3 research outputs found

    Linking spatial distribution of Rhipicephalus appendiculatus to climatic variables important for the successful biocontrol by Metarhizium anisopliae in Eastern Africa

    Get PDF
    Cattle production is constantly threatened by diseases like East Coast fever, also known as theileriosis, caused by the protozoan parasite Theileria parva which is transmitted by ticks such as the brown ear tick, Rhipicephalus appendiculatus. To reduce the extensive use of chemical acaricides, fungal-based microbial control agents such as Metarhizium anisopliae have been tested and show promising results against R. appendiculatus both in field and in semi-field experiments in Africa. However, no known endeavors to link the spatial distribution of R. appendiculatus to climatic variables important for the successful application of M. anisopliae in selected East African countries exists. This work therefore aims to improve the successful application of M. anisopliae against R. appendiculatus by designing a temperature-dependent model for the efficacy of M. anisopliae against three developmental stages (larvae, nymphs, adults) of R. appendiculatus. Afterward a spatial prediction of potential areas where this entomopathogenic fungus might cause a significant epizootic in R. appendiculatus population in three selected countries (Kenya, Tanzania, Uganda) in Eastern Africa were generated. This can help to determine whether the temperature and rainfall at a local or regional scale might give good conditions for application of M. anisopliae and successful microbial control of R. appendiculatus.publishedVersio

    Decision Support System for Fitting and Mapping Nonlinear Functions with Application to Insect Pest Management in the Biological Control Context

    No full text
    The process of moving from experimental data to modeling and characterizing the dynamics and interactions in natural processes is a challenging task. This paper proposes an interactive platform for fitting data derived from experiments to mathematical expressions and carrying out spatial visualization. The platform is designed using a component-based software architectural approach, implemented in R and the Java programming languages. It uses experimental data as input for model fitting, then applies the obtained model at the landscape level via a spatial temperature grid data to yield regional and continental maps. Different modules and functionalities of the tool are presented with a case study, in which the tool is used to establish a temperature-dependent virulence model and map the potential zone of efficacy of a fungal-based biopesticide. The decision support system (DSS) was developed in generic form, and it can be used by anyone interested in fitting mathematical equations to experimental data collected following the described protocol and, depending on the type of investigation, it offers the possibility of projecting the model at the landscape level
    corecore