81,541 research outputs found

    PYRO-NN: Python Reconstruction Operators in Neural Networks

    Full text link
    Purpose: Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the CT reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches are forced to use workarounds for mathematically unambiguously solvable problems. Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan- and cone-beam projectors and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. Results: The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high level Python API allows a simple use of the layers as known from Tensorflow. To demonstrate the capabilities of the layers, the framework comes with three baseline experiments showing a cone-beam short scan FDK reconstruction, a CT reconstruction filter learning setup, and a TV regularized iterative reconstruction. All algorithms and tools are referenced to a scientific publication and are compared to existing non deep learning reconstruction frameworks. The framework is available as open-source software at \url{https://github.com/csyben/PYRO-NN}. Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step towards reproducible researchComment: V1: Submitted to Medical Physics, 11 pages, 7 figure

    On Using Machine Learning to Identify Knowledge in API Reference Documentation

    Full text link
    Using API reference documentation like JavaDoc is an integral part of software development. Previous research introduced a grounded taxonomy that organizes API documentation knowledge in 12 types, including knowledge about the Functionality, Structure, and Quality of an API. We study how well modern text classification approaches can automatically identify documentation containing specific knowledge types. We compared conventional machine learning (k-NN and SVM) and deep learning approaches trained on manually annotated Java and .NET API documentation (n = 5,574). When classifying the knowledge types individually (i.e., multiple binary classifiers) the best AUPRC was up to 87%. The deep learning and SVM classifiers seem complementary. For four knowledge types (Concept, Control, Pattern, and Non-Information), SVM clearly outperforms deep learning which, on the other hand, is more accurate for identifying the remaining types. When considering multiple knowledge types at once (i.e., multi-label classification) deep learning outperforms na\"ive baselines and traditional machine learning achieving a MacroAUC up to 79%. We also compared classifiers using embeddings pre-trained on generic text corpora and StackOverflow but did not observe significant improvements. Finally, to assess the generalizability of the classifiers, we re-tested them on a different, unseen Python documentation dataset. Classifiers for Functionality, Concept, Purpose, Pattern, and Directive seem to generalize from Java and .NET to Python documentation. The accuracy related to the remaining types seems API-specific. We discuss our results and how they inform the development of tools for supporting developers sharing and accessing API knowledge. Published article: https://doi.org/10.1145/3338906.333894

    Creació d'una API que utilitzi Deep Learning

    Get PDF
    Aquest projecte busca realitzar prediccions sobre el valor de les criptomonedes. Per fer-ho s'utilitza una xarxa neuronal recurrent programada en Keras per sobre de Tensorflow, dos dels frameworks més utilitzats per resoldre aquest tipus de problemes.This project wants to make predictions about the value of cryptocurrencies. To do this, a recurring neural network programmed in Keras is used above tensorflow, which are two of the most used frameworks to solve that kind of challenges
    corecore