1,851 research outputs found

    A Diversity-Accuracy Measure for Homogenous Ensemble Selection

    Get PDF
    Several selection methods in the literature are essentially based on an evaluation function that determines whether a model M contributes positively to boost the performances of the whole ensemble. In this paper, we propose a method called DIversity and ACcuracy for Ensemble Selection (DIACES) using an evaluation function based on both diversity and accuracy. The method is applied on homogenous ensembles composed of C4.5 decision trees and based on a hill climbing strategy. This allows selecting ensembles with the best compromise between maximum diversity and minimum error rate. Comparative studies show that in most cases the proposed method generates reduced size ensembles with better performances than usual ensemble simplification methods

    Learning Sentence-internal Temporal Relations

    Get PDF
    In this paper we propose a data intensive approach for inferring sentence-internal temporal relations. Temporal inference is relevant for practical NLP applications which either extract or synthesize temporal information (e.g., summarisation, question answering). Our method bypasses the need for manual coding by exploiting the presence of markers like after", which overtly signal a temporal relation. We first show that models trained on main and subordinate clauses connected with a temporal marker achieve good performance on a pseudo-disambiguation task simulating temporal inference (during testing the temporal marker is treated as unseen and the models must select the right marker from a set of possible candidates). Secondly, we assess whether the proposed approach holds promise for the semi-automatic creation of temporal annotations. Specifically, we use a model trained on noisy and approximate data (i.e., main and subordinate clauses) to predict intra-sentential relations present in TimeBank, a corpus annotated rich temporal information. Our experiments compare and contrast several probabilistic models differing in their feature space, linguistic assumptions and data requirements. We evaluate performance against gold standard corpora and also against human subjects

    Fusing Vantage Point Trees and Linear Discriminants for Fast Feature Classification

    Get PDF
    This paper describes a classification strategy that can be regarded as amore general form of nearest-neighbor classification. It fuses the concepts ofnearestneighbor,linear discriminantandVantage-Pointtrees, yielding an efficient indexingdata structure and classification algorithm. In the learning phase, we define a set ofdisjoint subspaces of reduced complexity that can be separated by linear discrimi-nants, ending up with an ensemble of simple (weak) classifiers that work locally. Inclassification, the closest centroids to the query determine the set of classifiers con-sidered, which responses are weighted. The algorithm was experimentally validatedin datasets widely used in the field, attaining error rates that are favorably compara-ble to the state-of-the-art classification techniques. Lastly, the proposed solution hasa set of interesting properties for a broad range of applications: 1) it is determinis-tic; 2) it classifies in time approximately logarithmic with respect to the size of thelearning set, being far more efficient than nearest neighbor classification in terms ofcomputational cost; and 3) it keeps the generalization ability of simple models.info:eu-repo/semantics/publishedVersio

    Preterm Birth Prediction: Deriving Stable and Interpretable Rules from High Dimensional Data

    Full text link
    Preterm births occur at an alarming rate of 10-15%. Preemies have a higher risk of infant mortality, developmental retardation and long-term disabilities. Predicting preterm birth is difficult, even for the most experienced clinicians. The most well-designed clinical study thus far reaches a modest sensitivity of 18.2-24.2% at specificity of 28.6-33.3%. We take a different approach by exploiting databases of normal hospital operations. We aims are twofold: (i) to derive an easy-to-use, interpretable prediction rule with quantified uncertainties, and (ii) to construct accurate classifiers for preterm birth prediction. Our approach is to automatically generate and select from hundreds (if not thousands) of possible predictors using stability-aware techniques. Derived from a large database of 15,814 women, our simplified prediction rule with only 10 items has sensitivity of 62.3% at specificity of 81.5%.Comment: Presented at 2016 Machine Learning and Healthcare Conference (MLHC 2016), Los Angeles, C
    • …
    corecore