12 research outputs found

    An Effective Strategy for the Flexible Provisioning of Service Workflows

    No full text
    Recent advances in service-oriented frameworks and semantic Web technologies have enabled software agents to discover and invoke resources over large distributed systems, in order to meet their high-level objectives. However, most work has failed to acknowledge that such systems are complex and dynamic multi-agent systems, where service providers act autonomously and follow their own decision-making procedures. Hence, the behaviour of these providers is inherently uncertain - services may fail or take uncertain amounts of time to complete. In this work, we address this uncertainty and take an agent-oriented approach to the problem of provisioning service providers for the constituent tasks of abstract workflows. Specifically, we describe an algorithm that uses redundancy to deal with unreliable providers, and we demonstrate that it achieves an 8-14% improvement in average utility over previous work, while performing up to 6 times as well as approaches that do not consider service uncertainty. We also show that our algorithm performs well in the presence of inaccurate service performance information

    Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges

    Get PDF
    We show how an autonomous agent can use observable market conditions to characterize the microeconomic situation of the market and predict future market trends. The agent can use this information to make both tactical decisions, such as pricing, and strategic decisions, such as product mix and production planning. We develop methods to learn dominant market conditions, such as over-supply or scarcity, from historical data using Gaussian mixture models to construct price density functions. We discuss how this model can be combined with real-time observable information to identify the current dominant market condition and to forecast market changes over a planning horizon. We forecast market changes via both a Markov correction-prediction process and an exponential smoother. Empirical analysis shows that the exponential smoother yields more accurate predictions for the current and the next day (supporting tactical decisions), while the Markov correction-prediction process is better for longer term predictions (supporting strategic decisions). Our approach offers more flexibility than traditional regression based approaches, since it does not assume a fixed functional relationship between dependent and independent variables. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management.dynamic pricing;machine learning;market forecasting;Trading agents

    Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges

    Get PDF
    We show how an autonomous agent can use observable market conditions to characterize the microeconomic situation of the market and predict future market trends. The agent can use this information to make both tactical decisions, such as pricing, and strategic decisions, such as product mix and production planning. We develop methods to learn dominant market conditions, such as over-supply or scarcity, from historical data using Gaussian mixture models to construct price density functions. We discuss how this model can be combined with real-time observable information to identify the current dominant market condition and to forecast market changes over a planning horizon. We forecast market changes via both a Markov correction-prediction process and an exponential smoother. Empirical analysis shows that the exponential smoother yields more accurate predictions for the current and the next day (supporting tactical decisions), while the Markov correction-prediction process is better for longer term predictions (supporting strategic decisions). Our approach offers more flexibility than traditional regression based approaches, since it does not assume a fixed functional relationship between dependent and independent variables. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management

    Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes

    Get PDF
    We present a computational approach that autonomous software agents can adopt to make tactical decisions, such as product pricing, and strategic decisions, such as product mix and production planning, to maximize profit in markets with supply and demand uncertainties. Using a combination of machine learning and optimization techniques, the agent is able to characterize economic regimes, which are historical microeconomic conditions reflecting situations such as over-supply and scarcity. We assume an agent is capable of using real-time observable information to identify the current dominant market condition and we show how it can forecast regime changes over a planning horizon. We demonstrate how the agent can then use regime characterization to predict prices, price trends, and the probability of receiving a customer order in a dynamic supply chain environment. We validate our methods by presenting experimental results from a testbed derived from the Trading Agent Competition for Supply Chain Management (TAC SCM). The results show that our agent outperforms traditional short- and long-term predictive methodologies (such as exponential smoothing) significantly, resulting in accurate prediction of customer order probabilities, and competitive market prices. This, in turn, has the potential to produce higher profits. We also demonstrate the versatility of our computational approach by applying the methodology to prediction of stock price trends

    A New Design for Open and Scalable Collaboration of Independent Databases in Digitally Connected Enterprises

    Get PDF
    “Digitally connected enterprises” refers to e-business, global supply chains, and other new business designs of the Knowledge Economy; all of which require open and scalable information supply chains across independent enterprises. Connecting proprietarily designed and controlled enterprise databases in these information supply chains is a critical success factor for them. Previous connection designs tend to rely on “hard-coded” regimes, which do not respond well to disruptions (including changes and failures), and do not afford these enterprises sufficient flexibility to join simultaneously in multiple supply chain regimes and share information for the benefit of all. The paper develops a new design: It combines matchmaking with global database query, and thereby supports the interoperation of independent databases to form on-demand information supply chains. The design provides flexible (re-)configuration to decrease the impact of disruption, and proactive control to increase collaboration and information sharing. More broadly, the papers results contribute to a new Information System design method for massively extended enterprises, and facilitate new business designs using digital connections at the level of databases

    Detecting and Forecasting Economic Regimes in Automated Exchanges

    Get PDF
    corecore