38 research outputs found

    Decentralized Connectivity-Preserving Deployment of Large-Scale Robot Swarms

    Full text link
    We present a decentralized and scalable approach for deployment of a robot swarm. Our approach tackles scenarios in which the swarm must reach multiple spatially distributed targets, and enforce the constraint that the robot network cannot be split. The basic idea behind our work is to construct a logical tree topology over the physical network formed by the robots. The logical tree acts as a backbone used by robots to enforce connectivity constraints. We study and compare two algorithms to form the logical tree: outwards and inwards. These algorithms differ in the order in which the robots join the tree: the outwards algorithm starts at the tree root and grows towards the targets, while the inwards algorithm proceeds in the opposite manner. Both algorithms perform periodic reconfiguration, to prevent suboptimal topologies from halting the growth of the tree. Our contributions are (i) The formulation of the two algorithms; (ii) A comparison of the algorithms in extensive physics-based simulations; (iii) A validation of our findings through real-robot experiments.Comment: 8 pages, 8 figures, submitted to IROS 201

    Distributed Estimation of Graph Spectrum

    Full text link
    In this paper, we develop a two-stage distributed algorithm that enables nodes in a graph to cooperatively estimate the spectrum of a matrix WW associated with the graph, which includes the adjacency and Laplacian matrices as special cases. In the first stage, the algorithm uses a discrete-time linear iteration and the Cayley-Hamilton theorem to convert the problem into one of solving a set of linear equations, where each equation is known to a node. In the second stage, if the nodes happen to know that WW is cyclic, the algorithm uses a Lyapunov approach to asymptotically solve the equations with an exponential rate of convergence. If they do not know whether WW is cyclic, the algorithm uses a random perturbation approach and a structural controllability result to approximately solve the equations with an error that can be made small. Finally, we provide simulation results that illustrate the algorithm.Comment: 15 pages, 2 figure

    Connectivity-Preserving Swarm Teleoperation With A Tree Network

    Full text link
    During swarm teleoperation, the human operator may threaten the distance-dependent inter-robot communications and, with them, the connectivity of the slave swarm. To prevent the harmful component of the human command from disconnecting the swarm network, this paper develops a constructive strategy to dynamically modulate the interconnections of, and the locally injected damping at, all slave robots. By Lyapunov-based set invariance analysis, the explicit law for updating that control gains has been rigorously proven to synchronize the slave swarm while preserving all interaction links in the tree network. By properly limiting the impact of the user command rather than rejecting it entirely, the proposed control law enables the human operator to guide the motion of the slave swarm to the extent to which it does not endanger the connectivity of the swarm network. Experiment results demonstrate that the proposed strategy can maintain the connectivity of the tree network during swarm teleoperation

    Stability and Vulnerability of Bird Flocking Behaviour: A Mathematical Analysis

    Get PDF
    Given a large number of birds in the flock, we mathematically investigate the mechanism the birds move in a collective behavior. We assume that each bird is able to know its position and velocity of other birds within a radius of communication. Thus, to be able to fly in the flock, a bird has to adjust its position and velocity according to his neighbors. For this purpose, first of all, we analyze how the connectedness of the bird interaction network affects the cohesion of the stable bird flock. We further analyze a condition when the flock is vulnerable, which is mathematically indicated by means of the presence of an articulation point in bird communication network

    Maximizing Algebraic Connectivity of Constrained Graphs in Adversarial Environments

    Full text link
    This paper aims to maximize algebraic connectivity of networks via topology design under the presence of constraints and an adversary. We are concerned with three problems. First, we formulate the concave maximization topology design problem of adding edges to an initial graph, which introduces a nonconvex binary decision variable, in addition to subjugation to general convex constraints on the feasible edge set. Unlike previous methods, our method is justifiably not greedy and capable of accommodating these additional constraints. We also study a scenario in which a coordinator must selectively protect edges of the network from a chance of failure due to a physical disturbance or adversarial attack. The coordinator needs to strategically respond to the adversary's action without presupposed knowledge of the adversary's feasible attack actions. We propose three heuristic algorithms for the coordinator to accomplish the objective and identify worst-case preventive solutions. Each algorithm is shown to be effective in simulation and we provide some discussion on their compared performance.Comment: 8 pages, submitted to European Control Conference 201

    Robust Environmental Mapping by Mobile Sensor Networks

    Full text link
    Constructing a spatial map of environmental parameters is a crucial step to preventing hazardous chemical leakages, forest fires, or while estimating a spatially distributed physical quantities such as terrain elevation. Although prior methods can do such mapping tasks efficiently via dispatching a group of autonomous agents, they are unable to ensure satisfactory convergence to the underlying ground truth distribution in a decentralized manner when any of the agents fail. Since the types of agents utilized to perform such mapping are typically inexpensive and prone to failure, this results in poor overall mapping performance in real-world applications, which can in certain cases endanger human safety. This paper presents a Bayesian approach for robust spatial mapping of environmental parameters by deploying a group of mobile robots capable of ad-hoc communication equipped with short-range sensors in the presence of hardware failures. Our approach first utilizes a variant of the Voronoi diagram to partition the region to be mapped into disjoint regions that are each associated with at least one robot. These robots are then deployed in a decentralized manner to maximize the likelihood that at least one robot detects every target in their associated region despite a non-zero probability of failure. A suite of simulation results is presented to demonstrate the effectiveness and robustness of the proposed method when compared to existing techniques.Comment: accepted to icra 201

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Robust Connectivity Analysis for Multi-Agent Systems

    Full text link
    In this report we provide a decentralized robust control approach, which guarantees that connectivity of a multi-agent network is maintained when certain bounded input terms are added to the control strategy. Our main motivation for this framework is to determine abstractions for multi-agent systems under coupled constraints which are further exploited for high level plan generation.Comment: 20 page
    corecore