46 research outputs found

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Energy Efficient Routing Algorithms for Wireless Sensor Networks and Performance Evaluation of Quality of Service for IEEE 802.15.4 Networks

    Get PDF
    The popularity of Wireless Sensor Networks (WSN) have increased tremendously in recent time due to growth in Micro-Electro-Mechanical Systems (MEMS) technology. WSN has the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. Here, sensor nodes are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the network‘s lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. In this thesis, clustering based routing protocols for WSNs have been discussed. In cluster-based routing, special nodes called cluster heads form a wireless backbone to the sink. Each cluster heads collects data from the sensors belonging to its cluster and forwards it to the sink. In heterogeneous networks, cluster heads have powerful energy devices in contrast to homogeneous networks where all nodes have uniform and limited resource energy. So, it is essential to avoid quick depletion of cluster heads. Hence, the cluster head role rotates, i.e., each node works as a cluster head for a limited period of time. Energy saving in these approaches can be obtained by cluster formation, cluster-head election, data aggregation at the cluster-head nodes to reduce data redundancy and thus save energy. The first part of this thesis discusses methods for clustering to improve energy efficiency of homogeneous WSN. It also proposes Bacterial Foraging Optimization (BFO) as an algorithm for cluster head selection for WSN. The simulation results show improved performance of BFO based optimization in terms of total energy dissipation and no of alive nodes of the network system over LEACH, K-Means and direct methods. IEEE 802.15.4 is the emerging next generation standard designed for low-rate wireless personal area networks (LR-WPAN). The second part of the work reported here in provides performance evaluation of quality of service parameters for WSN based on IEEE 802.15.4 star and mesh topology. The performance studies have been evaluated for varying traffic loads using MANET routing protocol in QualNet 4.5. The data packet delivery ratio, average end-to-end delay, total energy consumption, network lifetime and percentage of time in sleep mode have been used as performance metrics. Simulation results show that DSR (Dynamic Source Routing) performs better than DYMO (Dynamic MANET On-demand) and AODV (Ad–hoc On demand Distance Vector) routing protocol for varying traffic loads rates

    Journal of Telecommunications and Information Technology, 2009, nr 3

    Get PDF
    kwartalni

    Towards Our Common Digital Future. Flagship Report.

    Get PDF
    In the report “Towards Our Common Digital Future”, the WBGU makes it clear that sustainability strategies and concepts need to be fundamentally further developed in the age of digitalization. Only if digital change and the Transformation towards Sustainability are synchronized can we succeed in advancing climate and Earth-system protection and in making social progress in human development. Without formative political action, digital change will further accelerate resource and energy consumption, and exacerbate damage to the environment and the climate. It is therefore an urgent political task to create the conditions needed to place digitalization at the service of sustainable development
    corecore