1,553 research outputs found

    Pointer Race Freedom

    Full text link
    We propose a novel notion of pointer race for concurrent programs manipulating a shared heap. A pointer race is an access to a memory address which was freed, and it is out of the accessor's control whether or not the cell has been re-allocated. We establish two results. (1) Under the assumption of pointer race freedom, it is sound to verify a program running under explicit memory management as if it was running with garbage collection. (2) Even the requirement of pointer race freedom itself can be verified under the garbage-collected semantics. We then prove analogues of the theorems for a stronger notion of pointer race needed to cope with performance-critical code purposely using racy comparisons and even racy dereferences of pointers. As a practical contribution, we apply our results to optimize a thread-modular analysis under explicit memory management. Our experiments confirm a speed-up of up to two orders of magnitude

    Symbolic and analytic techniques for resource analysis of Java bytecode

    Get PDF
    Recent work in resource analysis has translated the idea of amortised resource analysis to imperative languages using a program logic that allows mixing of assertions about heap shapes, in the tradition of separation logic, and assertions about consumable resources. Separately, polyhedral methods have been used to calculate bounds on numbers of iterations in loop-based programs. We are attempting to combine these ideas to deal with Java programs involving both data structures and loops, focusing on the bytecode level rather than on source code

    S2TD: a Separation Logic Verifier that Supports Reasoning of the Absence and Presence of Bugs

    Full text link
    Heap-manipulating programs are known to be challenging to reason about. We present a novel verifier for heap-manipulating programs called S2TD, which encodes programs systematically in the form of Constrained Horn Clauses (CHC) using a novel extension of separation logic (SL) with recursive predicates and dangling predicates. S2TD actively explores cyclic proofs to address the path explosion problem. S2TD differentiates itself from existing CHC-based verifiers by focusing on heap-manipulating programs and employing cyclic proof to efficiently verify or falsify them with counterexamples. Compared with existing SL-based verifiers, S2TD precisely specifies the heaps of de-allocated pointers to avoid false positives in reasoning about the presence of bugs. S2TD has been evaluated using a comprehensive set of benchmark programs from the SV-COMP repository. The results show that S2TD is more effective than state-of-art program verifiers and is more efficient than most of them.Comment: 24 page

    Local reasoning about the presence of bugs: Incorrectness Separation Logic

    Get PDF
    There has been a large body of work on local reasoning for proving the absence of bugs, but none for proving their presence. We present a new formal framework for local reasoning about the presence of bugs, building on two complementary foundations: 1) separation logic and 2) incorrectness logic. We explore the theory of this new incorrectness separation logic (ISL), and use it to derive a begin-anywhere, intra-procedural symbolic execution analysis that has no false positives by construction. In so doing, we take a step towards transferring modular, scalable techniques from the world of program verification to bug catching

    RustHorn: CHC-based Verification for Rust Programs (full version)

    Full text link
    Reduction to the satisfiability problem for constrained Horn clauses (CHCs) is a widely studied approach to automated program verification. The current CHC-based methods for pointer-manipulating programs, however, are not very scalable. This paper proposes a novel translation of pointer-manipulating Rust programs into CHCs, which clears away pointers and memories by leveraging ownership. We formalize the translation for a simplified core of Rust and prove its correctness. We have implemented a prototype verifier for a subset of Rust and confirmed the effectiveness of our method.Comment: Full version of the same-titled paper in ESOP202
    • …
    corecore