word embedding vectors (W2V) work better than the

binary vectors (BV) with our best performing model CCA-KNN. This suggests that

the word embedding vectors provide a better representation for words than their

binary form, presumably because semantically related words tend to have similar

word embedding vectors.
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Figure 3.1: Examples of randomly sampled images which are automatically an-
notated with CCA-KNN model. First row: Corel-5k, second row: ESP-Game,
third row: IAPRTC‘-12 and fourth row: NUS-WIDE datasets. correctly matched
with the groundtruth labels, semantically meaningful labels that are missing in the
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Figure 3.2: Precision, Recall, and N+ scores with different λ (lambda) values for
SVM-DMBRM model.
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Figure 3.3: Performance of hypergraph based model for varying k neighborhood size
parameter for all three datasets.
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CHAPTER 4

CASCADED DEEP DECISION NETWORK (CDDN) FOR
BINARY CLASSIFICATION - CLASSIFICATION OF

ENDOSCOPIC IMAGES

Both traditional and wireless capsule endoscopes can generate tens of thousands

of images for each patient. It is desirable to have the majority of irrelevant images

filtered out by automatic algorithms during an offline review process or to have an

automatic indication for highly suspicious areas during an online guidance. This

also applies to the newly invented endo-microscopy, where online indication of tumor

classification plays a significant role. Image classification is a standard pattern recog-

nition problem and is well studied in the literature. However, performance on the

challenging endoscopic images still leaves room for improvement. Here we present

a novel Cascaded Deep Decision Network (CDDN) to improve image classification

performance over standard deep neural network-based methods. During the learning

phase, CDDN automatically builds a network which discards samples that are clas-

sified with high confidence scores by a previously trained network and concentrates

only on the challenging samples that are to be handled by the subsequent expert shal-

low networks. We validate CDDN using two different types of endoscopic imagery- a

polyp classification dataset and a tumor classification dataset. For both datasets we

show that CDDN can outperform other methods by about 10%. In addition, CDDN

can also be applied to other image classification problems.
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4.1 Introduction

Endoscopic image analysis continues to play a quintessential role in visual diag-

nosis of medical conditions originating primarily in the gastrointestinal, respiratory,

or other vital tracts of the human body. Early and precise detection of a plethora

of these medical conditions can increase the chances of survival of an ailing patient

through appropriate clinical procedures. For example, the relative 5-year survival rate

for Colorectal Cancer when diagnosed at an early Polyp stage before it has spread,

is about 90% [10]. Similarly, Meningioma, a benign intra-cranial tumor condition

occurring in approximately 7 of every 100, 000 people [73], if detected early, can be

treated surgically or by radiation, thereby drastically reducing the chances of growth

and potential transformation to malignancy.

Figure 4.1: Sample images from the Polyp Classification Dataset obtained during a
typical colonoscopic examination. Note the translucent blob-like shapes (pointed by
arrows in red color) are colon polyps.

Currently, clinicians visually scan endoscopic images usually captured through

electro-optical probes, for abnormal cell or tissue growth in the region under observa-

tion. Such manual screening procedures can often become tedious as a single probe

typically generates a multitude of images. Furthermore, since the screening relies

heavily on the skill sets of the clinician in charge, cases of missed detection are not

uncommon. This emphasizes the need for Computer-aided Diagnostic (CAD) solu-
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tions that cannot only efficiently minimize human effort required while screening a

large fraction of negative cases, but also provide a reliable reference to the clinicians.

In this work, we focus only on eliminating negative images and all the experimental

results are reported based on this.

Figure 4.2: Sample Confocal LASER Endoscopic images from the Tumor Classifica-
tion dataset with malignant Glioblastoma cases on the left and beningn Meningioma
cases on the right. Note the sharp granular texture patterns in Glioblastoma cases.

In practice, each endoscopic procedure is specific to the medical condition and re-

gion of the body under observation. For example, within Capsule Endoscopy [88], an

encapsulated wireless video camera is used to capture images from the gastrointestinal

tract. In a different setting, neurosurgeons employ Confocal Laser Endomicroscopy

(CLE) [99] probes as a surgical guidance tool to examine brain tissues for intracranial

tumors. Although these application scenarios are vastly different, their fundamental

objective involves searching for visually discriminative patterns that can be decisive

for a binary classification task primarily to segregate positive from negative image

samples.

More specifically, we focus on the following two tasks: 1) Filtering out images that

do not contain polyps (polyps are visually translucent blobs in the GI tract as seen

in Fig. 4.1). 2) Identifying malignant cases of brain tumors (Glioblastoma which is

often identified by sharp granular patterns) from the benign ones (Meningioma which

is characterized by smooth homogeneous patterns) in CLE images containing either

of the two (refer to Fig. 4.2). Both of these scenarios have their own challenges - the
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former case has several challenges encountered by current computer vision systems

like non-uniform illumination from light emitting diodes, noise from bubbles, bowel

fluids, occlusion posed by anatomical complexity and large degrees of variation in

shapes and size. The latter is limited by the low resolution of current CLE imagery,

motion artifacts and often the presence of both kind of patterns in the probed area.

Automatic visual analysis of images pertaining to the aforementioned domains

using conventional computer vision-based techniques has demonstrated reasonable

success in the past. Most of these are based on variants of the Bag of visual Words

(BoW) based computational frameworks owing to their simplicity of implementation.

These methods [75, 6, 5, 152, 74] typically involve extraction of features from im-

ages, followed by a vector quantization step based on a pre-defined visual vocabulary

(usually constructed by k-means clustering) which results in an intermediate compact

representation of an image that can be ingested as a training sample for supervised

classifiers. While these methods are effective, they consistently fail to leverage the

data-driven aspect of the problem as all three steps of feature extraction, generation of

intermediate representation, and finally the classification, are mutually independent.

Recently, deep learning based approaches [64], have demonstrated a significant

performance boost on generic image classification tasks [23] by addressing the final

classification objective in an integrated framework using layered neural networks.

This has motivated many researchers to apply deep neural network-based methods

in the field of medical image analysis [17, 15, 95, 16, 33, 153]. In an early work [69]

pertinent to classification, the authors introduce a two-layer network which utilizes

independent subspace analysis to reconstruct a natural representation of tumor images

captured through cell microscopy.

In general, training networks for medical image classification tasks is a challenging

task as it often requires thorough experimentation on large datasets. Due to the lack of

a large amount of good quality training data, the trained network architecture often
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Figure 4.3: Cascaded Deep Decision Network (CDDN). For instance, stage-2 is built
on top of conv layer(green color) of stage-1.

overtly optimizes itself for only training data, and performs poorly on unseen test

samples. The authors of [8] avoid this issue by employing a pre-trained convolutional

neural network [64] whose parameters are learned from a large database of images

from non-medical cases [23]. Their research demonstrates high performance on a

medical application of chest pathology detection in X-ray images. We argue that

while such a pre-trained architecture has demonstrated success in a specific cross-

domain exercise, the generalization aspect is still inconclusive. In this work, we

propose a novel elegant computational framework called Cascaded Deep Decision

Network (CDDN) to design an efficient network architecture with limited data but

without over-fitting characteristics during the training process. In contrast to the

existing deep learning based approaches, CDDN is built stage-wise during the learning

phase. Our approach leverages a sampling strategy that discards samples classified

with high confidence by a pre-trained network at the first-stage. Successive expert

networks at different stages are trained, focusing on samples that are difficult to

classify. This work is inspired by decision trees [103] and boosting[134, 107], which

are both classical approaches in machine learning. Many variants of boosting trees

have been explored and are shown to be successful for most of the vision tasks [134,
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107, 135]. The fundamental concept of cascading is early rejection of the majority of

test examples and it has been widely utilized to achieve real-time performance. Hence,

we provide an efficient and effective approach to utilize this concept in the context

of deep learning. Specifically our contributions are as follows: (a) piece-wise training

strategy helps alleviate problems encountered by gradient based methods used heavily

in contemporary deep learning research, (b) The proposed network architecture can

help make an early decision thereby significantly reducing the computational time

without compromising on the performance, (c) the data-driven design of CDDN offers

an insight into the underlying structure of the data and finally (d) we demonstrate

the effectiveness of our approach through rigorous experiments on two extremely

challenging endoscopic image classification tasks.

From the philosophical perspective, our proposed approach has some similarity

with ensemble methods commonly used in machine learning [29, 30]. However, a

majority of these approaches encounter difficulties rejecting outliers in the presence of

noisy training data. The sample selection strategy in CDDN, facilitates circumventing

this issue early on, thereby not affecting the final performance of the network. To

the best of our knowledge, this is the first work that introduces flavors of cascading

deep networks [124, 22] into computer aided diagnosis of two crucial medical imaging

applications.

4.2 Methodology

Given a classification problem, training a performant deep network is a difficult

task since there are no well established guidelines to design the network architecture.

Thus, training a network involves thorough experimentation and statistical analysis.

Although going deeper in the neural network design has been shown to be effective

[125], it increases the risk of over-fitting. Furthermore, as we experiment with the

network architecture during the training process, it is difficult to leverage the results
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of the network trained in the previous iteration. To this end, we propose an alternate

learning strategy to learn a deep neural network which allows building on and taking

advantage of previous training experiments.

4.2.1 Cascaded Deep Decision Network (CDDN)

A cascaded deep decision network is a multi-stage deep neural network with deci-

sion stumps at each stage to classify easily separable data earlier in the network. An

overview of the CDDN computational framework is provided in the Figure 4.3.

Given a dataset, a stage-1 (root) network is trained using the back propagation

algorithm. Instead of optimizing the network to obtain the best performance, we only

need to optimize until a reasonable performance is achieved e.g. 60-70%. Alterna-

tively, a pre-trained network can be used as a stage-1 network if it achieves reasonable

performance. The samples classified with high confidence are no longer considered

for subsequent training. Further, a stage-2 network is trained to correctly classify the

previously misclassified samples and/or the samples classified with low confidence;

note that the stage-2 network is only optimized on a subset of the training data

which was considered difficult by stage-1. This has the effect that as we go deeper

we continue to “zoom-in” on resolving the problem cases. This stage-wise process is

then continued until the desired performance is achieved.

There are several key differences between the CDDN architecture and the tradi-

tional deep networks. For instance, as we go deeper, the newly introduced layers gets

trained only on a subset of the data. All the layers in previous stages are frozen while

training the current stage. Furthermore, each subsequent stage builds on the feature

space that was trained in the previous stage. Note that the subsequent stage can also

be trained starting from any layer of the previous stage, which can be determined

using a cross validation data set.
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4.2.2 Piece-wise training for CDDN

The proposed architecture is trained in a unique fashion - Starting with a root

network which is trained in a traditional way, we use the softmax layer to compute its

performance and learn a threshold of confidence score for classification using cross-

validation. The cross validation at each stage of the network is setup as follows: in

the first stage, the training data is split into training (90%) and validation (10%) sets,

while the network gets trained on the training set, the confidence score is determined

using the validation set. For the next stage training, we combine both the training and

validation sets of the previous stage and create a new split to continue the training

process. This way we make sure that the entire training dataset gets utilized for

training and the threshold value at each stage is determined based on the unseen

samples which come into effect during testing.

At each stage, the samples with a confidence value below a threshold value are

considered to be hard samples or confusion cases. These will be handled by the

subsequent expert network which could be as simple as a single layer or a composition

of multiple convolutional layers along with fully connected layers. In this work, we

consider a shallow network as the expert network consisting of a convolutional and

two fully connected layers along with some non-linearity and dropout layers. We

continue to train the subsequent network layers using only the hard samples. While

we do this, we completely freeze the previously trained layers. In other words, we set

the learning rate of the previously trained network to zero and only train the newly

added layers. This process can be recursively implemented until there are no more

hard samples in the training dataset or until the desired depth of the network is met.

This way, we are able to make use of the efforts of all the previous layers and also

have the benefit of making an early decision based on the confidence score (provided

by the softmax layer). The proposed training helps in overcoming the over-fitting

problem during the training of expert shallow networks which concentrates only on
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the subset of the entire dataset. In addition, it also helps in avoiding local minima

during gradient optimization and most importantly it provides better generalization,

which is validated by our experimental evaluations.

4.2.3 Classification using CDDN

Given an image, we feedforward it through the first stage of the CDDN and obtain

the confidence score from the softmax layer. If the score is higher than the threshold

value (determined during the training process) then we declare it as the final output.

If not, we move onto the next stage in the network and repeat the process until the

last layer to get the final response. Mathematically,

f(I) =



y if (Îsj=1
= fsj=1

(I)) > Tsj=1
{i}

y if (Îsj=2
= fsj=2

(Îsj=1
)) > Tsj=2

{i}

...

y else (Îsj=n
= fsj=n

(Îsj=n−1
))

where the above mentioned parameters are defined as follows: I: input image, y:

predicted label, sj: different stages of the network and j ∈ 1 . . . n, n: number of

stage, f(.): embedding function representing the network that predicts class labels

with confidence, Î: embedded image and Tsj{i}: threshold of a class label i at stage

sj.

4.2.4 Experimental Validation on MNIST digits

To validate CDDN and to provide more insight, we carried out a simple binary

classification of digits ’6’ and ’8’ from the MNIST dataset [71]. The training set

consists of 11769 samples and the testing set has 1932 images. Here we considered

LeNet as our starting stage-1 network and for every subsequent stages we added a

convolution layer and a fully connected layer (going deeper but to handle only a subset
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of the data which are considered to be the hard ones). In Figure 4.4 we can see that

for the stage-1 network, 11,522 samples in the training set and 1884 samples in the

testing set are classified with high probability (i.e., easy samples) and the remaining

247 samples of the training set and 48 of the testing set are harder to discriminate.

For the harder samples, we build an expert network (i.e, stage-2) on stage-1’s feature

space. Since the resulting network is data-driven, the stopping criterion for network-

growth is when the subsequent network fails to discriminate or there are very few

training samples left out. The hard samples resulting from stage-1 and subsequent

layers are shown in Figure 4.5. We can clearly see that stage-1 had some confusion

cases which were resolved by the subsequent stage-2. Hence, in addition to improving

the classification, the proposed approach provides some insight into the distribution

of the samples.

4.3 Network Architecture and Implementation Details

In this section, we provide all the required implementation details of our proposed

method along with the baselines setup such as a traditional deep network (TDN)

using ImageNet Pre-trained features with SVM and a conventional approach using

BOW representation for SIFT with SVM.

4.3.1 Bag-of-Words SIFT feature with SVM

For a given image, Dense SIFT (DSIFT) descriptors of 128 dimension are com-

puted for every ns pixels inside the region of interest R of each image. where R is

the lens area and ns are the sub-sampled pixels. Further, a modified vocabulary tree

structure [96] is utilized to construct a visual vocabulary dictionary. The vocabulary

tree defines a hierarchical quantization using a hierarchical k-means clustering. In

this work, a complete binary (k = 2) search tree structure is utilized. 2nd leaf nodes

are finally used as visual vocabulary words, where, nd is the depth of the binary tree.
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Figure 4.4: For validating the proposed method, CDDN was applied to the binary
classification of digit ’6’ and ’8’ of MNIST dataset. A stopping criterion for network
growth is when we see no improvement on the validation/training dataset perfor-
mance, hence in this case it will result in a two-staged network.

Figure 4.5: CDDN method idea validation on the classification of digit ’6’ and ’8’ of
the MNIST dataset. The left image indicates some of the confusion classes at stage-1
and the right one indicates some confusion cases at stage-2. Observe that some of
the confusion cases of stage-1 are resolved in stage-2.
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Figure 4.6: Workflow of the BOW representation for DSIFT with SVM classifier.
White dots in the image represent the sampling points.

In the vocabulary tree learning stage, first the initial k-means algorithm is applied to

the training data (a collection of SIFT descriptors is derived from the training data

set and we randomly select a subset of the samples from these descriptors for final

training) and then partition them into 2 groups, where each group consists of SIFT

descriptors closest to the cluster center. This process is then recursively applied until

the tree depth reaches the set value of nd. In the online stage, a SIFT descriptor

(a vector) is passed down the tree by each level via comparing this feature vector

to the 2 cluster centers and choosing the closest one. The visual word histogram is

computed for all the dense SIFT descriptors on each image. The resultant quantized

representation is used to train an SVM classifier with a RBF kernel. The parameters

of the SVM classifier are chosen using a coarse grid search algorithm. The entire

workflow is depicted in Figure 4.6 for brain tumor classification data and we use a

similar kind of setup for the polyp classification as well.

4.3.2 ImageNet Pre-trained Features with SVM

For an image, we extract feature vectors from all the layers of a pre-trained CNN

on the ILSVRC-2012 dataset [59]. The dataset contains 1.2 million images which

are manually annotated with labels from 1000 words vocabulary. Features are com-

puted by forward propagating a mean-subtracted 224x224 RGB image through eight
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convolutional layers and three fully connected layers. In our case, we resize all the

images irrespective of their aspect ratio to 224x224 to make them compatible with

a pre-trained CNN. Features extracted from various layers were fed to the linear

SVM classifier to evaluate its classification performance. This study was conducted

to evaluate the performance of off-the-shelf pre-trained CNN features when applied

to a couple of medical image classification problems and this also serves as a baseline.

4.3.3 Traditional Deep Network (TDN) and Cascaded Deep Decision

Network (CDDN)

We used different deep network architectures to solve the polyp/no-polyp and

meningioma/glioblastoma classification problems. The network architecture is sum-

marized in Table 4.1. Notice that in the second stage, a convolution layer (Conv3)

is introduced after the Conv2 layer, followed by fully connected (FC) layers. During

stage 2 training, all the layers before Conv3 were frozen and the subsequent FC layers

were randomly initialized. The final network architecture was determined based on

the performance on a validation dataset. For all experiments, the step learning rate

policy was adopted with the following parameters: learning rate set to 0.001, step

size of 10000 and momentum of 0.9. The training loss converged well for both the

datasets.

For comparison with traditional deep neural networks, we also train a deep net-

work with similar model complexity as CDDN, in terms of number of layers and

weight parameters. Thus, all the stage-1 and stage-2 layers of CDDN are combined

to obtain a deep neural network, referred to as TDN in our experiments. This network

(TDN) serves as a strong baseline to CDDN, because TDN can be interpreted as a

classic ”going deeper” alternative to CDDN (which instead learns a stage 2 network

on a subset of samples).
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Figure 4.7: Comparison between Network Architectures. From left to right, Simple
Cascaded Network (SCN), Cascaded Deep Decision Network (CDDN) and Fine-tuned
Simple Cascaded Network (FSCN). Notice that CDDN’s stage-2 is built on previous
stage’s feature space but for others cascade networks, the stage-2 is trained starting
again from original image. For F-SCN, the first stage and second stage have the same
architecture (depicted by color).
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4.3.4 Cascaded Network

Cascading is a type of ensemble learning which involves concatenation of several

classifiers. It is a multi-stage (classifier at each stage with same or different feature)

approach, where the output information of the classifier is fed to the next classifier in

the cascade. Since our approach bears similarities to cascading, we present alternate

deep network architectures that directly embody cascading (ensemble of deep network

classifiers), and provides a comparison with CDDN. We refer to these networks as

Simple Cascaded Networks (SCN) and Fine-tuned Simple Cascaded Network (F-

SCN). Figure 4.7 provides a comparison between CDDN and simple cascaded network

architectures (SCN and F-SCN).

4.3.4.1 Simple Cascaded Networks (SCN)

This network is realized as a cascade of deep network classifiers, where each stage

network is trained on only the misclassified samples from the previous stage. Unlike

CDDN where each stage builds on the feature space of the previous stage, SCN trains

the network in every stage starting from the original image; hence the correlation

between the networks across stages is weaker in SCN. To enable a direct comparison,

the size of the network (number of parameters) at each stage of SCN and CDDN is

kept the same in all the experiments (ensuring similar model complexity).

4.3.4.2 Fine-tuned Simple Cascaded Networks (F-SCN)

Similar to SCN, this network is also realized as a cascade of deep network clas-

sifiers. However, instead of using a shallow network in subsequent stages, F-SCN

duplicate the previous stage’s network (including the parameters) and fine-tunes the

parameters to correct the misclassified samples from the previous stage. In other

words, a two stage F-SCN has two deep CNN networks with similar architecture

(for network details in each stage please refer to Table 4.1). Similar to SCN, F-

SCN trains each stage starting from the original image. The motivation behind this
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cascaded network design with fine-tuned networks at each stage is to help avoid over-

fitting/under-fitting problem that are caused due to scarcity of training samples at

each stage. Notice that the 2 stage F-SCN has almost twice the number of network

parameters compared to CDDN (since stage-1 are generally much larger than stage-2)

resulting in an increased model complexity and computational time.

Table 4.1: CDDN Configuration details. Conv: Convolutional layer, FC: Fully con-
nected layer, AvePool: Average pooling and MaxPool: Max pooling. Each Conv
layer is followed by a nonlinear function ReLU. Except for the last FC layer, rest of
the FC layers are followed by ReLU and dropout layer with p=0.5.

Dataset Convnet Configuration

Polyp

stage-1 image Conv1 Maxpool Conv2 Avepool FC FC
(92x110x3) (64x11x11) (3x3) (128x5x5) (3x3) (512) (2)

stage-2 Conv3 AvePool FC FC
(256x3x3) (3x3) (512) (2)

Brain
stage-1 image Conv1 MaxPool Conv2 MaxPool FC FC FC

(110x110x1) (96x11x11) (3x3) (256x5x5) (3x3) (4096) (4096) (2)

Tumor
stage-2 Conv3 FC FC FC

(384x3x3) (4096) (4096) (2)

4.4 Experiments

We report the performance of our proposed method in comparison to other meth-

ods on two different setups for endoscopic imaging - Brain tumor classification (classify

images into Meningioma or Glioblastoma) and Polyp classification (to flag images con-

taining a polyp). In both cases, we report results using a Bag Of visual Words (BOW)

SIFT feature with SVM (RBF kernel) and ImageNet pre-trained features (best per-

forming layer) with SVM. In addition, we report results using our proposed method

CDDN and the strong baseline TDN (all the stages/network layers combined). Please

note that in order to have a fair comparison, both the TDN and CDDN are designed

to have the same complexity (number of layers and parameters).
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4.4.1 Tumor Classification

4.4.1.1 Dataset

We use a commercially available clinical endo-microscope in the market called

Cellvizio (Mauna Kea Technologies, Paris, France). Cellvizio is a probe-based CLE

system -it consists of a laser scanning unit, proprietary software, a flat-panel display

and fiber optic probes providing a circular field of view with a diameter of 160µm. The

device is intended for imaging the internal micro-structure of tissues in the anatomical

tract that are accessed by an endoscope. The system is clinically used during an

endoscopic procedure for analysis of sub-surface structures of suspicious lesions, which

are primarily referred to as optical biopsies [20]. In a surgical resection application, a

neurosurgeon inserts a hand-held proof into a surgical bed to examine the remainder

of the tumor tissue to be resected.

The equipment is used to collect 117 short videos, each from a unique patient suf-

fering from Glioblastoma and relatively longer videos from patients with Meningioma.

All videos are captured at 24 frames per second, under a resolution of 464x336. The

collection of videos are hereafter being referred to as the Brain Tumor Dataset.

4.4.1.2 Pre-processing

Due to the limited imaging capability of CLE devices or intrinsic properties of

brain tumor tissues, the resultant images often contain little categorical information

and are not useful for recognition algorithms. Image entropy has been constantly

used in the past [37] to quantitatively determine the information content of an image.

Specifically, low-entropy images have very little contrast and large runs of pixels with

the same or similar values.

In order to filter uninformative video frames, we empirically determine an entropy

threshold by calculating the distribution of the individual frame entropy throughout

the dataset (calculated over 34, 443 frames). In our case, this threshold is 4.15. This
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simple thresholding scheme allows us to select 14,051 frames containing Glioblastoma

and 11,987 frames containing Meningioma cases. Experimental results are provided

based on leaving a pair of patients (one with Glioblastoma and other with Menin-

gioma) out. Further, we took a center crop of 220x220 square image inscribed in the

circular lens region. Please note that for all the deep learning related experiments,

images were resized to 110x110x1 to reduce the computational complexity.

4.4.1.3 Discussion

See table 4.2 for performance comparison. It is clearly evident that our proposed

method CDDN significantly outperforms all the other methods. In comparison to

TDN, CDDN improves the performance by around 9%, it does well on all the three

measures of accuracy, sensitivity and specificity. This provides the evidence that our

proposed method of building deeper networks is better than the traditional way of

going deeper. Since CDDN makes early decisions on several samples, the average

processing time for each sample for CDDN is lower when compared to TDN. We also

provide the evaluation of different layers of the pre-trained network as features with

an SVM classifier in Figure 4.8. We can see that on an average the ’Conv4’ layer

performs better across all the splits and hence to be consistent we report its results

in the Table 4.2 as a baseline.

Table 4.2: Quantitative Performance Comparison on Tumor Classification Dataset;
ImageNet pre-trained features were reported using ’Conv4’ [[64]] layer with Linear
SVM.

SIFT+BOW ImageNet Traditional Deep
+SVM(RBF) Pre-trained features Deep Network Decision Network

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec.
split-1 81 0.96 0.71 67 0.90 0.50 78 0.91 0.69 81 0.87 0.76
split-2 63 0.97 0.49 61 0.94 0.47 66 0.93 0.69 73 0.97 0.63
split-3 82 0.91 0.75 89 0.97 0.86 77 0.77 0.77 89 0.90 0.88
split-4 98 0.98 0.97 95 0.96 0.94 93 0.93 0.93 97 0.95 1.0
split-5 77 0.70 0.84 83 0.73 0.92 74 0.79 0.69 85 0.70 0.99

Overall 79 78 76 86
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Figure 4.8: Classification Accuracy of different layers of pre-trained network as fea-
tures with SVM classifier for Brain Tumor Classification

4.4.2 Polyp Classification for Colonoscopy

4.4.2.1 Dataset

Results are reported on a publicly available Polyp dataset from ISBI 2014 Chal-

lenge on Automatic Polyp Detection in Colonoscopy Videos [129]. The dataset con-

sists of 21 short colonoscopy videos from ASU-Mayo Clinic polyp database, of which

11 videos have a unique polyp inside (positive shots) and the other 10 videos have

no polyps (negative shots). Some videos are high resolution but some are recorded

in a lower resolution, some videos display a careful colon examination while others

show a hasty colon inspection; finally some videos have biopsy instruments in them.

Please note that, even the videos containing a polyp will have a large number of

frames where the polyp is absent and hence the groundtruth labels are provided at

frame level. In our evaluation, we provide experimental results on four random splits

(are at video level to avoid bias during train and test split) by reporting classification

accuracy at frame level and also provide ROC curves.
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Figure 4.9: Classification Accuracy of different layers of pre-trained network as fea-
tures with SVM classifier for Polyp/No-Polyp Classification

4.4.2.2 Pre-processing

Since the videos are of different resolutions and regions around the frames were

varying, we fixed the final image size to be 636x530 (chosen based on the average

resolutions of all the video frames. We identified the lens region separated from the

rest of the black region and then resized (maintaining the aspect ratio) to fit the fixed

window size of 636x530. Since frames containing the polyp were relatively very low,

we chose to perturb only the positive (contains polyp) frames. Perturbation involved

rotation by angles of 90,180 and 270 degrees followed by flipping and again rotating

with the same set of angles. Please note that for all the experimentation the resulting

images were later resized to 110x92x3 to handle the computational complexity.

4.4.2.3 Discussion

Table 4.3 demonstrates the performance comparison. We observe similar per-

formance trends as reported for the brain tumor classification, where our proposed

method CDDN outperforms all the other methods. In addition to the accuracy met-

ric, we have also provided the ROC curve for all the splits in Figure 4.10. Overall,

the area under the curve is significantly better for CDDN when compared to the
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Table 4.3: Quantitative Performance Comparison on Polyp Classification Dataset

SIFT+BOW ImageNet Pre-trained
+SVM(RBF) features (Conv3) TDN CDDN

Acc. Acc. Acc. Acc.
split-1 89.1 88.89 78.34 87
split-2 37.46 73.41 67.81 83
split-3 70.82 90.95 88.88 92.75
split-4 82.90 85.59 84.45 92.40

Overall 70.08 81.66 80.67 87.43

rest of the methods. All these experimental results convey that the proposed CDDN

method is an efficient and effective alternative to the traditional way of building a

deeper network. Considering a clinical use case, if we pick an operating point of false

positive rate=17% with true positive rate=90% in Figure 4.10, then our system on

an average is able to eliminate 84% of the negative images (do not contain polyp) but

still be able to identify 90% of the positive cases (containing polyp) accurately. In

Figure 4.9 we provide the effectiveness of different layers of the Pre-trained network

as features when combined with SVM classifier. On an average across all the splits,

we found that the ’Conv3’ layer gives the best performance and thus their results are

reported in the Table 4.3 as a baseline.

Table 4.4: CDDN Performance analysis on Polyp Classification Dataset. # - number
of samples; Acc. - Accuracy (%).

SCN F-SCN CDDN
Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall

# Acc. # Acc. Acc. # Acc. # Acc. Acc. # Acc. # Acc. Acc.
split-1 3373 96.02 4090 67.41 67.41 4696 97.84 2767 58.07 83.1 3712 98.94 3751 86.36 83.36
split-2 1248 92.62 1595 51.28 51.28 1227 92.25 1616 50.99 68.8 1501 94.53 1342 83.07 83.07
split-3 1740 100 3665 62.49 62.49 3830 98.09 1575 63.23 87.93 4245 99.74 1160 92.74 92.74
split-4 3325 99.06 2629 66.67 66.67 3593 98.71 2361 75.91 89.46 3391 99.97 2563 92.40 92.40

4.4.3 Comparison with SCN and F-SCN

The stage-wise performance comparisons of our proposed method CDDN in com-

parison to SCN and F-SCN are provided in Table 4.4 and Table 4.5 for polyp and
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Figure 4.10: ROC curves for Polyp dataset across all the splits.

76



tumor classification dataset respectively. We can observe that CDDN outperforms

both SCN and F-SCN at each stage for all splits and its better even in terms of over-

all performance. We believe that SCN and F-SCN could not perform well because of

over-fitting/under-fitting problem in the second stage due to limited number of sam-

ples (hard samples). This clearly indicates that our proposed method has the ability

to dodge this prevalent problem while applying deep learning networks for medical

related problems where the data is limited.

Table 4.5: CDDN Performance analysis on Tumor Classification Dataset. # -number
of samples; Acc. -Accuracy (%).

SCN F-SCN CDDN
Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall

# Acc. # Acc. Acc. # Acc. # Acc. Acc. # Acc. # Acc. Acc.
split-1 540 96.14 791 25.53 54.99 333 92.79 998 69.13 75.05 340 77.35 991 82.44 81.13
split-2 203 91.03 481 16.83 39.47 255 92.94 429 40.79 60.23 121 100 563 67.49 73.24
split-3 1384 86.56 1962 46.48 63.06 444 88.51 649 62.71 73.19 445 97.75 648 82.87 88.92
split-4 445 100 237 67.93 88.85 544 100 138 78.26 95.6 537 100 145 87.58 97.35
split-5 1367 87.63 1979 47.85 64.1 1507 90.31 1839 60.95 74.17 1177 99.15 2169 80.26 86.90
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CHAPTER 5

DEEP DECISION NETWORK (DDN)

5.1 Introduction

Convolutional Neural Network (CNN) based methods have consistently been the

top performers on various computer vision tasks. But, there are still no well-established

guidelines to train a performant deep network, and thus, training a deep network often

involves thorough experimentation and statistical analysis. Although going deeper in

the neural network design has shown to be effective [116, 125], it also increases the

training duration as well as the risk of over-fitting.

Hence, we propose a novel computational framework called Deep Decision Net-

work (DDN) to design an efficient deep network architecture without over-fitting the

training process. This is an extension of the CDDN work (presented in the previous

chapter) with the required changes for it to handle the relatively challenging multi-

class classification problem. In contrast to existing deep learning-based approaches,

DDN is built stage-wise during the learning phase (similar to CDDN). At each stage,

the network introduces decision stumps to classify confident samples and partition the

remaining data, which is difficult to classify, into smaller data clusters which are used

for learning successive expert networks in the next stage. Note that data clusters at

each stage are such that the samples within a cluster are difficult to distinguish using

the trained classifier at that stage but the samples across clusters are easily distin-

guishable. This is achieved by fine tuning the trained classifier using a combination of

softmax and weighted contrastive loss. A contrastive loss function helps in bringing

the samples of the same group together and pushing apart the samples belonging to
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different classes. While the clustering is motivated by the divide-and-conquer prin-

ciple, it has the added benefit of automatically discovering a data hierarchy based

on appearance similarity. Notice that the DDN implicitly captures the intuition that

hard samples require more computation.

Further, we introduce DDN-annot which is an extension of the DDN principle

to address the more challenging multi-label classification (image tagging/annotation)

problem. The idea here is to identify clusters of overlapping labels that capture the

coexistence or dependency property. Then, the expert network is built for each cluster

to handle the confusion between the subset of labels and assign them appropriately

to the test image. The clusters are built based on the features extracted from the

layer before the soft-max in the network.

Our contributions are as follows: (a) A proposed stage-wise training strategy

for the DDN/DDN-annot helps alleviate problems encountered by gradient-based

methods on deeper architectures, (b) In the case of DDN, a joint-loss (weighted

contrastive and classification) optimization of the network is proposed to minimize

errors during data partitioning, (c) A proposed data-driven design for the DDN/DDN-

annot offers an insight into the underlying structure of the data, (d) The proposed

network architecture can make early decision because of it’s tree like structure as

opposed to conventional deep neural network.

We demonstrate the following that shows the effectiveness of our proposed ap-

proach: (a) The DDN achieves state-of-the-art performance (at the time of publi-

cation of this work [92]) on CIFAR-10 and CIFAR-100 [63] public benchmarks and

finally, (b) DDN (ResNet-50 with only a few additional expert layers) achieves per-

formance that is equivalent to ResNet-101 (with nearly 100 layers) on the large scale

publicly available ILSVRC 2012 (ImageNet) dataset [106]. (c) DDN-annot yields

results comparable to the state-of-the-art on IAPRTC-12 and NUS-WIDE image an-

notation datasets.
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Figure 5.1: Overview of the Deep Decision Network (DDN) framework. We observe
N levels in the DDN tree structured network and at each level there could be K
clusters of confusion classes.

5.2 Deep Decision Network Framework

This section describes the Deep Decision Network and the algorithms involved in

learning the deep decision network architecture and it’s parameters.

5.2.1 Deep Decision Network

A deep decision network (DDN) is a tree structured deep neural network with

decision stumps at each node to classify easily separable data earlier in the network

and to determine the subsequent expert node for difficult cases. An overview of the

DDN computational framework is provided in Figure 5.1.

Given a dataset, a root (level 1) network is trained using the back propagation

algorithm. Instead of optimizing the network to obtain the best performance, we only

need to optimize until a reasonable performance is achieved e.g. 60-70%. Alterna-

tively, a pre-trained network can be used as a root network if it achieves reasonable
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performance. The confusion matrix, computed over the validation dataset is then

used to identify clusters of object classes, such that each cluster may have large con-

fusion among classes inside the cluster but the confusion across clusters is low. A

subsequent expert network is trained for data within each cluster to correctly classify

the previously misclassified samples and/or the samples classified with low confidence.

This has the effect that as we go deeper we continue to “zoom-in” on resolving the

problem cases. This process of building the network is continued until we see no

further improvement on the validation data set. During testing, a sample is routed

through DDN until it’s class is determined (via early classification or at the leaf node).

There are a few key differences between the DDN architecture and the traditional

deep networks. Firstly, all the layers in the previous levels are frozen while training the

newly introduced network layers which forms a new node at the next level. Secondly,

each node is built on the parent node’s feature space to specifically handle a subset

of classes. Note that each node can be trained starting from any layer of the parent

node, and this choice of the layer can be determined using a cross validation data set.

5.2.2 Discovering data clusters

Here we discuss how the clusters are identified at each node of the Deep Decision

Network using the spectral co-clustering algorithm [24]. The spectral co-clustering

algorithm approximates the normalized cut of a bi-partite graph (symmetric matrix)

to find heavy subgraphs (sub-matrices) thus resulting in block diagnolization of the

matrix. We apply the spectral co-clustering algorithm over the co-variance of the

confusion matrix; each block in the resulting block diagonal matrix forms a cluster.

The resulting clusters may be disjoint (no overlapping classes) and the confusion

among the classes within a cluster will be high because classes within a cluster will be

closely related, for instance, classes of cats and dogs might form a cluster representing

animal group. Furthermore, if there are any entries (in the confusion matrix) which
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are not within the diagonal blocks, then the samples contributing to those entries

would get misclassified. Thus, to minimize the likelihood of such misclassifications, we

fine tune the network parameters using a joint loss, combining softmax and weighted

contrastive loss; this is explained in detail in the Section 3.3.

In order to determine the optimal clustering C∗, we define a fitness measure

fm(C), for a given clustering C computed using spectral co-clustering, as

fm(C) =

(
ε+

1

K

K∑
i=1

|Ci|

)
(5.1)

where, ε is the misclassification error introduced due to the data-split, Ci is the ith

cluster (set of classes), |.| is the size of a set. The optimal clustering C∗ is then given

by,

C∗ = arg min
C
fm(C) (5.2)

Here, the first term in eqn. 5.1 will have a low value when there is just one cluster

(K=1), and on the other hand, the second term in eqn. 5.1 will have a low value

when K (number of clusters) is equal to number of class labels. Hence, the fitness

measure tries to strike a balance between the two, so that the final error rate can be

further minimized using the expert networks.

5.2.3 Minimizing errors during splitting

As mentioned earlier, errors due to incorrect assignment of samples to the clusters

are irrecoverable - for example, assume airplane and ship form a cluster and the expert

network is trained to distinguish only between these two classes. During testing, if an

airplane sample gets misclassified (by the root network) as dog, then that sample will

get assigned to a different cluster (cluster for which expert network is trained only to

distinguish animal classes) and the corresponding expert network will have no idea
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about the airplane class, because the clusters are non-overlapping. Hence, there is no

possibility for recovering the mistakes made by the root network.

But, we try to minimize such misclassification errors by augmenting the softmax-

loss with an error-driven, weighted contrastive loss function that helps block diagonal-

ize the confusion matrix; this is depicted in the Figure 5.2. The overall loss function

is given by

L = λ2 × Lm + λ1 × Lsoftmax (5.3)

where, Lm is the weighted contrastive loss function. The weights λ1 and λ2 were set

to 1.0 based on performance on the validation dataset.

The weighted contrastive loss Lm can be interpreted as a set of soft constraints

which impose a significantly higher penalty for misclassifying a sample to any class

belonging to another cluster as compared to the penalty of misclassifying to a class

that belongs to the same cluster. In other words, minimizing the weighted contrastive

loss results in the distance between samples belonging to the same cluster to be

small, and samples across different clusters to be large. The weighted contrastive loss

function is given by

Lm = wij ×
(

(1− Y )

2
×D2+ (5.4)

Y

2
× {max(0,m−D)}2

)

where,

wij =


0.1 if i ⊂ Ck and j ⊂ Ck

1 otherwise

where, wij is the weight corresponding to class labels i and j, D is the L2-norm

between a pair of samples. Y is the label representing whether samples belong to the
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Figure 5.2: DDN optimization with weighted contrastive-loss function along with
Softmax-loss.

same class (Y=0) or to a different class (Y=1), m is the margin (which is determined

empirically on the validation dataset). Ck indicates the kth cluster. wij values are

found empirically.

5.2.4 Piece-wise training for DDN

The proposed architecture is trained in a unique fashion - starting with a root

network (trained in the traditional way), we use it’s softmax layer to compute the

performance and learn a classification threshold for each class using cross-validation.

This threshold is used during testing to make an early decision on samples. We then

compute the confusion matrix on the validation dataset and use it to identify the

clusters of confusion classes (as explained in Section 5.2.2). Next, the network is fine-

tuned using the weighted contrastive loss (as explained in Section 5.2.3). The weights

for the contrastive loss function are determined based on the confusion matrix. After

fine-tuning, the samples are split according to their cluster ID’s.

For each cluster, a node is added to the decision network. A node itself is a

shallow network (or expert network) trained to distinguish between a subset of classes
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belonging to that cluster. For an expert network architecture, we utilize the micro

networks (explained in 5.3.1) of Network In Network (NIN) [79]. Note that when we

train the new layers, we freeze the previously trained layers by setting their learning

rate to zero.

This process of adding a node to the decision network is continued recursively

until there is no more improvement on the validation dataset and/or the maximum

depth of the network is reached.

With this training scheme, DDN is able to make use of the efforts in the early

layers for training the subsequent layers, and has the benefit of making an early de-

cision. Furthermore, training expert networks (node) starting from parent feature

spaces helps in avoiding the over-fitting problem. In addition, it also helps in avoid-

ing getting stuck in poor solutions during the gradient optimization process, and

converges to network parameters that provide better generalization; this is validated

in our experiments.

5.3 Experimental Results on CIFAR dataset

We report the performance of the proposed method in comparison to other meth-

ods on publicly available benchmark datasets - CIFAR-10 and CIFAR-100 [63]. We

implemented our method using Caffe [59] and all the experiments were carried out on

a single Titan-X GPU. The train-test splits and data pre-processing are as provided

in [38].

5.3.1 Network Details

In this work, we chose Network -in-Network (NIN) [79] as the root node of our

DDN for experimenting on both CIFAR-10 and CIFAR-100 datasets. The root node

could be any existing network but we chose NIN. NIN also has a nice property of

being built with mlpconv (multi-layer perceptrons and convolutional layers) as a basic
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Figure 5.3: The overall structure of Network In Network (NIN). Adapted/borrowed
from Lin et al. [79].

building block unit, see Figure 5.3. The original NIN consists of three micro network

(mlpconv) consisting of convolutional layers and MLP unit as shown in figure. Each

MLP layer is composed of a three-layer perceptron and a pooling layer. DDN consists

of NIN as the root node and additional layers (shallow-network/branch nodes) are

simply one mlpconv layer of NIN. Additional layers were introduced right after the

second mlpconv unit of NIN to make use of the local feature response instead of the

third node which seems to capture global class specific features. As in NIN, global

average pooling was used instead of fully connected layers at the leaf nodes. All the

network parameter settings, weights initialization and learning policy strictly follow

the settings provided by NIN. The only change was during the addition of new layers

(shallow-networks), the learning rate was set to 0.01 with a step size of 25K. In the

current setup for both the datasets, we had only two levels, with root node NIN at

level-1 and multiple MLP units in level-2. Each MLP was specialized to address a

particular cluster consisting of the most confusing classes.

5.3.2 CIFAR-10

5.3.2.1 Experimental Setup

The CIFAR-10 dataset [63] consists of 10 classes of natural images with a total of

50K training images and a total of 10K testing images. Each image is of size 32x32

and we follow the same pre-processing of global contrast normalization and ZCA
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whitening as in [38, 79]. For the validation dataset, we used the last 10K samples

of the training to determine the confidence level threshold and data splits based

on the confusion matrix. After determining the data-splits and the confidence level

threshold, we combined the training and validation dataset to re-train the network

before splitting.

5.3.2.2 Quantitative Results

The error rates for our proposed method in comparison to the existing methods is

provided in Table 5.1. We obtain a test error of 9.68% without any data-augmentation

and this sets a new state-of-the-art result on the CIFAR-10 dataset. The accuracy

was imporved by nearly 1% when compared to our strong baseline NIN (same model

complexity).

5.3.2.3 Further Analysis

Figure 5.5a provides the confusion matrix of the root node at level-1. Figure 5.5b

shows the clusters of confusion classes obtained by applying a spectral co-clustering

algorithm. We observe three clusters - Cluster-1: {0-airplane, 8-ship}, Cluster-2: {1-

automobile, 9-truck}, Cluster-3: {2-bird, 3-cat, 4-deer, 5-dog, 6-frog, 7-horse}. This

clustering can be interpreted as a data hierarchy automatically generated from the

data.

As described in Section 5.2.3, we use a joint-loss optimization to fine-tune the

network which helps in block diagonalizing the confusion matrix. The impact of

using the joint loss can be observed in Figure 5.4; notice that the use of joint loss

brings the samples of the same cluster closer while the samples in different clusters are

moved farther apart in the feature space. We try to minimize the joint-loss function

without compromising on the classification performance and in fact, this is shown to

slightly improve the performance. Figure 5.5c shows the effect of varying the cluster
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Figure 5.4: Visualization of the learnt feature space on CIFAR-10 dataset. Each point
corresponds to an image in CIFAR-10 dataset, and it’s color correspond to its image
class. Observe that each cluster has only certain group of classes. For instance, Class-
1 (magenta) and Class-9 (green) belong to the same cluster, hence they are close to
each other but away from the remaining classes.

size K on the error rate (due to misclassification); notice the error is least when K is

3.

Table 5.1: Results on CIFAR-10 Dataset without data augmentation

Method Test Error

Stochastic Pooling[148] 15.13
CNN + Spearmint[118] 14.98

Conv. maxout +Dropout[38] 11.68
NIN+Dropout[79] 10.41

DSN[72] 9.78
DDN (ours) 9.68

5.3.3 CIFAR-100

5.3.3.1 Experimental Setup

The CIFAR-100 dataset [63] consists of 100 classes of natural images, making it

more challenging compared to the CIFAR-10 dataset. It consists of 50K training

and 10K testing images. The number of training samples per class is only 100 as
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(a) Confusion matrix for level-1/root node (b) Spectral co-clustering at K = 3

(c) Effect of cluster size K on error rate

Figure 5.5: CIFAR-10 results. The optimal clustering obtained using the fitness
measure is at K = 3, which incidentally also corresponds to the lowest misclassification
error.
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compared to 1000 in CIFAR-10. The dataset is pre-processed using global contrast

normalization and ZCA whitening as described in [38, 79]. Similar to NIN [79], the

last 10K samples of the training set were used as the validation dataset.

5.3.3.2 Quantitative Results

Our proposed method yields a test error of 31.65%, surpassing Deeply Supervised

Nets (DSN [72]) by nearly 3%. The error rate comparison is shown in Table 5.2. Note

that HD-CNN [146] uses data augmentation and 10 crop testing, so the performance

is not directly comparable to other methods, since it is difficult to isolate the impact

of the data augmentation from the methodology. However notice that DDN still

performs better than HD-CNN even without any data augmentation.

We cannot directly compare with [119] because they have reported numbers with

data augmentation only. Since the data augmentation process for CIFAR-100 is not

standardized, we reported numbers without augmentation to enable a fair comparison

with the existing literature and showed a significant improvement in accuracy.

Table 5.2: Results on CIFAR-100 Dataset without data augmentation. *-with data
augmentation and 10 view testing [64]

Method Test Error

Learned Pooling[85] 43.71
stochastic Polling[148] 42.51

Conv. maxout +Dropout[38] 38.57
Tree based priors[123] 36.85

NIN+Dropout[79] 35.68
DSN[72] 34.57

NIN+LA units[4] 34.40
HD-CNN* [146] 32.62
DDN (ours) 31.65

5.3.3.3 Further Analysis

Figure 5.6a provides the confusion matrix of the root node at level-1 and the

resulting clusters obtained after applying spectral co-clustering are shown in Fig-
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(a) Confusion matrix of level-1/root node (b) Spectral co-clustering with K=6

(c) Effect of cluster size K on error rate

Figure 5.6: CIFAR-100 results. Notice that even though the misclassification error is
lowest at K = 3, the optimal clustering obtained using the fitness measure is at K = 6.
This is consistent with our intuition that the fitness measure encourages partitioning
into more clusters while keep the error low.
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ure 5.6b. The effect of varying the cluster size K on the error rate is shown in the

Figure 5.6c. Notice that even though the error rate is lowest at K = 3, the algorithm

chose K = 6 for optimal clustering based on the overall fitness measure that tries

to strike a balance between number of clusters (requires expert networks) and the

error rate (introduced due to data splitting). Please note that the error rate at the

stage of data splitting (branching) will be minimum if there was only one cluster, in

which case there would not be any expert networks to follow and this leaves no room

improvement for further improvement in the classification accuracy. Out of these six

clusters, three of them didn’t require expert network as they were composed of a

single class. The other three clusters have 72, 17 and 8 classes. The expert networks

for each of these clusters reduce the classification error by more than 10%.

Table 5.3: Detailed Quantitative Performance on CIFAR-10 and CIFAR-100 Dataset.
NIN+JL: NIN network with joint-loss optimization.

CIFAR-10 CIFAR-100
NIN NIN+JL DDN NIN NIN+JL DDN

Error(%) Error(%) Level-0 Level-1 Error (%) Error (%) Error(%) Level-0 Level-1 Error (%)
Cluster-1 - 7.15 1148 767 7.0 - 37.97 1802 5093 34.52
Cluster-2 - 5.50 668 1280 4.8 - 14.0 102 0 14.0
Cluster-3 - 12.43 1704 4199 12.2 - 24.0 88 0 24.0
Cluster-4 - - - - - - 26.35 548 983 23.35
Cluster-5 - - - - - - 28.62 213 483 26.25
Cluster-6 - - - - - - 24.0 89 0 24.0

Overall 10.41 9.99 9.68 35.68 34.73 31.55

5.3.4 Detailed analysis of DDN performance on CIFAR dataset

In Table 5.3, we provide a detailed performance analysis of DDN at each node

in the network in comparison to the baseline NIN. We have also reported the results

using NIN with joint loss optimization (NIN + JL). Though the main objective of

joint-loss optimization was to reduce the confusion cases across the cluster samples,

we get some improvement over the baseline on both the datasets. This is probably

because the joint-loss optimization helped in regularization of the network.
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DDN helps in providing some insight into the data regarding the classes that are

hard to distinguish from others. For instance, if we consider CIFAR-10, the root

node (NIN) produced three clusters of confusion classes. We can see that cluster-3

performance is low when compared to other clusters -The reason being that cluster-3

has 6 classes: cat, dog, deer, dog, frog and horse, and all of them belong to the animal

category and it is relatively hard to distinguish among them when compared to the

automobile/truck in cluster-2. It is also important to note that the DDN helped to

improve the performance in each of the clusters that led to the overall improvement.

This also verifies the fact that expert network nodes were in fact helpful as compared

to training one large network end-to-end.

For the CIFAR-100 dataset, the performance improvement of DDN is significant

when compared to our baseline NIN. Part of the reason is that, DDN seems to benefit

more from having large number of classes and there remains room for improvement

on this particular dataset. The expert network nodes were introduced only to clusters

with at least 2 classes and hence clusters with single class do not get any performance

improvement. This indicates that DDN by design will not bring down the performance

of any of the existing network used at the root but, it only tries to improve the

performance by addressing the most confusing cases. Clusters with at least two

classes benefit from the expert network node which results in an overall improved

performance.

5.4 Experimental results on ImageNet

5.4.0.1 Experimental Setup

The ILSVRC 2012 dataset [106] consists of 1.2M training set images and 50K

validation set images. Here we use ResNet-50 [48] as a building block (root node) and

show that adding just a few expert layers for each cluster can yield performance that is

comparable to the ResNet-101 [48]. For training and testing, we follow [48]’s protocol
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Table 5.4: Detailed Quantitative Performance on ILSVRC12 Dataset. ResNet-50-
JL: 50 layered ResNet with joint-loss optimization. Top-5 error rates are reported.
Clusters with only one class label are ignored. Here the reported error for ResNet-50
is based on my implementation using PyTorch [98] with 1-crop during testing.

ILSVRC12
ResNet-50 ResNet-50-JL DDN (ResNet-50 expert) ResNet-101

Top-5 Error (%) Error(%) Level-0 Level-1 Error (%) Error (%)
Cluster-1 - 10.1 2608 1093 9.3 -
Cluster-2 - 7.9 13864 3289 7.6 -
Cluster-5 - 6.0 1808 899 5.8 -
Cluster-6 - 8.35 4248 883 7.75 -
Cluster-7 - 6.62 3137 1483 6.35 -
Cluster-9 - 7.0 7454 4245 6.1 -
Cluster-10 - 14.0 1289 612 12.0 -

Overall 7.26 7.11 6.53 6.44

and parameter settings. In order to make DDN feasible on this large dataset, we

introduced some changes during the training phase without affecting the underlying

principle. In the original proposed DDN, we used a Siamese setup with the weighted

contrastive loss to minimize the errors during the split. But, since the network is deep

and computationally intensive (150 layer), we replaced the weighted contrastive loss

layer by weighted cross entropy loss and show that we could achieve similar results.

To validate this setup, we repeated the experiments on CIFAR-10 and were able to

reproduce similar results.

From the confusion matrix of root node (ResNet-50), the optimal number of clus-

ters was chosen to be 10. The number of classes in each cluster is represented as a

histogram in figure 5.7. The complete setup was implemented using Pytorch.

5.4.0.2 Network Details

The network details are provided in table 5.5. DDN (ResNet50-expert) is very

similar to ResNet50, but varies only in conv5 x with additional K blocks representing

experts for K clusters. During the expert network training stage, all the previous

layers are frozen and only the expert network block conv5 x gets trained. And during
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Figure 5.7: Histogram of classes in each cluster. Clusters 3, 4, 6 and 8 end up having
only one class label. Hence they are not clearly visible.

Table 5.5: DDN network details for ImageNet. K is the number of clusters/experts.

layer name output size ResNet50 ResNet50-expert ResNet101

conv1 112x112
7x7, 64, stride 2
3x3 maxpool, stride2

conv2 x 56x56

 1x1, 64
3x3, 64
1x1, 256

×3

 1x1, 64
3x3, 64
1x1, 256

×3

 1x1, 64
3x3, 64
1x1, 256

×3

conv3 x 28x28

1x1, 128
3x3, 128
1x1, 512

×4

1x1, 128
3x3, 128
1x1, 512

×4

1x1, 128
3x3, 128
1x1, 512

×4

conv4 x 14x14

 1x1, 256
3x3, 256
1x1, 1024

×6

 1x1, 256
3x3, 256
1x1, 1024

×6

 1x1, 256
3x3, 256
1x1, 1024

×23

conv5 x 7x7

 1x1, 512
3x3, 512
1x1, 2048

×3

 1x1, 512
3x3, 512
1x1, 2048

×3 × K

 1x1, 512
3x3, 512
1x1, 2048

×3

1x1 average pool, 1000-d fc, softmax
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the test time, the sample gets routed through only one of the K conv5 x blocks to

get the final class label.

5.4.0.3 Quantitative Results and Analysis

Detailed DDN results on ILSVRC12 are provided in Table 5.4. Error rates are

provided for each cluster and it is clear that DDN lowers the error rate and the

overall performance is comparable to ResNet-101. ResNet-50 with joint loss (ResNet-

50-JL) optimization setup (introduced for reducing the confusion cases across the

cluster samples, for details please refer to Section 5.2.3) does improve over the base-

line network (ResNet-50), but it is not always guaranteed. The DDN shows further

improvement in results when compared to joint-loss indicating that expert networks

indeed help in resolving some of the confusion classes. We can observe that error rates

are significantly reduced for clusters with large number of classes when compared to

clusters with fewer classes. This indicates that the expert network gets benefited if

there are more classes and potentially the corresponding cluster can be further split

into subclusters adding in more expert networks.

5.5 DDN principle for multi-label classification problem

We showed the applications of DDN principle to address the binary (CDNN) and

multi-class (DDN) problem. In this section, we look into extending the underlying

DDN principle to address multi-label (also know as the image annotation/tagging

problem) classification problem and show its effectiveness on IAPRTC-12 and NUS-

WIDE datasets [18].

5.5.1 Extension of DDN

The underlying principle of DDN-annot for addressing the multi-label classifica-

tion problem remains similar to DDN, except for a few changes. Here the root node is

realized by a VGG16 (details in section 2.1.4) network with sigmoid cross entropy loss
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Table 5.6: DDN-annot performance on NUS-WIDE dataset with type-1 evaluation
in Comparison to other methods.

NUS-WIDE IAPRTC-12
Method K=3 K=5 K=3 K=5

P R F1 P R F1 P R F1 P R F1
WARP [36] 27 45 34 20 57 30 50 27 35 43 38 40

Fast0Tag (net.) [151] 31 52 39 23 65 34 58 31 41 50 44 47
VGG16-annot 27 50 35 20 61 30 46 27 34 40 39 39
DDN-annot 29 51 38 22 63 33 56 31 40 47 43 45

instead of a softmax loss. For the weight initialization, we use the network trained

on ImageNet and finetune it with the cross-entropy loss for our problem. Once the

root network is trained, we subsequently perform K-means clustering in the feature

space (can be any one of the network layers, preferably the last layer), and based on

that, we partition the input samples. In our experiment, we choose K to be 4 and it

seems to capture the co-existence of labels and makes it relatively easy for validating

the idea. Please note that some clusters might end up with only subset of labels with

the expectation of capturing coexistence of labels. Similar to the earlier DDN, we

build expert networks for each cluster to resolve ambiguities. The expert network

consists of the last three convolutional layers along with two fully connected layers

built on top of the root node. The expert network gets trained by freezing all the

previous layers of the root node. During inference for a given test sample, feature

representations are obtained using the root node and then it gets routed to one of the

expert networks based on the distance to the cluster centroids. Finally, the expert

network outputs a probability distribution over the label set. Here the intuition is

that, the probability distribution of the labels predicted by the root node will get

refined or in other words reranked by the subsequent expert networks to yield better

performance.
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Table 5.7: DDN-annot performance on NUS-WIDE dataset with type-2 evaluation
in Comparison to other methods.

NUS-WIDE IAPRTC-12
Method Feature K=5 K=5

Visual Text P R F1 P R F1

TagProp(σ) VGG-16 - 18 41 25 38 30 34
2PKNN VGG-16 - 18 44 26 38 23 29

SVM-DMBRM VGG-16 - 23 58 33 58 27 37
CCA VGG-16 W2V 22 55 31 33 32 33

CCA-KNN VGG-16 W2V 26 64 37 45 38 41
Below are end-to-end deep learning based models

Fast0Tag (net.) - - 23 65 34 23 65 34
VGG16-annot - - 22 55 31 39 33 36
DDN-annot - - 25 62 36 47 34 39

5.5.2 Experimental setup

5.5.2.1 NUS-WIDE dataset

NUS-WIDE [18] is one of the largest publicly available multilabel dataset. It

originally contains 269,648 images but we were able to retrieve only 223,821 because

some of the images were either corrupted or deleted from Flickr. It consists of images

with multiple tags that are manually annotated by students (high school or college).

The annotation vocabulary consisted of carefully chosen 81 vocabulary tags. We

follow the same split as recommended in [18], which ends up with 134, 281 training

samples and 89,603 testing samples.

5.5.2.2 IAPRTC-12 dataset

It is a collection of 19,627 images of natural scenes which are split into a training

set consisting of 17665 images and a testing set consisting of 1962 images [40]. The

label vocabulary consists of 291 labels with an average of 5.7 labels used for annotating

each image.
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5.5.2.3 Evaluation

In order to have a fair comparison, we follow the standard evaluation metrics as

reported in most of the previous work [91, 90, 132, 84, 27, 67] for type-2 evaluation

and [151] for type-1 evaluation. In type-1 evaluation, the overall R, P and F1 s are

computed per image. But, in type-2 evaluation, the P, R and F1 are computed per

tag and this is similar to what is being reported in Chapter-3 experimental results.

5.5.2.4 Quantitative Results

The experimental results of DDN-annot in comparison with other methods on

IAPRTC-12 and NUS-WIDE datasets are provided in table 5.6 (with type-1 evalua-

tion) and 5.7 (with type-2 evaluation). Among the end-to-end deep learning based

models, our proposed approach DDN-annot does improve the performance in com-

parison to our baseline VGG16-annot. This indicates that the proposed idea seems

to capture the coexistence of labels and expert networks are contributing to the im-

provement. Among deep learning based models, our proposed method DDN-annot

yields competitive results in comparison to (Fast0Tag (net.)). Note that, Fast0Tag

(net.) method uses both image and text embeddings to determine the labels, but our

method uses only image embeddings and achieves similar results. In comparison to

our earlier proposed models (which is a two-stage combining engineered features and

statistical model), DDN-annot performance is slightly worse than CCA-KNN method,

but it’s still competitive and a promising technique. Among all the proposed models,

CCA-KNN appears to be the best performing model even though it is a two-stage

approach. We believe that the results of DDN-annot can be further improved by

selecting an appropriate number of clusters/experts and going deeper than two level.

Also during inference, if we could combine predictions with appropriate weights from

the root node and the expert network, then we expect the performance to improve

further.
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In this chapter, we saw DDN principle and it’s potential to improve the perfor-

mance accuracy on both multi-class and multi-label classification problems. In the

following chapter, we provide a summary of our work along with the future work that

could potentially further enhance the DDN applicability and performance.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we showed the effectiveness of deep learning representation

with the following proposed models for addressing the image annotation task.

6.1 SVM-DMBRM

it’s a hybrid approach that combined generative DMBRM with discriminative

SVM approach to get the best out of both. Initially, we showed SVM-DMBRM us-

ing conventional features (over a dozen local and global features) outperforms most

of the existing techniques on all four standard image annotation datasets: Corel-5k,

ESP-GAME, IAPRTC-12 and NUS-WIDE. Most importantly, this method had the

best N+ score (indicates how many labels/tags were used for annotating test images)

when compared to all the other models. This indicated the proposed approach was

not solving the dataset problem but rather it was more generalizable. SVM-DMBRM

even with a single deep learning feature outperformed all the other existing models

using the same feature.

6.2 HDD

we took a slightly different approach to solving the image annotation task using

the multi-scale hypergraph heat diffusion framework. This enabled us to capture the

higher order similarity among multiple images in the feature space and subsequently
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exploited the topology of the underlying hypergraph. Such topological analysis en-

abled us to perform simultaneous diffusion of the training labels at multiple scales in

the transductive setup thereby addressing the key problem of class imbalance. The

method was evaluated on all four datasets, the results were better than most of the

existing methods but it was slightly worse when compared to the state-of-the-art

2PKNN method. One of the limiting factor of this approach was eigen decomposi-

tion, which made it difficult to scale for larger datasets.

6.3 CCA based models

showed the efficient way to combine deep learning representation for both im-

age and its associated labels. Images were represented using pre-trained (ImageNet

data) VGG16 network features and labels were represented by Word2vec (pre-trained

neural network on millions of documents learning the relationship between words).

Among CCA based models, the two step approach (CCA-KNN) of first finding the

semantic neighbors (using K-means over visual features) per test image followed by

CCA outperformed all the other existing methods. Overall, we showed that a single

deep learning feature performed almost similar to using over a dozen engineered fea-

tures. This helped us in avoiding the use of computing multiple engineered features

and also the computationally expensive process of metric learning ( a trend in most

recent papers) to determine optimal weights to combine them, thus making it more

suitable for the real world applications. The success of deep learning features paved

the way for designing an end-to-end deep learning network.

We proposed a generic data driven framework for designing a neural network that

could solve all three binary, multi-class and multi-label classification problems more

efficiently.
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6.4 CDDN

We first validated our idea on a binary classification task and called it cascaded

deep decision network (CDDN). The main underlying principle was to separate the

hard samples from the easier ones and pay more attention to solving hard cases by

training expert networks. CDDN was evaluated on two endoscopic medical image

datasets, one dealt with identifying the key frames (containing polyp) from the rest

(not containing polyp) of the image frames (continuous video stream of endoscopy)

and the other one was brain tumor classification (glioblastoma vs meningioma). Our

approach outperformed the classical approaches (engineered features with SVM clas-

sifier). Also we provided a detailed study of comparing our approach with the con-

ventional approach of building a neural network. The conventional approaches for

building cascaded networks encounters vanishing gradient or data scarcity (while

training expert nodes) problem, but in our approach to an extent we mitigate this

problem by choosing to do piece-wise training and build the expert network based on

the parent node’s feature space.

6.5 DDN

We extended the CDDN idea to solve the multi-class classification problem and

called it Deep Decision Network (DDN). The underlying principle remained same,

but we incorporated some changes that involved identifying clusters (based on root

network performance) of classes using spectral clustering. For each cluster, we built

an expert network on top of the existing network to resolve the ambiguities. The

width (number of clusters/experts) and depth (residual error on validation data) of

the network is still completely data driven. DDN yielded state-of-the-art results on

CIFAR-10 and CIFAR-100 dataset (at the time of publication of this work [92]). DDN

was also shown to scale to larger datasets by testing it on one of the largest publicly

available ImageNet dataset. Most importantly, DDN also helps in providing some in-
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sights into the data by identifying the most confusing classes and their performances.

6.6 DDN-annot

We further extended the data-driven approach to solve more complex multi-label

classification task. The main difference when compared to DDN was that, the clus-

tering was done in the feature space as opposed to DDN (was based on softmax

predictions of the root network). We validated the approach on IAPRTC-12 and

relatively large NUS-WIDE dataset. We showed that the proposed approach yields

competitive performance even though we restricted to only K = 4 clusters/experts

(we hope it can be further improved by choosing large number of clusters that requires

more time and resources).

Overall, the data-driven framework (CDDN, DDN and DDN-annot) is built on the

underlying principle of partitioning the data and building expert networks for hard

samples that require more attention. Though the main goal here was to improve the

classification accuracy, in addition it also provides some insights into the data. Some

of the recent work [126, 48, 54] suggests building deeper networks helps improve the

classification accuracy, but our method provides an alternative approach for data-

driven network design that grows both wide (number of experts at each stage/level)

and deep (different stages/levels) depending on the complexity of the problem. In

terms of interpretability, there has been some recent work [149, 115, 121] exploring

ways to visualize the convolutional filters of the network and try to be more reasonable

about network’s prediction. Alternatively in our approach we try to provide data

interpretability in terms of identifying/grouping the type of error cases that requires

more attention.

Most of the work and the papers published based on this dissertation reflect the

work carried out until 2017. Since this a rapidly moving field, a lot of progress has been
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made and thus some of the results and the conclusions might be slightly outdated.

For example, the state of the art performance on CIFAR-100 is currently [145, 21, 54]

yielding a error rate of 10-17% (which is down by 20% when compared to our pub-

lished results) using a variety of techniques mostly orthogonal to those presented here.

Nevertheless, this dissertation still provides techniques that are applicable even to this

date and has some unique abilities. For instance, the data-driven DDN framework

has the capability to boost the current performance of any state-of-the-art image

classification network by using it as the root node and building a tree like struc-

tured network based on its performance/error. This provides a unique opportunity

to build an efficient solution by leveraging other researchers efforts and be part of

the growth (in designing an efficient network) in the vision community by pushing

the boundaries. In addition, it also provides data interpretability (ability to better

understand the error cases) especially when working on a problem with little or no

domain knowledge (this happens more often in the medical field).

Several recent papers [77, 12, 114, 57] cite our DDN based networks, suggesting

that our data-driven approach still remains applicable and are worth exploring further,

especially in the field of medicine.

6.7 Future Work

Considering conventional approaches, in the case of SVM-DMBRM, it would be

interesting to learn more efficient ways to combine the two models. For the hypergraph

approach, one can explore the adaptive techniques for finding the optimal parameters

of hypergraph construction like hyperedge weights as well as the parameters of the

heat diffusion framework like the scales of diffusion. In terms of improvements to the

CCA based models, instead of using pre-trained features if we could design a network

to backpropagate the errors then that could certainly make it an end-to-end approach

and possibly improve the performance.
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Data-driven approaches (DDN based networks) have certain limitations. The

training process is a bit involved due to clustering (which is not part of the end-

to-end training) and it lacks a good choice for the optimal number of clusters. As

future work, if we could incorporate a scheme to determine the number of clusters into

our objective function while training the network then that could be of help. Since

the network depth depends on the problem/data, as of now piece-wise training looks

more appropriate. But, one could take advantage of training the expert networks in

parallel. DDN performance can be further improved by going beyond just two stages

and using the latest best performing network (as root node). In our setup, we just

added one expert network to resolve the cluster, but if it doesn’t help then it might

be worth exploring stacking more than one expert network to better discriminate the

confusion classes. In the current setup, clusters of classes are non-overlapping and

that puts lot of pressure on the root network, so it will be interesting to explore the

idea of overlapping clusters with a soft clustering technique instead of hard clustering.

In the case of DDN-annot, certainly increasing the number of clusters/experts should

help better capture the dependencies between labels. Also, it would be interesting to

cresentations into this framework.
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