39,972 research outputs found

    Energy Confused Adversarial Metric Learning for Zero-Shot Image Retrieval and Clustering

    Full text link
    Deep metric learning has been widely applied in many computer vision tasks, and recently, it is more attractive in \emph{zero-shot image retrieval and clustering}(ZSRC) where a good embedding is requested such that the unseen classes can be distinguished well. Most existing works deem this 'good' embedding just to be the discriminative one and thus race to devise powerful metric objectives or hard-sample mining strategies for leaning discriminative embedding. However, in this paper, we first emphasize that the generalization ability is a core ingredient of this 'good' embedding as well and largely affects the metric performance in zero-shot settings as a matter of fact. Then, we propose the Energy Confused Adversarial Metric Learning(ECAML) framework to explicitly optimize a robust metric. It is mainly achieved by introducing an interesting Energy Confusion regularization term, which daringly breaks away from the traditional metric learning idea of discriminative objective devising, and seeks to 'confuse' the learned model so as to encourage its generalization ability by reducing overfitting on the seen classes. We train this confusion term together with the conventional metric objective in an adversarial manner. Although it seems weird to 'confuse' the network, we show that our ECAML indeed serves as an efficient regularization technique for metric learning and is applicable to various conventional metric methods. This paper empirically and experimentally demonstrates the importance of learning embedding with good generalization, achieving state-of-the-art performances on the popular CUB, CARS, Stanford Online Products and In-Shop datasets for ZSRC tasks. \textcolor[rgb]{1, 0, 0}{Code available at http://www.bhchen.cn/}.Comment: AAAI 2019, Spotligh

    Targeted Adversarial Attacks on Deep Reinforcement Learning Policies via Model Checking

    Full text link
    Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.Comment: ICAART 2023 Paper (Technical Report

    Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer Learning

    Full text link
    Transfer learning has become a common practice for training deep learning models with limited labeled data in a target domain. On the other hand, deep models are vulnerable to adversarial attacks. Though transfer learning has been widely applied, its effect on model robustness is unclear. To figure out this problem, we conduct extensive empirical evaluations to show that fine-tuning effectively enhances model robustness under white-box FGSM attacks. We also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples produced by its source model. To systematically measure the effect of both white-box and black-box attacks, we propose a new metric to evaluate how transferable are the adversarial examples produced by a source model to a target model. Empirical results show that the adversarial examples are more transferable when fine-tuning is used than they are when the two networks are trained independently
    • …
    corecore