8,052 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Symbolic Abstractions for Quantum Protocol Verification

    Get PDF
    Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange qubits to achieve information-theoretic security guarantees. Many variants thereof were proposed, some of them being already deployed. Existing security proofs in that field are mostly tedious, error-prone pen-and-paper proofs of the core protocol only that rarely account for other crucial components such as authentication. This calls for formal and automated verification techniques that exhaustively explore all possible intruder behaviors and that scale well. The symbolic approach offers rigorous, mathematical frameworks and automated tools to analyze security protocols. Based on well-designed abstractions, it has allowed for large-scale formal analyses of real-life protocols such as TLS 1.3 and mobile telephony protocols. Hence a natural question is: Can we use this successful line of work to analyze quantum protocols? This paper proposes a first positive answer and motivates further research on this unexplored path

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Quantitative Safety: Linking Proof-Based Verification with Model Checking for Probabilistic Systems

    Full text link
    This paper presents a novel approach for augmenting proof-based verification with performance-style analysis of the kind employed in state-of-the-art model checking tools for probabilistic systems. Quantitative safety properties usually specified as probabilistic system invariants and modeled in proof-based environments are evaluated using bounded model checking techniques. Our specific contributions include the statement of a theorem that is central to model checking safety properties of proof-based systems, the establishment of a procedure; and its full implementation in a prototype system (YAGA) which readily transforms a probabilistic model specified in a proof-based environment to its equivalent verifiable PRISM model equipped with reward structures. The reward structures capture the exact interpretation of the probabilistic invariants and can reveal succinct information about the model during experimental investigations. Finally, we demonstrate the novelty of the technique on a probabilistic library case study
    • 

    corecore