35 research outputs found

    Multi-Valued Treatments Uplift Modeling for Continuous Outcomes

    Get PDF
    Uplift modeling is an application of causal machine learning and offers an assortment of analytical tools to identify likely responders to a particular treatment such as a medical prescription, a political maneuver, or an advertising stimulus. Although several targeted campaigns co-occur (e.g., through different marketing channels), recent literature has primarily examined the effectiveness of a single treatment. To address the practically more pertinent question of which treatment among several options to choose, we develop a prototype that identifies the most effective treatment for each unit of observation and further generalizes to both binary and continuous outcomes to support classification and regression problems. Using real-world data from e-mail merchandising and e-couponing campaigns, we verify our prototype’s financial advantage compared to previous efforts toward the single treatment case

    Uplift Modeling with Multiple Treatments and General Response Types

    Full text link
    Randomized experiments have been used to assist decision-making in many areas. They help people select the optimal treatment for the test population with certain statistical guarantee. However, subjects can show significant heterogeneity in response to treatments. The problem of customizing treatment assignment based on subject characteristics is known as uplift modeling, differential response analysis, or personalized treatment learning in literature. A key feature for uplift modeling is that the data is unlabeled. It is impossible to know whether the chosen treatment is optimal for an individual subject because response under alternative treatments is unobserved. This presents a challenge to both the training and the evaluation of uplift models. In this paper we describe how to obtain an unbiased estimate of the key performance metric of an uplift model, the expected response. We present a new uplift algorithm which creates a forest of randomized trees. The trees are built with a splitting criterion designed to directly optimize their uplift performance based on the proposed evaluation method. Both the evaluation method and the algorithm apply to arbitrary number of treatments and general response types. Experimental results on synthetic data and industry-provided data show that our algorithm leads to significant performance improvement over other applicable methods

    A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling

    Full text link
    Randomized experiments have been critical tools of decision making for decades. However, subjects can show significant heterogeneity in response to treatments in many important applications. Therefore it is not enough to simply know which treatment is optimal for the entire population. What we need is a model that correctly customize treatment assignment base on subject characteristics. The problem of constructing such models from randomized experiments data is known as Uplift Modeling in the literature. Many algorithms have been proposed for uplift modeling and some have generated promising results on various data sets. Yet little is known about the theoretical properties of these algorithms. In this paper, we propose a new tree-based ensemble algorithm for uplift modeling. Experiments show that our algorithm can achieve competitive results on both synthetic and industry-provided data. In addition, by properly tuning the "node size" parameter, our algorithm is proved to be consistent under mild regularity conditions. This is the first consistent algorithm for uplift modeling that we are aware of.Comment: Accepted by 2017 IEEE International Conference on Data Minin

    Feature Selection Methods for Uplift Modeling

    Full text link
    Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML)
    corecore