1,634 research outputs found

    Stabilization of Networked Control Systems with Sparse Observer-Controller Networks

    Full text link
    In this paper we provide a set of stability conditions for linear time-invariant networked control systems with arbitrary topology, using a Lyapunov direct approach. We then use these stability conditions to provide a novel low-complexity algorithm for the design of a sparse observer-based control network. We employ distributed observers by employing the output of other nodes to improve the stability of each observer dynamics. To avoid unbounded growth of controller and observer gains, we impose bounds on their norms. The effects of relaxation of these bounds is discussed when trying to find the complete decentralization conditions

    Plug & Play Control of Hydraulic Networks

    Get PDF

    Utility Driven Sampled Data Control Under Imperfect Information

    Get PDF
    Computer based control systems, which are ubiquitous today, are essentially sampled data control systems. In the traditional time-triggered control systems, the sampling period is conservatively chosen, based on a worst case analysis. However, in many control systems, such as those implemented on embedded computers or over a network, parsimonious sampling and computation is helpful. In this context, state/data based aperiodic utility driven sampled data control systems are a promising alternative. This dissertation is concerned with the design of utility driven event-triggers in certain classes of problems where the information available to the triggering mechanisms is imperfect. In the first part, the problem of utility driven event-triggering under partial state information is considered - specifically in the context of (i) decentralized sensing and (ii) dynamic output feedback control. In the case of full state feedback, albeit with decentralized sensing, methods are developed for designing local and asynchronous event-triggers for asymptotic stabilization of an equilibrium point of a general nonlinear system. In the special case of Linear Time Invariant (LTI) systems, the developed method also holds for dynamic output feedback control, which extends naturally to control over Sensor-Controller-Actuator Networks (SCAN), wherein even the controller is decentralized. The second direction that is pursued in this dissertation is that of parsimonious utility driven sampling not only in time but also in space. A methodology of co-designing an event-trigger and a quantizer of the sampled data controller is developed. Effectively, the proposed methodology provides a discrete-event controller for asymptotic stabilization of an equilibrium point of a general continuous-time nonlinear system. In the last part, a method is proposed for designing utility driven event-triggers for the problem of trajectory tracking in general nonlinear systems, where the source of imperfect information is the exogenous reference inputs. Then, specifically in the context of robotic manipulators we develop utility driven sampled data implementation of an adaptive controller for trajectory tracking, wherein imperfect knowledge of system parameters is an added complication

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore