3 research outputs found

    A Novel Synergistic Model Fusing Electroencephalography and Functional Magnetic Resonance Imaging for Modeling Brain Activities

    Get PDF
    Study of the human brain is an important and very active area of research. Unraveling the way the human brain works would allow us to better understand, predict and prevent brain related diseases that affect a significant part of the population. Studying the brain response to certain input stimuli can help us determine the involved brain areas and understand the mechanisms that characterize behavioral and psychological traits. In this research work two methods used for the monitoring of brain activities, Electroencephalography (EEG) and functional Magnetic Resonance (fMRI) have been studied for their fusion, in an attempt to bridge together the advantages of each one. In particular, this work has focused in the analysis of a specific type of EEG and fMRI recordings that are related to certain events and capture the brain response under specific experimental conditions. Using spatial features of the EEG we can describe the temporal evolution of the electrical field recorded in the scalp of the head. This work introduces the use of Hidden Markov Models (HMM) for modeling the EEG dynamics. This novel approach is applied for the discrimination of normal and progressive Mild Cognitive Impairment patients with significant results. EEG alone is not able to provide the spatial localization needed to uncover and understand the neural mechanisms and processes of the human brain. Functional Magnetic Resonance imaging (fMRI) provides the means of localizing functional activity, without though, providing the timing details of these activations. Although, at first glance it is apparent that the strengths of these two modalities, EEG and fMRI, complement each other, the fusion of information provided from each one is a challenging task. A novel methodology for fusing EEG spatiotemporal features and fMRI features, based on Canonical Partial Least Squares (CPLS) is presented in this work. A HMM modeling approach is used in order to derive a novel feature-based representation of the EEG signal that characterizes the topographic information of the EEG. We use the HMM model in order to project the EEG data in the Fisher score space and use the Fisher score to describe the dynamics of the EEG topography sequence. The correspondence between this new feature and the fMRI is studied using CPLS. This methodology is applied for extracting features for the classification of a visual task. The results indicate that the proposed methodology is able to capture task related activations that can be used for the classification of mental tasks. Extensions on the proposed models are examined along with future research directions and applications

    Decomposition and evaluation of activity in multiple event-related trials

    No full text

    Decomposition and evaluation of activity in multiple event-related trials

    No full text
    Summarization: It is generally accepted that evoked and induced activations represent different aspects of cerebral functions during an Event Related Potentials (ERP) experiment. Independent Component Analysis (ICA) has been successfully applied to event related electroencephalography (EEG) to decompose it into a sum of spatially fixed and temporally independent components that can be attributed to underlying cortical activity. A major problem in the application of ICA is the stability of estimated independent components. In this paper we exploited the split-half approach to assess component stability. We used different measures quantifying both phase and energy aspects of the ERP, in order to distinguish evoked from induced oscillations. We applied these measures to the stable independent components derived from a dataset of progressive Mild Cognitive Impairment (PMCI) and elderly controls. We found reduced energy in the induced theta activity in PMCI subjects, in accordance with previous studies. In addition, PMCI subjects presented lower phase-locking values and diminished late alpha band energy in contrast to controls.Presented on
    corecore