78,813 research outputs found

    Knowledge transfer in a tourism destination: the effects of a network structure

    Full text link
    Tourism destinations have a necessity to innovate to remain competitive in an increasingly global environment. A pre-requisite for innovation is the understanding of how destinations source, share and use knowledge. This conceptual paper examines the nature of networks and how their analysis can shed light upon the processes of knowledge sharing in destinations as they strive to innovate. The paper conceptualizes destinations as networks of connected organizations, both public and private, each of which can be considered as a destination stakeholder. In network theory they represent the nodes within the system. The paper shows how epidemic diffusion models can act as an analogy for knowledge communication and transfer within a destination network. These models can be combined with other approaches to network analysis to shed light on how destination networks operate, and how they can be optimized with policy intervention to deliver innovative and competitive destinations. The paper closes with a practical tourism example taken from the Italian destination of Elba. Using numerical simulations the case demonstrates how the Elba network can be optimized. Overall this paper demonstrates the considerable utility of network analysis for tourism in delivering destination competitiveness.Comment: 15 pages, 2 figures, 2 tables. Forthcoming in: The Service Industries Journal, vol. 30, n. 8, 2010. Special Issue on: Advances in service network analysis v2: addeded and corrected reference

    R&D Subsidization effect and network centralization. Evidence from an agent-based micro-policy simulation

    Get PDF
    This paper presents an agent-based micro-policy simulation model assessing public R&D policy effect when R&D and non-R&D performing companies are located within a network. We set out by illustrating the behavioural structure and the computational logic of the proposed model; then, we provide a simulation experiment where the pattern of the total level of R&D activated by a fixed amount of public support is analysed as function of companies’ network topology. More specifically, the suggested simulation experiment shows that a larger “hubness” of the network is more likely accompanied with a decreasing median of the aggregated total R&D performance of the system. Since the aggregated firm idiosyncratic R&D (i.e., the part of total R&D independent of spillovers) is slightly increasing, we conclude that positive cross-firm spillover effects - in the presence of a given amount of support - have a sizeable impact within less centralized networks, where fewer hubs emerge. This may question the common wisdom suggesting that larger R&D externality effects should be more likely to arise when few central champions receive a support

    nD modelling: Industry uptake considerations

    Get PDF
    Purpose – The purpose of this paper is to identify the key enablers and obstacles to the effective adoption and use of nD modelling technology. Design/methodology/approach – This paper explores the feasibility of industry absorbing and diffusing nD modelling technology by considering key technology transfer issues; namely, organisational direction, inter-organisational networks and the knowledge characteristics of technology. Findings from semi-structured interviews around a diagnostic technology transfer framework are used to offer implications for theory and practice. Findings – The results from 15 survey interviews indicate that construction professionals appreciate the potential significant benefits of nD modelling technology, but at present, nD modelling technology is seen as too embryonic; too far removed from construction firms' “comfort zones”; requiring too much investment; and, containing too many risks. Originality/value – The paper stresses that the challenge for nD modelling technology, along with any new technology, is to shift from its “technology push” emphasis, to a more balanced “market orientated” stance, which allows the technology to be shaped by both strategic design concerns, and day-to-day operational needs. If this trajectory is pursued, nD modelling technology could have a positive future

    Evolution of Supply Chain Collaboration: Implications for the Role of Knowledge

    Get PDF
    Increasingly, research across many disciplines has recognized the shortcomings of the traditional “integration prescription” for inter-organizational knowledge management. This research conducts several simulation experiments to study the effects of different rates of product change, different demand environments, and different economies of scale on the level of integration between firms at different levels in the supply chain. The underlying paradigm shifts from a static, steady state view to a dynamic, complex adaptive systems and knowledge-based view of supply chain networks. Several research propositions are presented that use the role of knowledge in the supply chain to provide predictive power for how supply chain collaborations or integration should evolve. Suggestions and implications are suggested for managerial and research purposes

    R&D and knowledge dynamics in university-industry relationships in biotech and pharmaceuticals: An agent-based model

    Get PDF
    In the last two decades, University-Industry Relationships have played an outstanding role in shaping innovation activities in Biotechnology and Pharmaceuticals. Despite the growing importance and the considerable scope of these relationships, there still is an intensive and open debate on their short and long term effects on the research system in life sciences. So far, the extensive literature on this topic has not been able to provide a widely accepted answer. This work introduces a new way to analyse University-Industry Relationships (UIRs) which makes use of an agent-based simulation model. With the help of simulation experiments and the comparison of different scenario results, new insights on the effects of these relationships on the innovativeness of the research system can be gained. In particular, focusing on knowledge interactions among heterogeneous actors, we show that: (i) universities tend to shift from a basic to an applied research orientation as a consequence of relationships with industry, (ii) universities' innovative capabilities benefit from industry financial resources but not so much from cognitive resources of the companies, (iii) biotech companies' innovative capabilities largely benefit from the knowledge interaction with universities and (iv) adequate policies in terms of public basic research funding can contrast the negative effects of UIRs on university research orientation. --University-Industry Relationships,Knowledge Dynamics,University Patenting,Technology Transfer,Agent-Based Modelling

    Simulating Knowledge-Generation and -Distribution Processes in Innovation Collaborations and Networks

    Get PDF
    An agent-based simulation model representing a theory of the dynamic processes involved in innovation in modern knowledge-based industries is described. The agent-based approach al-lows the representation of heterogeneous agents that have individual and varying stocks of knowledge. The simulation is able to model uncertainty, historical change, effect of failure on the agent population, and agent learning from experience, from individual research and from partners and collaborators. The aim of the simulation exercises is to show that the artificial innovation networks show certain characteristics they share with innovation networks in knowledge intensive industries and which are difficult to be integrated in traditional models of industrial economics.innovation networks, agent-based modelling, scale free networks
    • 

    corecore