14,548 research outputs found

    Decoupled Attention Network for Text Recognition

    Full text link
    Text recognition has attracted considerable research interests because of its various applications. The cutting-edge text recognition methods are based on attention mechanisms. However, most of attention methods usually suffer from serious alignment problem due to its recurrency alignment operation, where the alignment relies on historical decoding results. To remedy this issue, we propose a decoupled attention network (DAN), which decouples the alignment operation from using historical decoding results. DAN is an effective, flexible and robust end-to-end text recognizer, which consists of three components: 1) a feature encoder that extracts visual features from the input image; 2) a convolutional alignment module that performs the alignment operation based on visual features from the encoder; and 3) a decoupled text decoder that makes final prediction by jointly using the feature map and attention maps. Experimental results show that DAN achieves state-of-the-art performance on multiple text recognition tasks, including offline handwritten text recognition and regular/irregular scene text recognition.Comment: 9 pages, 8 figures, 6 tables, accepted by AAAI-202

    Independent language modeling architecture for end-to-end ASR

    Full text link
    The attention-based end-to-end (E2E) automatic speech recognition (ASR) architecture allows for joint optimization of acoustic and language models within a single network. However, in a vanilla E2E ASR architecture, the decoder sub-network (subnet), which incorporates the role of the language model (LM), is conditioned on the encoder output. This means that the acoustic encoder and the language model are entangled that doesn't allow language model to be trained separately from external text data. To address this problem, in this work, we propose a new architecture that separates the decoder subnet from the encoder output. In this way, the decoupled subnet becomes an independently trainable LM subnet, which can easily be updated using the external text data. We study two strategies for updating the new architecture. Experimental results show that, 1) the independent LM architecture benefits from external text data, achieving 9.3% and 22.8% relative character and word error rate reduction on Mandarin HKUST and English NSC datasets respectively; 2)the proposed architecture works well with external LM and can be generalized to different amount of labelled data

    Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss

    Full text link
    We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons
    corecore