236 research outputs found

    Camouflage Adversarial Attacks on Multiple Agent Systems

    Full text link
    The multi-agent reinforcement learning systems (MARL) based on the Markov decision process (MDP) have emerged in many critical applications. To improve the robustness/defense of MARL systems against adversarial attacks, the study of various adversarial attacks on reinforcement learning systems is very important. Previous works on adversarial attacks considered some possible features to attack in MDP, such as the action poisoning attacks, the reward poisoning attacks, and the state perception attacks. In this paper, we propose a brand-new form of attack called the camouflage attack in the MARL systems. In the camouflage attack, the attackers change the appearances of some objects without changing the actual objects themselves; and the camouflaged appearances may look the same to all the targeted recipient (victim) agents. The camouflaged appearances can mislead the recipient agents to misguided actions. We design algorithms that give the optimal camouflage attacks minimizing the rewards of recipient agents. Our numerical and theoretical results show that camouflage attacks can rival the more conventional, but likely more difficult state perception attacks. We also investigate cost-constrained camouflage attacks and showed numerically how cost budgets affect the attack performance.Comment: arXiv admin note: text overlap with arXiv:2311.0085

    Digital Deception: Generative Artificial Intelligence in Social Engineering and Phishing

    Full text link
    The advancement of Artificial Intelligence (AI) and Machine Learning (ML) has profound implications for both the utility and security of our digital interactions. This paper investigates the transformative role of Generative AI in Social Engineering (SE) attacks. We conduct a systematic review of social engineering and AI capabilities and use a theory of social engineering to identify three pillars where Generative AI amplifies the impact of SE attacks: Realistic Content Creation, Advanced Targeting and Personalization, and Automated Attack Infrastructure. We integrate these elements into a conceptual model designed to investigate the complex nature of AI-driven SE attacks - the Generative AI Social Engineering Framework. We further explore human implications and potential countermeasures to mitigate these risks. Our study aims to foster a deeper understanding of the risks, human implications, and countermeasures associated with this emerging paradigm, thereby contributing to a more secure and trustworthy human-computer interaction.Comment: Submitted to CHI 202

    Reward Delay Attacks on Deep Reinforcement Learning

    Full text link
    Most reinforcement learning algorithms implicitly assume strong synchrony. We present novel attacks targeting Q-learning that exploit a vulnerability entailed by this assumption by delaying the reward signal for a limited time period. We consider two types of attack goals: targeted attacks, which aim to cause a target policy to be learned, and untargeted attacks, which simply aim to induce a policy with a low reward. We evaluate the efficacy of the proposed attacks through a series of experiments. Our first observation is that reward-delay attacks are extremely effective when the goal is simply to minimize reward. Indeed, we find that even naive baseline reward-delay attacks are also highly successful in minimizing the reward. Targeted attacks, on the other hand, are more challenging, although we nevertheless demonstrate that the proposed approaches remain highly effective at achieving the attacker's targets. In addition, we introduce a second threat model that captures a minimal mitigation that ensures that rewards cannot be used out of sequence. We find that this mitigation remains insufficient to ensure robustness to attacks that delay, but preserve the order, of rewards.Comment: 20 pages, 9 figures, Conference on Decision and Game Theory for Securit

    Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments

    Get PDF
    We study black-box reward poisoning attacks against reinforcement learning (RL), in which an adversary aims to manipulate the rewards to mislead a sequence of RL agents with unknown algorithms to learn a nefarious policy in an environment unknown to the adversary a priori. That is, our attack makes minimum assumptions on the prior knowledge of the adversary: it has no initial knowledge of the environment or the learner, and neither does it observe the learner's internal mechanism except for its performed actions. We design a novel black-box attack, U2, that can provably achieve a near-matching performance to the state-of-the-art white-box attack, demonstrating the feasibility of reward poisoning even in the most challenging black-box setting
    • …
    corecore