15,940 research outputs found

    Contingency-Constrained Unit Commitment with Post-Contingency Corrective Recourse

    Full text link
    We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an N-k-e reliability criterion. This reliability criterion is a generalization of the well-known NN-kk criterion, and dictates that at least (1−ej)(1-e_ j) fraction of the total system demand must be met following the failures of kk or fewer system components. We refer to this problem as the Contingency-Constrained Unit Commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network, which demonstrate the effectiveness of our proposed methods relative to current state-of-the-art

    Optimal security-constrained power scheduling by Benders decomposition

    Get PDF
    This paper presents a Benders decomposition approach to determine the optimal day-ahead power scheduling in a pool-organized power system, taking into account dispatch, network and security constraints. The study model considers the daily market and the technical constraints resolution as two different and consecutive processes. The daily market is solved in a first stage subject to economical criteria exclusively and then, the constraints solution algorithm is applied to this initial dispatch through the redispatching method. The Benders partitioning algorithm is applied to this constraints solution process to obtain an optimal secure power scheduling. The constraints solution includes a full AC network and security model to incorporate voltages magnitudes as they are a critical factor in some real power systems. The algorithm determines the active power committed to each generator so as to minimize the energy redispatch cost subject to dispatch, network and security constraints. The solution also provides the reactive power output of the generators, the value of the transformers taps and the committed voltage control devices. The model has been tested in the IEEE 24-bus Reliability Test System and in an adapted IEEE 118-bus Test System. It is programmed in GAMS mathematical modeling language. Some relevant results are reported.Publicad
    • …
    corecore