460 research outputs found

    Quantum Computational Gates with Radiation Free Couplings

    Full text link
    We examine a generic three state mechanism which realizes all fundamental single and double qubit quantum logic gates operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. At the instant of time that the gate operations are defined the third level is unoccupied which, in a certain sense, derives analogy with the recently suggested dissipation free qubit subspaces. The physical implementation of the mechanism is tentatively suggested in a form of the Aharonov-Bohm persistent current loop in crossed electric and magnetic fields, with the output of the loop read out by a (quantum) Hall effect aided mechanism.Comment: 21 pages including 7 figures, revte

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization

    Full text link
    Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault tolerant computation removed. This section contained a crucial error. A new paper [quant-ph/0007013] presents the correct analysi

    Effects of noise correlations on the performance of quantum error-correcting and -avoiding methods

    Get PDF
    In the scope of this work the coherence of quantum information, which is encoded into a qubit register, is analysed. The qubit register is modelled by a spin chain with finite inter-spin distance. In most physically relevant realisations this spin chain irreversibly interacts with a surrounding environment, such that a spin-boson model is used to describe the setting. Due to the interaction decoherence occurs among the qubits register and quantum information gets lost. Mechanisms to slow down this decoherence process are investigated. For that purpose, the techniques of encoding qubits into decoherence-reduced subspaces and quantum error correction are used. In both cases only a linear subspace of the complete available Hilbert space of the spin chain is used as quantum code. The stability of such a code against decoherence has to be evaluated. This evaluation is performed on average over all states within the code by a code fidelity
    corecore