4,808 research outputs found

    An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages

    Get PDF
    This paper studies the problem of frequency regulation in power grids under unknown and possible time-varying load changes, while minimizing the generation costs. We formulate this problem as an output agreement problem for distribution networks and address it using incremental passivity and distributed internal-model-based controllers. Incremental passivity enables a systematic approach to study convergence to the steady state with zero frequency deviation and to design the controller in the presence of time-varying voltages, whereas the internal-model principle is applied to tackle the uncertain nature of the loads.Comment: 16 pages. Abridged version appeared in the Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014, Groningen, the Netherlands. Submitted in December 201

    Wide-Area Control Schemes to Improve Small Signal Stability in Power Systems

    Get PDF
    One of the main concerns for the secure and reliable operation of power systems is the small signal stability problem. In the complex and highly interconnected structure of future power systems, relying solely on operator responses and conventional controls cannot assure reliability. Therefore, there is a need for advanced Wide-Area Control Schemes (WACS) that can automatically respond to degradation of reliability in the system. The main objective of this dissertation is to address two key challenges regarding the design and implementation of wide-area control schemes for damping inter-area oscillations. First is the high communication cost associated with optimal centralized control approaches. As power networks are large-scale systems, both the synthesis and the implementation of centralized controllers suggested by most of the previous studies are often impossible in practice. Second is the difficulty of obtaining accurate system-wide dynamic models for initiating and updating the control design. In this research, we introduced wide-area damping control strategies that not only ensure the small signal stability with the desired performance but also consider communication and model information limitations in the design. A state feedback formulation is proposed that aims to simultaneously optimize a standard Linear Quadratic Regulator (LQR) cost criterion and induce a pre-defined communication structure. We solved the proposed problem with three different objectives to target a specific wide-area damping control design challenge in each setting. First, the communication structure is enforced as a constraint in the optimization and solved for a large idealized power network with information symmetry. Second, to make the method suitable for systems with arbitrary structures and information patterns, we proposed a group-sparse regularization to be added to the optimization cost function. Applications of the method for inducing the desired communication network and finding effective measurement and control signal combinations were also investigated. Third, we paired the proposed optimal control with a real-time model identification approach, to create a wide-area control framework that is capable of dealing with model information limitations and inaccuracies in online implementation. The performances of the proposed wide-area damping control architectures are validated through nonlinear simulations on different test systems
    • …
    corecore