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Abstract

We present a computational approach that autonomous software agents can adopt to make tactical
decisions, such as product pricing, and strategic decisions, such as product mix and production planning,
to maximize profit in markets with supply and demand uncertainties. Using a combination of machine
learning and optimization techniques, the agent is able to characterize economic regimes, which are
historical microeconomic conditions reflecting situations such as over-supply and scarcity. We assume
an agent is capable of using real-time observable information to identify the current dominant market
condition and we show how it can forecast regime changes over a planning horizon. We demonstrate
how the agent can then use regime characterization to predict prices, price trends, and the probability
of receiving a customer order in a dynamic supply chain environment. We validate our methods by
presenting experimental results from a testbed derived from the Trading Agent Competition for Supply
Chain Management (TAC SCM). The results show that our agent outperforms traditional short- and
long-term predictive methodologies (such as exponential smoothing) significantly, resulting in accurate
prediction of customer order probabilities, and competitive market prices. This, in turn, has the potential
to produce higher profits. We also demonstrate the versatility of our computational approach by applying
the methodology to prediction of stock price trends.

1 Introduction

In recent years automated decision support systems have become increasingly sophisticated. Businesses and
system designers are developing intelligence in software systems to create software agents that can make au-
tonomous decisions by acting rationally on behalf of human users in a variety of application areas. Some of
the examples include procurement ([40]), scheduling and resource management ([20, 8]), and personal infor-
mation management ([3]). Several researchers have provided guidance for creating agent based architectures
for supply chain management (for instance, [42, 12]).

Software agents have the advantage of being able to analyze many more possibilities in shorter timeframes
than their human counterparts, but are often limited in their ability to make strategic decisions. In this
paper, we develop a computational methodology for a software agent that observes its economic environment
and predicts the future economic state of markets it operates in. We are particularly interested in supply-
chain environments that are constrained by capacity and materials availability and where market conditions
may be characterized qualitatively, for example, by over-supply or scarcity. The environment we consider is
a multi-commodity market with highly variable prices.

We describe a computational approach for a sales management agent that uses its awareness of market
conditions, that we call economic regimes, to make decisions regarding sales strategy over a planning horizon.
An agent competes with several other sales agents (human or computational) to fulfill Requests for Quotes
(RFQs) from a population of customers. Besides responding to current RFQs, an agent also has to make
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long-term strategic decisions regarding how much inventory of finished goods and raw material to hold as
well as decide production schedules. The agent proposed in this work predicts whether the future economic
environment will be more or less favorable. If the future economic environment is likely to be better than
the current one, the agent may decide to hold inventory or quote a higher price, and vice-versa. The agent
operates in a highly dynamic and competitive environment; therefore, the agent has to be responsive to the
signals it receives from the market.

We present a model that predicts future changes in economic regimes (such as oversupply or scarcity)
and show how an agent can use this information to make both tactical pricing responses to customer RFQs,
and strategic decisions over a planning horizon to maximize long-term profits. We implement the model and
demonstrate the utility of our approach in the context of an autonomous agent that is designed to compete
in the Trading Agent Competition for Supply Chain Management (TAC SCM)([7]).

In previous research ([24]) we have shown that economic regimes can be identified from historical data.
In this paper, we show how machine learning approaches can be used to recognize economic regimes in real-
time and predict future transitions in economic regimes. Further, we show how regime identification and
prediction can be used to set sales quotas for current and future sales to maximize profit. While predictions
about the economic environment are commonly made at the macroeconomic level ([36]), to our knowledge,
such predictions are rarely done for microeconomic environments and represent a novel contribution of this
research.

Although we primarily focus on the supply-chain trading environment to demonstrate our approach and
techniques, our method is general and has application in any domain where rapid decision making is at
premium and depends on the economic environment. Examples include agents for automated trading in
financial markets, such as the Penn-Lehman Automated Trading Project ([21]), auction-based contracting
environments, such as MAGNET ([9]), and other auctions, such as auctions for IBM PCs ([30]) or PDA’s
on eBay ([13]).

In §2 we review relevant literature and briefly describe the supply-chain trading environment of TAC SCM.
In §3 we describe the information that is available in such environments and how strategic and tactical sales
decisions can be made in such scenarios. In §4, we describe how to make predictions about future economic
regimes. In §5 we apply our methodology to the TAC SCM environment and present experimental results.
In §6 we briefly demonstrate the versatility of our approach by applying our methodology to prediction of
stock prices. Finally, we conclude with directions for future research.

2 Background and Literature Review

Predicting prices is an important part of the decision process of agents or human decision makers. While the
approaches for prediction of prices vary considerably, it is widely recognized that predictions need to exploit
the information available in the market and to take its structure into account ([33]). An interesting recent
example of such an approach by [22] explored several dynamic pricing algorithms for information goods,
where shopbots look for the best price, and pricebots adapt their prices to attract business. Similarly, [45]
developed metrics for price prediction in the TAC Classic game ([44]) which focuses on travel and leisure
arrangements by travel agents for their clients.

Short-term price prediction has been a focus of several studies where prices move primarily due to demand-
side constraints, such as in the electricity market ([35]). However, as [16] note, demand-side price movements
are intrinsically linked with supply side movements. [31] show that the ability of decision makers to correctly
identify the onset of a new regime can mean the difference between success and failure. Furthermore, they
found strong evidence that individuals pay inordinate attention to the signal (price in our case), and neglect
diagnosticity (regime dynamics) and transition probability, i.e., the aspects of the system that generate
the signal. This results in a tendency to over- or under-react to market conditions. Several researchers
have identified the existence and cyclic nature of economic regimes in consumer markets. For example,
[14] empirically analyze the degree to which used products cannibalize new product sales for books on
Amazon.com. In their study they show that product prices go through different regimes over time. Similarly,
[38] analyze how in mature economic markets strategic windows of change alternate with long periods of
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stability.
In this paper we develop computationally efficient methods to identify and predict economic regimes

that can be used by autonomous computational agents. Several researchers have developed methods for
identifying models of rational decision-making in autonomous agents from their actions. For example, [34]
show that an agent’s decisions can be viewed as a set of linear constraints on the space of possible utility
(reward) functions. However, the simple incentive structures used in [34] are unlikely to scale for price
prediction in the complex economic environment that we consider in this paper. [6] describe a method for
predicting the future decisions of an agent based on its past decisions; their approach is based on assuming
rational decision makers who maximize their expected utility. However, such methods cannot be applied
when the behaviors of competing agents are not directly observable.

Our approach is flexible and can be adapted to environments characterized by a variety of types and
quality of information available. We chose to test our approach in an environment characterized by dynamic
procurement, production and sales, with limited information regarding the behavior of competitors, the
Trading Agent Competition for Supply Chain Management (TAC SCM) ([7]). Before summarizing the
literature on TAC SCM, we first briefly describe this competitive environment.

TAC SCM is a market simulation where six autonomous agents compete to maximize profits in a
computer-assembly scenario. The simulation takes place over 220 virtual days, each lasting fifteen sec-
onds of real time. TAC SCM agents earn money by selling computers they assemble using several parts
that they competitively acquire from suppliers. Each agent has a limited manufacturing capacity to allocate
across a set of different products. Each agent must pay to store raw materials and finished-product inventory,
and must borrow money to build its initial inventory. The agent with the highest bank balance at the end
of the simulation wins.

An agent can produce 16 different types of products that are categorized into three different market
segments (low, medium, and high quality products). Demand in each market segment varies randomly
during the game. Every day each agent receives a set of requests for quotes (RFQs) from several potential
customers. Each customer RFQ specifies the type of product requested, along with quantity, due date,
reserve price, and penalty for late delivery. Each agent may choose to bid on some or all of the day’s
RFQs. Customers accept the lowest bid that is at or below their reserve price, and notify the winning agent.
The agent must ship customer orders on time, or pay the penalty for each day an order is late. Since the
environment is essentially a competitive oligopolistic market, actions of each agent significantly affect other
agents’ profits and strategy.

Several researchers have modeled the probability of receiving an order in TAC SCM for a given offer
price, either by estimating it by linear interpolation from the minimum and maximum daily prices ([37]),
or by estimating the relationship between offer price and order probability with a linear cumulative density
function (CDF) ([2]), or by using a reverse CDF and factors such as quantity and due date ([25]). Some
researchers ([46]) have applied a game theoretic approach to set offer prices, using a variation of the Cournot
game for modeling the product market. Other researchers ([17]) use fuzzy reasoning to set offer prices.
Similar techniques have been used outside TAC SCM to predict offer prices such as in first price sealed bid
reverse auctions for IBM PCs’ ([30]), PDAs’ on eBay ([13]), or in predicting ending prices for a multi-unit
online ascending auction ([1]). The problem of allocating finite resources across a set of potential products
in a way that maximizes some measure of utility is the well-known “product-mix” problem ([18]). [27]
demonstrate a method for predicting future customer demand in TAC SCM. Their approach is specific to
TAC SCM, since it depends on knowing the formula by which customer demand is computed.

These methods fail to take into account market conditions that are not directly observable. They are
essentially regression models, and do not represent qualitative differences in market conditions. Our method,
in contrast, is able to detect and forecast a broader range of market conditions. Regression based approaches
(including non-parametric variations) assume that the functional form of the relationship between dependent
and independent variables has a consistent structure across the range of market conditions. In contrast, our
approach models variability in market conditions and does not assume a functional relationship; this allows
detection of changes in relationship between prices and sales over time. In the next section we describe
the basic computational requirements to make autonomous strategic and tactical sales decisions in dynamic
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supply chain environments.

3 Strategic and tactical decisions

We wish to maximize the profit an agent can expect to earn over some reasonable period in the future. Our
approach is to treat procurement, production, and sales as separate components with their own decision
processes, sharing access to a common store of data and models. This is common in many industries where
procurement and production are often driven by relatively long-term forecasts, and sales is expected to move
the product it has available to sell (and expected to have in the future) at the best possible price. An agent
making sales decision in markets that are affected by price fluctuation needs to make two broad decisions:
i) whether to sell or hold inventory; and ii) if the decision is to sell at least part of the inventory, what price
it should quote. Holding inventory makes sense when the agent is able to assess that the future is likely to
sustain higher prices. On the other extreme, if the agent is holding a large inventory and the future economic
outlook looks bleak, the agent should sell down inventory to liquidate it. The decision to hold a certain level
of inventory for the future is a strategic decision and setting the price for a given time period is a tactical
decision. We next discuss how an autonomous agent can make these decisions.

3.1 Strategic decision – resource allocation:

Sales decisions can be informed by experience from the past, and observations in the present. We first
focus on the information visible to the agent at present, which in a manufacturing environment includes the
following:

– C is the set of all available component types. Each component c is needed to produce some subset of
products Gc.

– G is the set of all products that can be manufactured and sold. Each product’s components are
represented by the set Cg.

– For a day d within the agent’s planning horizon h, customer demand is represented by a set Qd of
customer RFQs. Each q ∈ Qd specifies a product type gq, a lead time of iq days, a volume vq, and a
reserve price ρq.

– For a day d within the planning horizon h, the agent expects to have an inventory of raw materials
consisting of Id,c for each component type c ∈ C, and an inventory of finished goods consisting of Id,g

for each type of good g ∈ G.

– On any given day d, there is an unsold inventory I ′d,g of good g, and an expected uncommitted inventory
I ′d,c of parts of type c. This includes parts in current inventory, and parts that are expected to be
delivered by day d, and excludes parts that are allocated to produce goods for outstanding customer
orders.

On any given day d, the total demand Dd,g for a given good g among Qd is the total of the requested
quantities among requests for good g, Dd,g =

∑
q∈Qd

vq.

The effective demand Deff
d,g is the portion of total demand with reserve prices ρg ≥ priced,g:

Deff
d,g =

ρmax
g − priced,g

ρmax
g − ρmin

g

Dd,g (1)

where ρmin
g and ρmax

g are the minimum and maximum reserve prices for good g. For analytical tractability,
we assume a uniform distribution of reserve prices ρq among customer RFQs Q for a given good g.1

1This is the case in TAC SCM
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The goal of the agent is to choose a sales quantity Ad,g for each product g over each day of the planning

horizon h to maximize its expected profit Φ =
∑h

d=0

∑
g∈G Φd,gAd,g, where Φd,g is the discounted profit for

day d and Ad,g is the quantity of product the agent wishes to sell for good g on day d. The discounted profit
is computed as:

Φd,g = γd(priced,g − cost(Cg)) (2)

where γd is a discount term that can be seen as a rough approximation of inventory holding and opportunity
costs. It can also be used to encourage early selling, as a hedge against future uncertainty. The price priced,g

for product g on day d will depend on the demand Dd,g and the quantity of product Ad,g the agent wishes
to sell, as well as other factors that we will discuss in §3.2.

The daily production capacity of an agent is F , each unit of good g requires yg production cycles, and
F commit

m is the factory capacity that is committed to manufacture outstanding customer orders that are due
on or before a day m days in the future and are not satisfiable by existing finished goods inventory. Now,
we can define the agent’s objective function of maximizing the total profit, Φ, by choosing appropriate sales
quotas Ad,g:

max Φ =

h∑

d=0

∑

g∈G

Φd,gAd,g (3)

subject to : ∀d, ∀g, Ad,g < Deff
d,g (4)

∀m ∈ 0..h, ∀c ∈ C,

m∑

d=0

∑

g∈Gc

Ad,g ≤ I ′m,c +
∑

g∈Gc

I ′m,g (5)

∀m ∈ 0..h,
∑

g∈G

yg

(
m∑

d=0

Ad,g − I ′d,g

)
≤ mF − F commit

m (6)

Constraint 4 is the demand constraint. Constraint 5 is the supply constraint over the planning horizon, h,
that restricts maximum supply that can be created using the parts in existing inventory. This is conservative,
since we are considering goods or their parts to be available at the time we propose to sell them, not when
we expect to ship them. The constraint also ensures that every subset of product types that can share
some component is not overcommitted. Constraint 6 is the manufacturing constraint that restricts the sales
quantity to what is in the unsold inventory or can be manufactured within the planning horizon.

To appropriately choose sales quotas Ad,g, we need to set prices. Suppose we can compute the probability
of a customer placing an order as a function of price P (order|price). Since the quantity we expect to sell
is just the effective demand multiplied by the probability of order at the price we set, we can then express
Ad,g as:

Ad,g = P (order |priced,g)D
eff
d,g = P (order |priced,g)

ρmax
g − priced,g

ρmax
g − ρmin

g

Dd,g (7)

Combining (2) with (7), the objective function (3) becomes

maxΦ =

h∑

d=0

∑

g∈G

γd

(
priced,g − cost(Cg)

)
P (order |priced,g)

ρmax
g − priced,g

ρmax
g − ρmin

g

Dd,g (8)

Note, even if we assume that the order probability is linear, (8) is at least cubic in priced,g. Since (8)
is probably unsolvable in real-time, we focus on developing heuristics that can be embedded in automated
agents. An obvious simplification is to assume that the partial derivative of the order probability function
with respect to price is very steep. This is equivalent to saying that (most) sales occur at a “market clearing
price,” or alternatively that the probability of order is much more sensitive to price than is profit. Then the
per-unit profit and the effective demand can be computed separately, by substituting an estimated clearing
price priceclear

d,g for the actual sales price into (8). We will explore a way to compute priceclear
d,g in the next

section. However, we first discuss how the strategic sales process guides the tactical decision.
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3.2 Tactical decision – sales offer pricing

Once the strategic sales process has determined daily sales quotas, we must set prices that will move those
quotas in expectation. This amounts to finding, for each good, the value for priced,g that satisfies (7). We

call this price
offer
d,g , and we estimate it by first estimating the market clearing price priceclear

d,g and using it
to locate an order-probability distribution P (order |price) as described in §4.3. The clearing price for the
current day is estimated by combining a predicted price with an offset that is computed by observing the
market’s response to our offers, as follows.

We compute price
offer
d,g by choosing a target order probability P offer =

Ad,g

D
eff

d,g
(priceclear

d,g
)

and finding the

corresponding offer price price
offer
d,g from (7) by solving P offer = P (order |priceoffer

d,g ). Assuming the market
clears once each day, the order volume Od,g is the number of orders placed for good g in response to our
offers on the previous day. The market is somewhat unpredictable, so the number of orders we receive may

be higher or lower than our expected sales. We compute a refined offer price price
offer ′

d−1,g for the previous day

by computing a point P offer ′

=
Od,g

D
eff

d−1,g
(priceclear

d−1,g
)

on an adjusted probability curve P offer ′

(order |priceoffer ′

d−1,g),

obtained by translating the curve through P offer to the point P offer ′

. We then use this adjusted curve to

compute price
offer ′

d−1,g. Figure 1 visualizes this relationship.

O/Deff

A/Deff

price

P (order |price)

priceoffer ′

priceoffer

P offer

P offer ′

Figure 1: Estimating market price, given order volume O, sales quota A, and an order probability function
P .

The difference diff d−1,g = price
offer ′

d−1,g − price
offer
d−1,g is then used to compute priceclear

d,g each day, as

priceclear
d,g = price

pred
d,g + δd,g where price

pred
d,g is the predicted market price for product g (see §4.3), and

δd,g is updated daily as δd,g = αδd−1,g + (1 − α)diff d−1,g for some appropriate value of α ∈ [0, 1].
Now that we have discussed what needs to be computed by agents, in the next section we discuss a

method to detect and predict economic regimes, and the role of economic regimes in the agent’s decision
making.

4 Supporting Automated Real-time Sales Decisions

Market conditions change over time, affecting an organization’s long- and short-term strategies for pro-
curement, production planning, and pricing. Therefore, any automated decision process should account for
prevailing and predicted market conditions. Economic theory suggests that market environments exhibit
three broadly defined market conditions: scarcity, balanced, and oversupply. A scarcity condition exists
when customer demand is more than product supply in the market, a balanced condition when demand
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is approximately equal to supply, and an oversupply condition when supply far exceeds customer demand.
When there is scarcity, prices are higher, so the agent should price more aggressively. In balanced situations,
prices are lower and have more spread, so the agent has a range of options for maximizing expected profit.
In oversupply situations, prices are lower and the agent should primarily control costs, and therefore either
price based on costs, or wait for better market conditions. In previous research ([24]) we have shown that
different market conditions can be identified by using economic principles and machine learning techniques.
However, in that work, historical data was available, allowing computation of price distributions that were
used to compute mean prices and economic regimes. In this research, we focus on whether regimes can
be detected and predicted by an agent in real-time when complete historical data and mean prices are not
available.

In the remainder of this paper we would like to aggregate price data for different goods. Since prices
are likely to have different ranges for different products, we normalize them by dividing the price of a good
by the nominal cost of its components and their assembly cost. We define the normalized price for good

g on day d as npd,g =
priced,g

nominal cost(Cg)+assembly costg
. In the following, for simplicity of notation, we use np

instead of npd,g. Note that np can easily convert back to actual price so that strategic price variables can be
computed, such as clearing price and offer price, but np allows for easy aggregation of product prices across
categories.

We briefly summarize the analysis of historical data to define economic regimes ([24]) as a foundation for
the rest of this paper. We start by fitting a Gaussian mixture model (GMM) ([43]) to historical normalized
price data. We use the Expectation-Maximization (EM) Algorithm ([11]) to determine the prior probability,
P (ζi), of the Gaussian components of the GMM. The density of the normalized price can be written as:

p(np) =

N∑

i=1

p(np|ζi)P (ζi) (9)

where N is the number of Gaussians in the mixture model and p(np|ζi) is the contribution of the i-th
Gaussian to the normalized price density. The real time update version of this calculation is given later in
(17).

Using Bayes’ rule we determine the posterior probabilities for each Gaussian ζi. We then define the
posterior probabilities of all Gaussians given the normalized price np as the following N -dimensional vector:
~η(np) = [P (ζ1|np), P (ζ2|np), . . . , P (ζN |np)]. For each observed normalized price npj we compute the vector of
the posterior probabilities, ~η(npj), which is ~η evaluated at each observed normalized price npj . The intuitive
idea of a regime as a recurrent economic condition is captured by discovering price distributions that recur
across time periods in the market. We define regimes by clustering price distributions over time periods
using the k-means algorithm. The clusters found correspond to frequently occurring price distributions with
support on contiguous ranges of np. The center of each cluster is a probability vector that corresponds to
regime r = Rk∀k = 1, · · · , M , where M is the number of regimes. Collecting these vectors into a matrix
yields the conditional probability matrix P(ζ|r).

After we marginalize over all Gaussians ζi we obtain the density of the normalized price np dependent
on the regime Rk as p(np|Rk) as:

p(np|Rk) =

N∑

i=1

p(np|ζi)P (ζi|Rk). (10)

The probability of regime Rk dependent on the normalized price np can then be computed using the Bayes
rule as:

P (Rk|np) =
p(np|Rk)P (Rk)

∑M
k=1 p(np|Rk)P (Rk)

∀k = 1, · · · , M (11)

The prior probabilities, P (Rk), of the regimes are determined by a counting process over past data. Math-
ematical details for computing the optimal number of Gaussians from historical data are presented in the
online appendix. We next develop a general computational machinery for real-time regime identification,
before demonstrating the effectiveness of our approach in the TAC SCM environment in §5.

7



4.1 Real time regime identification

Recall that economic regimes characterize prevailing economic conditions. Our goal is to identify the current
regime as well as predict future transitions to inform an agent’s strategic and tactical decisions. We use the
patterns of price changes over time to compute the probabilities of different regimes being present.

In TAC SCM, every day agents are informed of the minimum and maximum prices for each product on the
previous day, but they cannot observe sales volume or the distribution of prices. One can use the mid-range
normalized price, np, the price midway between the minimum and maximum, as a crude approximation for
the mean price. However, since observations of minimum and maximum prices are subject to noise, some
may be outliers and not representative of the true distribution of the prevailing prices. To motivate our
analysis and provide illustrative examples, we use some data from TAC SCM. Figure 2 (left) illustrates an
example where mid-range prices do not accurately represent the mean prices. We computed the mean after
the game when the entire game data are available. As the example illustrates (especially on day 86, 87, 93,
and 110), we observe a spike in the maximum price that biases the mid-range price. To lower the impact
of sudden price changes we smooth the minimum and maximum prices using a Brown linear exponential
smoother ([5]) with β = 0.5 to obtain the smoothed minimum ñpmin

d−1 and maximum ñpmin
d−1 normalized prices,

from which we compute the smoothed mid-range normalized price ñpd−1 as

ñpd−1 =
ñp

min
d−1 + ñp

max
d−1

2
(12)

Figure 2: Min, max, mean, mid-range, and smoothed mid-range normalized prices of computers sold every
day (left). Realtime identification of daily regime probabilities (right).
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We then select as dominant regime the one which has the highest probability, i.e. R̂max s.t. max =
argmax1≤k≤M

~P (R̂k|ñpd−1). We use R̂k to denote that Rk is a predicted regime. Figure 2 (left) shows
the smoothed mid-range that is used to identify the corresponding regime probabilities in real-time during
the game (right). The regimes shown are indicated as EO (Extreme Oversupply), O (Oversupply), B
(Balanced), S (Scarcity), and ES (Extreme Scarcity). The graph shows that different regimes are dominant
at different time points, and that there are brief intervals during which two regimes are almost equally likely.
A correlation analysis of the market parameters to regimes and more details on regime identification and
other regime evaluation measures have been reported in [23], [26] and [24].

4.2 Regime prediction

Since the agent’s strategic decisions require not just the current regime but also estimates of future regimes,
the agent needs a way to predict future regimes. In this section, we describe three different methods for
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regime prediction. The first is based on exponential smoothing, the second is a Markov prediction process,
the last is a Markov correction-prediction process. Each of these methods has different strengths and should
be used in different circumstances. The exponential smoother is an ideal candidate to estimate the current
regime distribution, since it is more reactive to the current market condition. The Markov prediction process
is a good choice for short- and mid-term predictions, while the Markov correction-prediction process is suited
for long-term predictions.

4.2.1 Exponential smoother prediction.

First we calculate the minimum smoothed price trend t̃r
min

d−1 as

t̃r
min

d−1 =
β

1 − β
· (ñp

min′

d−1 − ñp
min′′

d−1 ) (13)

where ñp′ and ñp′′ indicate respectively the singly smoothed and doubly-smoothed normalized prices. β ∈
(0, 1) is computational determined parameter between zero and one, that provides computational stability
in prediction between the two exponentially smoothed time series. Similarly, we compute the maximum

smoothed price trend t̃r
max

d−1 , and calculate the mid-range trend t̃rd−1 as the average of t̃r
min

d−1 and t̃r
max

d−1 .
Using the trend and yesterday’s price estimate (12) we estimate today’s and the future daily smoothed prices
over the horizon h as:

ñpd+n = ñpd−1 + (1 + n) · t̃rd−1, ∀n = 1, · · · , h (14)

We then obtain the density of ñpd+n dependent on regime R̂k using (10), and the predicted probability

of regime R̂k dependent on the predicted exponentially smoothed normalized price n days into the future,
ñpd+n, using (11).

4.2.2 Markov prediction.

We model the short-term prediction of future regimes as a Markov prediction (Markov P) process. The
prediction is based on the last price measurement. We construct a Markov transition matrix, T(rd+n|rd),
off-line by a counting process using historical data. This matrix represents the posterior probability of
transitioning on day d + n to regime rd+n given the current regime on day d, rd. We distinguish between
two types of Markov predictions: (1) n-day (2) repeated 1-day prediction. The n-day prediction is based
on training a separate Markov transition matrix for each day in the planning horizon h, i.e. Tn(rd+n|rd),
∀n = 1, · · · , h. The repeated 1-day prediction is done by using multiple times a 1-day prediction matrix,
T1(rd+1|rd). We use ~P (r̂d−1|{ñpd−1}), to indicate a vector of the posterior probabilities of all the regimes

on day d− 1. The prediction of the posterior distribution of regimes n days into the future, ~P (r̂d+n|ñpd−1),
is done recursively as follows:

1. n-day prediction:

~P (r̂d+n|ñpd−1) =
∑

rd+n

· · ·
∑

rd−1

{
~P (r̂d−1|ñpd−1) · Tn(rd+n|rd)

}
∀n = 1, . . . , h (15)

2. Repeated 1-day prediction:

~P (r̂d+n|ñpd−1) =
∑

rd+n

· · ·
∑

rd−1

{
~P (r̂d−1|ñpd−1) ·

n∏

i=0

T1(rd|rd−1)

}
, ∀n = 1, . . . , h (16)

We set the prior regime probability for the first day to 100% extreme scarcity, to represent the starting
condition where starting finished product inventories are zero.
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4.2.3 Markov correction-prediction.

We model the long-term prediction of future regimes as a Markov correction-prediction (Markov C-P) process,
where the prediction part is similar to the Markov prediction described above but takes the entire price history
into account. The method is based on two distinct operations:

1. a correction (recursive Bayesian update) of the posterior probabilities for the regimes based on the
history of measurements of the smoothed mid-range normalized price ñp obtained since the time of
the first measurement until the previous day, d − 1.

2. a prediction of regime posterior probabilities for the current day, d. The prediction of the posterior
distribution of regimes n days into the future, ~P (r̂d+n|{ñp1, . . . , ñpd−1}), is done recursively as in the
Markov prediction case.

4.3 Prediction of price distribution and trend

Regime prediction is useful to guide an agent’s procurement, production, and pricing decisions. Equation 17
shows how to compute the price prediction distribution based on the predicted regime distribution2 as
follows3

p(n̂pd+n|{ñp1, . . . , ñpd−1}) =

M∑

i=1

p(np|Ri)P (R̂i,d+n|{ñp1, . . . , ñpd−1})

=

N∑

j=1

M∑

i=1

P (ζj |Ri)P (R̂i,d+n|{ñp1, . . . , ñpd−1})︸ ︷︷ ︸
P (ζj,d+n)

p(np|ζj)

=
N∑

j=1

P (ζj,d+n) p(np|ζj), ∀n = 1, · · · , h (17)

where P (R̂i,d+n|{ñp1, . . . , ñpd−1}) is an element of the predicted regime probability vector given by (15) or by
(16). To obtain a predicted price distribution we sample (17) for every day over the planning horizon h with
values for np between 0 and 1.25. Examples of price distributions are shown in Figure 3 (left) and in Figure 4
(left). After sampling the mixture distribution over the set of np values, the distribution is renormalized to
sum to one (indicated as pnorm). This discretizes the continuous distribution, which simplifies all subsequent
probability calculations. For instance the mean of the distribution can be computed as:

E[n̂pd+n] =

N∑

j=1

pnorm

(
n̂pd+n(j)|{ñp1, . . . , ñpd−1}

)
· np(j), ∀n = 1, · · · , h (18)

where np(j) is the sum of all npstarting from np=0.00 to np=1.25 in 0.01 increments. To predict price trends
we use also the 10%, 50%, and 90% percentile of the predicted price distribution, which are interpolated
from the discretized cumulative distribution.

Figure 3 (left) shows the forecast price density, based on a 1-day Markov matrix, for sample data from
TAC SCM (game 3717@tac3 from day 115 to day 135). The dashed curve represents the price density for
the first forecasted day, the thick solid line shows the price density for the last forecasted day, and the thin
solid curves show the forecast for the intermediate days. As expected, the predicted price density broadens
as we forecast further into the future, reflecting a decreasing certainty in the prediction. Figure 3 (right)
shows the real mean price trend (PT) along with forecast price trends based on the different predictors,
the expected mean Markov prediction, the 10%, 50% and the 90% Markov density percentiles, and the
exponential smoother.

2Recall that M represents the number of regimes and N the number of Gaussians used in the GMM.
3We describe the price distribution prediction based on a Markov correction-prediction process, but the same equation holds

when using Markov prediction or exponential smoothing.
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Figure 3: Predicted price density (left) and predicted price trend (right) using the 1-day Markov matrix for
game 3717@tac3 from
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The exponential smoother predictor in this example does not fare well4, since the smoother is myopic and
puts too much weight on recently observed prices. In this case, prior to the prediction day the prices were
increasing. The exponential smoother predictor takes this recent slope and extrapolates it into the future,
while our Markov prediction method does much better.

Figure 4: Predicted price density (left) and predicted price trend (right) using the repeated n-day Markov
prediction.
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Figure 4 (left) shows the forecast price density based on a n-day Markov prediction for the same game
presented above. We observe that the predicted price density shows significantly less variance as compared
to using the 1-day Markov matrix. Figure 4 (right) shows the relative price trend. The increased certainty
in prediction is reflected in the extremes of the predicted density, since the 10% and 90% percentiles price
predictions form a much tighter prediction envelope. Note that the downward shift in actual prices, Figure 4
(right), is captured by the shift of the predicted future price distribution towards the lower prices in the left
panel of Figure 4.

4Usually the exponential smoother predicts much better (§5), but we use this example to explain one of the advantages of
our method.
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4.4 Prediction of order probability

The cumulative density function CDF (np) describes the proportion of orders that will be placed at or below
the normalized price np. Therefore the probability of a customer order, P (order |np), can be written as:
P (order |np) = 1 − CDF (np) = 1 −

∫ np

0 p(np′) dnp′

5 Pricing and Sales Decisions in TAC SCM

In this section we evaluate our prediction methods by applying our approach to compute price distribution,
price trends, and probability of order in the TAC SCM environment. We begin by presenting compelling
results based on historical data, followed by results from real-time experiments.

5.1 TAC SCM - Historical data

In previous research we have shown that economic regimes capture market information that is not directly
observable ([24]). There are many hidden attributes in a competitive market, such as the inventory positions
and procurement arrangements of the competitors. Our method uses observable historical and current data
to guide tactical and strategic decisions. We now demonstrate the practical value of our method by using it
with historical data.

5.1.1 Experimental setup.

For our experiments, we used data from 28 games (18 for training and 10 for testing - see online Appendix)
played during the semi-finals and finals of TAC SCM 2005. The mix of agents changed during the games,
with a total of 12 agents in the semi-finals and 6 in the finals. Since supply and demand vary in each market
segment (low, medium, and high) independently of the other segments, our method is applied independently
in each market segment.

5.1.2 Price distribution.

We forecast the price density for the next n days into the future, where p(n̂pd)
5 is the predicted price

density for the current day, and p(n̂pd+n) is the predicted price density on the n-th day into the future.
In our experiments we chose an horizon h = 40. We calculated the expected mean price using (18), and
tracked different areas (10%, 50%, and 90%) of the price density curve. We also calculated the expected
mean price using the exponential smoother as an input to the regime model to predict the whole price
distribution, and the simple exponential smoother to predict prices. We calculated the root mean square
error, RMSE(n̂pn, npn), between the predicted normalized prices n̂pn and the actual normalized price, npn,
over a prediction interval of n days in the planning horizon h, averaged across days and games, to determine
the accuracy of the price prediction as:

RMSE(n̂pn, npn) =

√√√√√
NG∑
i=1

ND−n∑
d=1

(
n̂p

n,i
d − npn,i

d

)2

NG · (ND − n)
, ∀n = 1, · · · , h (19)

where ND is the number of days in a TAC SCM game and NG is the number of test games.
Figure 5 shows the RMS error of the Markov predictors using a repeated 1-day matrix (left) versus the

n-day matrix (right) and compares it to the RMS error of the price generated by exponential smoother regime
lookup and to the simple exponential smoother. An RMS error of 0.05 corresponds to an average prediction
error of 4% and an RMS error of 0.25 corresponds to an average prediction error of 20%. It is clear that
as compared to a repeated 1-day, the n-day Markov matrix improves the overall price prediction. Typical
approaches for price forecasting utilize exponential smoothing or linear regression methodologies ([37]).

5For simplicity of notation we leave out the dependence on historical normalized prices.
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The results from our experiments show that while the exponential smoother performs reasonably well for
short-term prediction, it is too myopic and even a simple modification where exponential smoothing utilizes
regime information as described in §4.2.1 performs significantly better. Further, for long term predictions
the Markov price predictors (as described in §4.2) perform significantly better than the exponential smoother
using regime information.

Figure 5: RMS price prediction error based on a 1-day (left) vs n-day period (right) Markov matrix.
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The prices produced by the Markov correction prediction (Markov C-P) are statistically similar to the
observed prices since pairwise T-tests testing the equality of the Markov correction-prediction n̂pn and actual
observed prices npn failed to reject the null hypothesis at p = 0.05.

5.1.3 Price trends.

Besides daily prices, it is important to assess our ability to predict price trends, since they can play a crucial
role in sales planning. We computed the estimated price trend T̂rn for every day n over the planning horizon
h as follows:

T̂rn = sgn(n̂pd+n − n̂pd), ∀n = 1, · · · , h (20)

where n̂pd is the predicted price for the current day, and n̂pd+n is the predicted price n-days into the future.
Recall that the agent has access only to the minimum and maximum prices of the previous day, so it needs
a one day forecast to estimate the price on the current day. If T̂rn is positive, then the predicted prices are
increasing, while they are decreasing if T̂rn is negative. Figure 6 displays the success rate of price trend
sign prediction using a repeated 1-day Markov matrix (left) and a n-day Markov matrix (right). Since the
price trend is used for strategic decision making, we calculated the success rate without taking the first five
days into account. As the figure demonstrates, Markov correction-prediction predicted the correct trend
about 70% of time and dominates the exponential smoothing approach. Also, in general, the n-day Markov
predictions performed better than using the 1-day Markov matrix repeatedly.

5.1.4 Order Probability.

Since we estimate the price trends for accepted offers, a direct inverse relationship with order probability can
be established. For example, on the normalized price curve a price representing CDF of 10% corresponds
to 90% order probability since there is 90% probability that a price higher than that price will be accepted.
To test our assertion, we determine, using historical data, how many offers we would have won on each day
if we had bid using estimated prices6. For our experiment we estimated 2200 (10 games times 220 days)
order probability curves for a sample market. Figure 7 shows the results of the experiments for the different

6In TAC SCM customers always buy the lowest cost products.
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Figure 6: Success-rate of price trend prediction based on 1-day (left) vs. n-day (right) Markov matrix.
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predictors. The y-axis shows the estimated order probability, and the bar graphs show the actual mean
order probability and standard deviation. All three predictors estimate the daily order probability well. The
ability to estimate the order probability supports the strength of our approach in which we estimate the
whole price distribution instead of just mean prices as regression based approaches do.

Figure 7: Daily order probability estimation (mean/std) for the 10th, 25th, 50th, 75th, and 90th percentile
using different predictors.
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5.2 TAC SCM - Real time

The analysis presented so far demonstrates that our computational approach performs well with historical
data. However, to make decisions in real time, the methods have to be dynamic and self-adjusting. We next
present the performance of our approach when used by an agent which plays against five other agents in
real-time.
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5.2.1 Experimental setup.

We implemented all three regime identification and prediction methods, i.e. Markov prediction (Markov P),
Markov correction-prediction (Markov C-P), and exponential smoother (ExpS) and tested them in real time
in our MinneTAC ([10]) agent. The agents we used for our experiments have been obtained from the TAC
SCM agent repository7. We selected five of the finalists from the 2006 competition and an agent from the
2005 competition. The agents are: (i) DeepMaize, from University of Michigan; (ii) Maxon, from Xonar
Inc; (iii) MinneTAC, from the University of Minnesota; (iv) PhantAgent, from the Politechnica University of
Bucharest; (v) RationalSCM, from the Australian National University; and (vi) TacTex, from the University
of Texas.

Agent performance in TAC SCM is affected not only by the set of agents playing together but also by
random variations in supply, demand, and other market parameters. To compare different variations of our
own agent without having to run a very large number of games, we used the controlled server ([41]), which
allows for repeatable pseudo-random sequences of any individual market factor or combination of factors.
The use of the controlled server removes the profit variability due to agents facing different market conditions,
and allowed for testing multiple variations of our agent, one for each set of games. We ran NG = 23 games,
each with a different pseudo-random sequence, using the traditional version of MinneTAC, and then ran
NG games with the same market factors using different versions of MinneTAC with the three different
prediction models described earlier for tactical (order probability calculation when responding to RFQs) and
strategic decisions (price and price trend prediction for sales quota and inventory holding decisions). At the
strategic level we used two different price prediction methods, the first based on price-following, the second
on economic regimes. At the tactical level we used two methods to calculate order probability, one based
on a linear interpolation between the estimated minimum and maximum daily prices, the other based on
economic regimes.

5.2.2 Real-time results.

Our tests included five sets of twenty-three games each, one set for each different configuration of our
MinneTAC agent, using the same twenty-three pseudo-random sequences for each set. For each method we
compared the difference in profit and computed the standard error associated with each mean difference.
As the primary measure of agent performance we show in Table 1 the mean total profit per agent over a
game. Table 1 shows that MinneTAC when playing with this set of agents always comes in fifth; however,
the performance of the agent depends upon its ability to acquire raw-material, manufacturing and sales.
In this paper, we focus on the sales and consequently we did not change the raw material acquisition and
production planning to isolate the effect of regime computations on profits simply by manipulating sales
strategies. Therefore, we are only interested in the relative performance of MinneTAC under different sales
strategies. The results of the different experiments are as follows:

1. In the first experiment MinneTAC used a linear interpolation to determine the probability of order
and an exponential smoother to predict price trends. The a final mean profit is 1.347 million.

2. In the second experiment MinneTAC used again a linear interpolation to determine the probability of
order, and economic regimes (based on a repeated 1-day Markov prediction) to predict price trends.
The final mean profit was 1.813 million.

3. Experiment three used an exponential smoother to predict prices and a table lookup of previously
matched regime probabilities to determine the order probability, median prices and price trends. It
had a final mean profit of 1.545 million.

4. Our fourth experiment used regimes for tactical decisions (determination of order probability based on
exponentially smoothed predicted regimes) and for strategic decisions (price and price trend prediction
based on a repeated 1-day Markov matrix). The final mean profit for this experiment was 2.117 million,
the best among the tested configurations.

7http://www.sics.se/tac/showagents.php
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5. Experiment five used a Markov n-day prediction to determine price trends. Its final mean profit was
1.567 million. We expected that online the Markov n-day prediction would outperform the repeated
1-day Markov prediction as reported in §5.1.2, but the outcome of our experiments shows the opposite.
The reason could be that off-line we used a separately trained Markov matrix for every day in the
planning horizon, but since we have limited time in real-time we used only a 1, 10, and 20 day Markov
prediction matrix. Then we performed regime and price density predictions for these three matrices and
interpolated the missing prices between them. This assumes that the intermediate prices are linearly
related to each other. This is most likely not the case, since we actually expect prices to flatten out
further into the future.

Table 1: Experimental results.
Mean Profit / Standard Deviation (in million)

Experiment # 1 2 3 4 5
Strategic: ExpS Regimes (MP 1-Day) Regimes (ExpS) Regimes (MP 1-day) Regimes (MP n-day)
Tactical: Linear Linear Regimes (ExpS) Regimes (ExpS) Regimes (ExpS)
Agent:

TacTex06 8.752/5.682 8.873/5.600 9.302/5.343 9.205/5.385 9.061/5.331
DeepMaize06F 8.839/4.629 8.713/4.846 8.921/4.733 8.318/4.181 8.652/4.865
PhantAgent06 8.049/5.422 7.991/5.384 8.029/5.425 8.173/5.437 7.953/5.247
Maxon06F 4.243/4.516 3.767/4.288 4.214/4.628 4.019/4.181 3.945/4.396

MinneTAC 1.347/3.703 1.813/4.017 1.545/3.898 2.117/3.764 1.567/3.796

Rational05 0.739/4.912 0.669/4.692 1.032/4.898 1.305/4.527 1.115/4.682

We conducted the Wilcoxon signed rank test ([15, 19]) to assess statistical significance among the first four
experiments. The results clearly show that mean profits increase when regimes are used for the purpose of
pricing decisions. We conducted Wilcoxon signed rank test ([15, 19]) to assess the statistical significance since
the data do not follow a normal distribution due to the state of the games being wildly influenced by random
number seeds resulting in many games producing no positive profits by any agent. Note that, since the power
of non-parametric tests are smaller than parametric tests, p-values smaller than 0.10 are considered adequate
for statistical significance. The result of the tests conclude that while there is no statistical difference in
profits between experiment 3 and experiment 5 as compared to experiment 1; the profits are significantly
higher in experiment 2 (p = 0.0523) and experiment 4 (p=0.0061) as compared to experiment 1. We further
tested the difference in profits between experiment 4 and experiment 2, to see whether using regimes at the
tactical level (i.e., using regimes to predict daily sales prices and order probability to optimize sales strategy)
is beneficial as compared to using linear interpolation. The results indicated that the profits are significantly
higher in experiment 4 (p=0.0593) as compared to experiment 2.

6 Financial markets

In the following we demonstrate the versatility of our approach by applying it to the prediction of price
trends in the stock market. An investor could use this approach to decide whether to keep a stock, buy
more, or sell in time to make a profit. In terms of the stock market the regimes may reflect “bear” market or
“bull” market. As an example we present here the analysis of the stock of General Electric. Note that our
goal here is not to compare our approach with other stock prediction approaches, but simply to demonstrate
the proof of concept on data outside the TAC SCM domain.

Stock market prices are characterized by a time series, and when we perform the regime training we need
to pick a continuous price stream, as opposed to TAC SCM where we randomly pick training games of a
pool of games. We obtained the stock market data from the Yahoo finance8 service. The left side of Figure 8
displays the time series of our training price data from October 1st, 2005 until December 31st, 2005 and the
right side shows the price distribution estimation using our approach with GMM ([24]).

8Yahoo finance: http://finance.yahoo.com/

16



0 10 20 30 40 50 60 70
32.5

33

33.5

34

34.5

35

35.5

36

36.5

Time [Days]

P
ric

e 
[$

]
Mid−range Price
Smoothed Price

31 32 33 34 35 36
0

1000

2000

A
m

ou
nt

 s
to

ck
 p

ric
e 

ob
se

rv
ed

Price in $

GMM − ge − 2005Oct1−2005Dec31

31 32 33 34 35 36
0

0.2

p(
np

)

31 32 33 34 35 36
0

0.1

0.2

0.3

Product Quantity
p(np)

Figure 8: Historical prices from Oct 1st 2005 until Dec 31st 2005 (left) and the appropriate GMM (right).

Figure 9 (left) shows the learned regime probabilities over price. We experimented with different number
of regimes on different stocks and found that 5 regimes results in the highest success-rate of price trend
predictions. Figure 9 (right) displays the time series of our testing set. We predicted and captured the
actual GE stock prices from January 1st 2006 until September 26th 2006 to demonstrate predictive validity
of our approach.
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Figure 9: Learned regime distributions (left) and test data from Jan 1st 2006 until Sep 26th 2006 (right).

While an extensive analysis of these results is out of the scope of this paper, Figure 10 presents the
success-rate of price trend predictions using a 1-day (left) and a n-day (right) Markov transition matrix.
We observe that in the prediction set the accuracy of price trend prediction is above 65% for all planning
horizons except for exponential-smoothing based approach and above 75% for longer planning horizons.

7 Conclusions and Future Work

We proposed a versatile computational method based on both historical and observable data that can be
used for tactical and strategic economic decision making by automated agents. The approach is based on
fundamental economic intuition, recognizing prevailing and predicted economic environments, or regimes,
for making pricing and sales decisions. The computational process is completely data driven and no explicit
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Figure 10: Success-rate of price trend prediction based on 1-day (left) vs. n-day (right) period Markov
matrix.

classification of the market structure (monopoly vs competitive, etc.) is needed. A regime encapsulates
a complete set of market parameters, with their appropriate range tailored to a specific market condition,
thereby reducing the dimensionality of the parameter space. This results in a fast computational approach.
Economic regimes provide comparatively more degrees of freedom than ordinary regression based approaches,
since the full price distribution is available for decision making. Availability of complete distributions and
their trends allows a decision maker to choose an appropriate level of risk, and supports estimation of other
useful metrics such as order probabilities. Economic regimes are especially suited to make predictions in
non stationary environments where supply-demand relationship is highly dynamic. Economic regimes also
provide an opportunity for niche learning, i.e., an agent is able to apply different approaches and actions when
specific regimes are dominant. We presented three different algorithms for dynamic identification of regimes
and for prediction of regime distribution over a planning horizon. We presented principles and algorithms
that use knowledge of current and future regime distributions to facilitate tactical decision making, such
as calculation of customer offer prices, and strategic decision making, such as allocation of resources over a
planning horizon.

Our approach uses the complete price distribution instead of point-estimates of prices to account for the
impact of price variance on decision making. This allows an agent to avoid over-committing to risky decisions.
In future, we intend to apply our method in other domains where predicting price distributions maybe
fruitful, including domains such as Amazon.com, eBay.com, energy markets, and in financial applications.
We also plan to apply machine learning methods to map economic regimes to internal operational regimes
and operational regimes to actions, such as procurement and production scheduling

Appendix: Algorithms

Historical data

For our experiments, we used historical data from a set of 28 games (18 for training9 and 10 for testing10)
played during the semi-finals and finals of TAC SCM 2005.

93694@tac3, 3700@tac3, 4229@tac4, 4234@tac4, 7815@tac5, 7821@tac5, 5638@tac6, 5639@tac6, 3719@tac3, 3720@tac3,
3721@tac3, 3722@tac3, 3723@tac3, 4255@tac4,4256@tac4, 4257@tac4, 4258@tac4, 4259@tac4 – To obtain the complete path
name append .sics.se to each game number.

103697tac3, 4235tac4, 7820tac5, 5641tac6, 3717tac3, 3718tac3, 3724tac3, 4253tac4, 4254tac4, 4260tac4
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Table 2: Summary of the mathematical notation used in the paper.

Symbol Definition

C Set of all available component types
G Set of all goods (product types)
d Current day
Dd,g Customer demand for good g on day d

Deff
d,g Effective customer demand for good g on day d

Φ Total profit
Ad,g Allocated sales quota for good g on day d
F Factory capacity
h Planning horizon
np Normalized price
np Mid-range normalized price

ñp
min

Smoothed minimum normalized price
ñp

max
Smoothed maximum normalized price

ñp Smoothed mid-range normalized price
α Smoothing coefficient
p(np) Density of the normalized price
GMM Gaussian Mixture Model
N Number of Gaussians of the GMM
p(np|ζi) Density of the normalized price, np, given i-th Gaussian of the

GMM
P (ζi) Prior probability of i-th Gaussian of the GMM
P (ζi|np) Posterior probability of the i-th Gaussian of the GMM given a

normalized price np
~η(np) N-dimensional vector with posterior probabilities, P (ζi|np), of

the GMM
M Number of regimes
Rk k-th regime, k = 1, · · · , M

R̂k predicted k-th regime, k = 1, · · · , M
P(ζ|r) Conditional probability matrix (N rows and M columns) re-

sulting from k-means clustering
p(np|Rk) Density of the normalized price np given regime Rk

P (Rk|np) Probability of regime Rk given normalized price np
P (order |np) Probability of order given a normalized price np
T Markov transition matrix

Determination of the optimal number of Gaussians for the GMM

We developed an algorithm (see Figure 11) to find the optimal number of Gaussians in the GMM. The
algorithm iterates from 1 to N Gaussian components and for each set of Gaussians it fits a GMM to all
the historical normalized price data from the training set. New normalized price samples are generated
from each fitted GMM model via Monte-Carlo sampling, with the number of new samples matching the
original data size. Price histograms are generated using the same bins for the original and sampled data,
and are compared with the help of the KL-divergence ([29, 28])11. For each set of Gaussians we iterate the
resampling and the computation of the KL-divergence. Finally we calculate the mean KL-divergence of all

11With the KL-divergence we are able to measure the closeness of two distributions. If the two distributions are exactly the
same, then the KL-divergence is zero. A more detailed discussion of the KL-divergence can be found in [24].
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the sets of Gaussians. The set with the minimum mean KL-divergence is the set that most closely reproduces
the original distribution and is optimal in that sense.

Inputs:
pnpavg: original normalized price density
maxNumGauss: the maximum number of Gaussians
maxFits: iterations of GMM fitting
NP : set of all normalized prices used for training
numNP : length of NP

Output:
optNumGauss: the optimal number of Gaussians

Process variables:
GMM : Gaussian mixture model
pnpsamp: sampled estimated normalized price density
KL: KL divergence
KLavg : average KL divergence

Process:
1 for comp = 1 until maxNumGauss

2 for fits = 1 until maxFits

3 GMM = Expectation Maximization(NP , comp)
4 pnpsamp = Monte Carlo Sampling(GMM ,numNP)
5 KL(comp, fits) = KL divergence(pnpavg, pnpsamp)
6 end

7 KLavg(comp) = mean(KL(comp))
8 end

9 Index KLmin = min(KLavg)
10 optNumGauss = KLavg(Index KLmin)
11 return optNumGauss

Figure 11: Algorithm to find the optimal number of Gaussians in a GMM.

The results of the optimization algorithm are in Figure 12 (left), where the mean KL-divergence of 10 fits
for 4 to 25 Gaussians and the corresponding standard deviations are plotted. The KL-divergence values for
1 to 3 Gaussians are not displayed since they are too large to fit. The mean KL-divergence for one Gaussian
is 2.64, for two is 0.58, and for three is 0.44.

The price density function, p(np), estimated by the GMM with 16 components for a sample market is
shown in Figure 12 (right). Even though the optimal number of Gaussians for this sample market is 24, we
can see that the GMM with 16 Gaussians fits well the data. For N = 16 Gaussians the KL-divergence value
is around 0.01, which is small enough to have a good fit to the data.

The number of Gaussians should reflect a balance between accuracy and computational overhead. By
accuracy we mean predicted accuracy, which is not the same as fit accuracy. Creating a model with a very
good fit to the observed data does not necessarily translate into good predictions. If the model has too many
degrees of freedom the likelihood of overfitting the data is great ([32], [39]). [47] and [4] used a similar
approach to select an appropriate model with the help of KL-divergences.

)
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Figure 12: Mean KL-divergence (left) and price density function (right). The mean KL-divergence is shown
for 10 fits of 4 to 25 Gaussians. The standard deviation is too small to be visible. The price density function,
p(np), (right) is estimated using 16 Gaussian components. The left y-axis represents the quantity of goods.
Data are from 18 games from the semi-finals and finals of TAC SCM 2005.
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