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Abstract
Towards the vision of translating code that implements an al-
gorithm from one programming language into another, this
paper proposes an approach for automated program classi-
fication using bilateral tree-based convolutional neural net-
works (BiTBCNNs). It is layered on top of two tree-based
convolutional neural networks (TBCNNs), each of which rec-
ognizes the algorithm of code written in an individual pro-
gramming language. The combination layer of the networks
recognizes the similarities and differences among code in dif-
ferent programming languages. The BiTBCNNs are trained
using the source code in different languages but known to
implement the same algorithms and/or functionalities. For
a preliminary evaluation, we use 3591 Java and 3534 C++
code snippets from 6 algorithms we crawled systematically
from GitHub. We obtained over 90% accuracy in the cross-
language binary classification task to tell whether any given
two code snippets implement a same algorithm. Also, for the
algorithm classification task, i.e., to predict which one of the
six algorithm labels is implemented by an arbitrary C++ code
snippet, we achieved over 80% precision.

1. Introduction
Software engineers need to classify a code snippet against
known algorithms, such as Quick Sort, in order to under-
stand it. All algorithms, however, can be implemented in dif-
ferent programming languages, making it hard to recognise
an algorithm from the knowledge of its implementation in
other languages. It is, therefore, useful to recognise certain
algorithms from programs in different languages, i.e., per-
forming cross-language program classification.

For a similar problem of language migration, statistical
language models have been studied for tokens (Nguyen,
Nguyen, and Nguyen 2013), phrases (Nguyen, Nguyen, and
Nguyen 2015; Nguyen, Tu, and Nguyen 2016), or APIs
appeared in the code(Zhong et al. 2010; Zhong, Thum-
malapenta, and Xie 2013; Nguyen et al. 2014b; 2014a;
Phan et al. 2017). Some of these (i.e., for language recog-
nition and API migration) have been helped by deep neural
networks (Gu et al. 2017; 2016), however, little has been
done on cross-language program classification.

This paper proposes to use bilateral neural networks
(BiNNs), a technique originally developed for comparing
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natural language sentences, to recognise code snippets in
languages that have similar syntax and potentially seman-
tics. Our basic idea is to construct individual subnetworks to
encode abstract syntax trees (ASTs) of individual languages,
and then construct a combination layer of subnetworks to
encode similarities and differences among code structures
in different languages.

Our proposed BiTBCNNs are a combination of three ma-
jor constructs: (i) BiNNs using softmax operation for struc-
tured data to be compared for classification; (ii) a variant
of tree-based convolutional neural networks (TBCNNs) on
each side of the BiNNs to encode AST structures, indepen-
dent of the programming language of choice; and (iii) a uni-
fied encoding of AST in multiple programming languages
that enables cross-language program classification. Collect-
ing programs in different languages, evaluation has shown
that our BiTBCNNs have over 80% accuracy in classifying
them according to their underlying algorithms.

The remainder of the paper is organised as follows: Sec-
tion 2 presents an overview of the proposed process of clas-
sifying code in different programming languages; Section
3 details how we make TBCNNs bilateral for the cross-
language program classification tasks; Section 4 evaluates
the effectiveness of cross-language benchmarks we col-
lected and how they behave when transferring the models
across languages or across algorithms; Section 5 presents
related work; and finally, Section 6 concludes the findings
and suggests some further directions.

2. Overview of Our Approach
An overview of our approach is illustrated in Figure 1. As
shown by an open-source repository1, each step in the pro-
cess is supported by a simplified docker command.

First, a programmer may come up with a list of algorithms
(e.g., mergesort, quicksort, breath-first-search, linkedlist,
bublesort, knapsack), and a list of programming languages
(e.g., Java, C++, Python). Automated from this specifica-
tion, a call to RESTful API of GitHub repository crawls at
least 600 instances of program code that implement every
algorithm in every programming language.

These code snippets are then parsed2 into abstract syntax

1https://github.com/yijunyu/bi-tbcnn
2https://bitbucket.org/yijunyu/fast



Figure 1: An overview of our proposed program classification process

Figure 2: TBCNNs, excerpt from (Mou et al. 2016)

trees (ASTs) represented in Pickle format.
Loading into memory, these ASTs are converted into a

vector form that preserve the distances of similar features
(AST2vec) by training the embeddings of leaf-level tokens,
using Tensorflow, according to the programming language
(e.g., 385 token types for Java/C/C++/C#/Objective C in Sr-
cML grammar and 82 token types for Python).

The vectors of both programs of cross-language nature
are then combined into BiTBCNNs, using Tensorflow again,
approximating a function that classifies these vectors to al-
gorithm names.

The trained model can be used to answer many types of
queries, i.e., (i) what is the algorithm of a piece of code and
(ii) whether two programs in different languages implement
the same algorithm.

3. Construction of BiTBCNNs
Our BiTBCNNs construct extends TBCNNs with pretrained
vectors as bilateral NNs for cross-language classification.

3.1 Tree-based convolutional neural networks
TBCNNs were proposed by Mou et al. (2016). Figure 2
shows its architecture. Each AST node is represented as a
vector by using an encoding layer, whose task is to embed
AST node types in a continuous vector space where seman-
tically similar types are mapped to nearby points. For exam-
ples, the types ‘while’ and ‘for’ are similar because they are
both loop statements. We use a different strategy to embed
AST node types, as described in Section 4.2.

Mou et al. (2016) designed a set of fixed-depth subtree fil-
ters sliding over an entire AST to extract structural informa-
tion of the tree. The pooling layer was added to gather the ex-
tracted information over various parts of the tree. They also

proposed “continuous binary trees” and applied dynamic
pooling (Socher et al. 2011) to deal with varying numbers
of children of AST nodes. Finally, they added a hidden layer
and an output layer to classify programs.

3.2 The pre-trained vector
To train the TBCNNs, one needs an initial vector representa-
tion for each tree node. Mou et al. (2016) use the “coding cri-
terion” from Peng et al. (2015) to learn the vector represen-
tation for each AST node. We use a different strategy, similar
to the skip-gram model of word2vec (Mikolov et al. 2013),
but applied to the context of ASTs. The skip-gram model,
given an input word in a sentence, looks at the words nearby
and picks one at random. The model predicts the probabil-
ity for each word in the whole vocabulary to be a “nearby
word” of the input word. So the task here is to “predict the
contextual words given an input word”.

With this idea in mind, we apply it for the so-called
AST2vec task. That is, we pick random children of a given
AST node. The networks, in this case, will tell us the prob-
ability for each node in the whole AST vocabulary to be the
“chosen children”. The vocabulary words, in this case, are
the AST node types, which are of rather small sizes (around
450 combining C/C++, C#, Objective C, and Java).

3.3 The neural network classification model
Our model in Figure 3 has (1) a bilateral structure with two
subnetworks, each of which processes a tree representation
in parallel, and (2) the classification networks, which are
simply fully connected layers connecting the two trees to
the final Softmax layer, classifying if the two code snippets
represented by the trees implement a same algorithm.

The subnetworks are adapted from TBCNNs (Mou et al.
2016). Each subnetwork receives the AST representation of
a program as the input. The TBCNNs will perform a convo-
lutional step to extract features from the trees. In our case,
after the pooling layer of each TBCNN, we get the feature
representation vector of each program, and concatenate the
two vectors to a merged vector, so called the “joint feature
representation layers”. Then, two more fully connected hid-
den layers above the joint feature representation layers are



Figure 3: BiTBCNN architecture for program classification

Table 1: C++ and Java code sampled from GitHub
Lang./Algo. ms bs qs ll bfs kns total

C++ 588 531 567 609 609 630 3534
Java 588 609 567 588 609 630 3591

added and connected to a Softmax layer to classify if the
two input programs implement a same algorithm or not.

4. Evaluation
4.1 Datasets
We have collected data from GitHub for six algorithms:
mergesort (ms), bubblesort (bs), quicksort (qs), linkedlist
(ll), breadth first search (bfs) and knapsack (kns), both in
C++ and Java. For each language, we get approximately
3500 programs. The details of our dataset are depicted in
Table 1, where the number of instances of programs crawled
from the GitHub for specific algorithms are shown.

4.2 Experiments
Our experiments include two settings. The first checks
whether BiTBCNNs perform well in classifying whether a
random pair of cross-language programs implements a same
algorithm. The second is to check whether the classifier still
works well when it is applied to classify which algorithm
an unknown program implements, based on a set of known
programs in another language, simulating a cross-language
learning situation that motivates this work in Section 1.

4.2.1 Binary classification. This task is designed to ver-
ify if our model can successfully detect whether two pro-
grams from two different languages are the same or not. For
programs in the original dataset of each language and each
algorithm, we split 70 percent for training and 30 percent
for testing. Thus we have approximately 2,500 programs on
each language for training and 1,000 programs for testing.
With 2,500 programs on each side, we get 6,250,000 pairs
of programs (about 1,100,000 similar pairs and 5,100,000
dissimilar pairs). At this moment, we feed into the left sub-
network C++ programs and the right subnetwork Java pro-
grams. For each training epoch, we randomly select 1,000

Table 2: Results of cross-language program classifications.
The first column shows the labels of pairs, 1 means similar,
0 means dissimilar. The rest are metrics to evaluate this task.

label precision recall f1
1 0.98 0.91 0.95
0 0.92 0.94 0.93

similar pair and 1,000 dissimilar pairs to get balanced inputs
for the epoch. We train the model for 100 epochs.

For the testing, as we have approximately 1,000 C++ pro-
grams and 1,000 Java programs, we could have approxi-
mately 1,000,000 pairs in total. To save time, we randomly
select 2,000 similar pairs and 2,000 dissimilar pairs, which
amount to around 0.4% of all the testing pairs. We use preci-
sion, recall and f1 score as the metrics to evaluate this task.
The result is shown in Table 2.

4.2.2 Algorithm Detection. This task evaluates how well
our model performs in classifying the actual algorithm im-
plemented by a given input program. Taking a random pro-
gram A for testing, we use it as the input for the left subnet-
work, and pick a known program B implementing a known
algorithm and use it for the right. In this way, one can infer
the algorithm label of the program A based on outputs from
the above binary classifier. Note that in our experiment, we
always assume that the left input is a C++ program and the
right input is a Java program.

We thus take 1,000 random C++ programs from the test-
ing data. Then for each of the C++ programs, we randomly
pick one known/training Java programs from each of the six
algorithm labels. We compare each C++ program with each
of six Java programs using BiTBCNNs, in order to tell which
one yields the highest probability in the softmax layer, and
we use the algorithm label of the Java program that yields
the highest probability as the predicted label of the C++ pro-
gram. Finally, we compare the true label of the C++ program
with the predicted one, and get a precision of 80.5%.

4.2.3 Threats to Validity. We have not looked at all avail-
able programming languages or algorithms. We will need to
verify whether the current code collected via GitHub search
APIs may have biases, and evaluate our approach with more
languages and more algorithms, e.g., using Rosetta Code
(http://rosettacode.org/wiki/Rosetta_Code).

The programs we used are relatively small with relatively
clearly defined algorithms. If a program becomes larger or
contains mixed set of algorithms, our approach may not be
applicable directly. Training speed may become a concern
too when more data is used, although each round of train-
ing for our limited dataset only took tens of minutes on a
commodity desktop machine. We think traditional program
analysis (e.g., dependence-based slicing ) may be useful for
alleviating such problems by partitioning a large program
into smaller ones first before applying our approach.

The architecture of our BiTBCNNs may be varied in
many ways as studies in the area of natural language pro-
cessing have shown. And we have only used simple data
dropout rate of 0.7 to reduce over-fitting. There is still much
work to explore various neural network structures. Also, our
encoding of the trees removed identifier names. In future we



will consider leveraging on the similarity in names and more
code semantics (e.g., dependencies among code elements)
for more accurate code encoding.

5. Related Work
For the problem of cross-language program translation,
much work has utilized various statistical language mod-
els for tokens (Nguyen, Nguyen, and Nguyen 2013),
phrases (Nguyen, Nguyen, and Nguyen 2015; Nguyen,
Tu, and Nguyen 2016), or APIs (Zhong, Thummalapenta,
and Xie 2013; Nguyen et al. 2014b; 2014a; Phan et
al. 2017; Zhong et al. 2010). Only a few studies have
used deep learning for language recognition and transla-
tion, at the API level (Gu et al. 2017; 2016), which is
still far from classifying functionally similar code frag-
ment or performing translation for any code fragment. Al-
though some practical tools exist for translating code among
specific languages (e.g., Java2CSharp: https://github.com/

codejuicer/java2csharp), they are mostly rule-based, rather
than statistics-based (Karaivanov, Raychev, and Vechev
2014) depending on clearly defined grammars of individual
languages, and not easily extensible for different languages.

For natural language processing, many studies on sen-
tence comparisons and translations involve variants of bi-
lateral structures as shown by Wang, Hamza, and Flo-
rian (2017). Among them, Bromley et al. (1993) pioneered
“Siamese” structures to join two subnetworks together for
written signature comparison. He, Gimpel, and Lin (2015)
also use such structures to compute sentence features at mul-
tiple levels of granularity. However, these studies have not
considered tree-based structures that are more accurate rep-
resentations of code.

In code learning, Hellendoorn and Devanbu (2017) point
out that simpler models (e.g., n-gram) improved with cached
information about code locality and hierarchy may even
outperform complex models (e.g., deep neural networks).
But this also indicates to us that incorporating code local-
ity and structural information with deep learning by using
tree-based convolutional neural networks (TBCNNs) may
improve code learning accuracy. Using TreeNNs, Allama-
nis et al. (2017) propose to represent symbolic expressions;
however, it has not been applied to other type of code struc-
tures. Although Mou et al. (2016) introduce TBCNNs to
classify C++ programs based on functionality and to detect
code of certain patterns and others use tree-based encodings
too (e.g., White et al. (2016) for code clone detection), it has
not been applied to cross-language program classification.

6. Conclusions & Future Work
In this paper, we have presented the BiTBCNNs approach
to the cross-language program classification problem, where
algorithms are identified from source AST structures auto-
matically. Using benchmarks of algorithms crawled from
GitHub, we have shown that it is possible to train a model
on multiple languages, with an accuracy of above 80%. The
number and representativeness of training datasets may af-
fect the ultimate performance, while cross-language deep

learning makes it likely possible to reuse the implementa-
tion of algorithms from different languages.

Our future work include tuning BiTBCNNs structures
and parameters, supporting more programming languages
and more algorithms with more training data, learning from
more code semantic information such as dependence data,
and applying to more tasks such as cross-language code
clone detection, algorithm patenting, and bug fixing.
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