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Computer based control systems, which are ubiquitous today, are essentially

sampled data control systems. In the traditional time-triggered control systems, the

sampling period is conservatively chosen, based on a worst case analysis. However,

in many control systems, such as those implemented on embedded computers or

over a network, parsimonious sampling and computation is helpful. In this con-

text, state/data based aperiodic utility driven sampled data control systems are

a promising alternative. This dissertation is concerned with the design of utility

driven event-triggers in certain classes of problems where the information available

to the triggering mechanisms is imperfect. In the first part, the problem of utility

driven event-triggering under partial state information is considered - specifically in

the context of (i) decentralized sensing and (ii) dynamic output feedback control.

In the case of full state feedback, albeit with decentralized sensing, methods are

developed for designing local and asynchronous event-triggers for asymptotic stabi-

lization of an equilibrium point of a general nonlinear system. In the special case of



Linear Time Invariant (LTI) systems, the developed method also holds for dynamic

output feedback control, which extends naturally to control over Sensor-Controller-

Actuator Networks (SCAN), wherein even the controller is decentralized. The sec-

ond direction that is pursued in this dissertation is that of parsimonious utility

driven sampling not only in time but also in space. A methodology of co-designing

an event-trigger and a quantizer of the sampled data controller is developed. Effec-

tively, the proposed methodology provides a discrete-event controller for asymptotic

stabilization of an equilibrium point of a general continuous-time nonlinear system.

In the last part, a method is proposed for designing utility driven event-triggers for

the problem of trajectory tracking in general nonlinear systems, where the source

of imperfect information is the exogenous reference inputs. Then, specifically in the

context of robotic manipulators we develop utility driven sampled data implementa-

tion of an adaptive controller for trajectory tracking, wherein imperfect knowledge

of system parameters is an added complication.
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Chapter 1

Introduction

The subject of this dissertation is the designing of utility driven sampling mecha-

nisms in sampled data control systems, specifically under some kind of imperfect

information. In this chapter, the broader motivation for utility driven sampled data

control is provided. Then, an outline of the dissertation and a summary of the

contributions is given. The final section paves the way for the subsequent chapters

by introducing the notation commonly used in the dissertation and by highlighting

the factors that affect the design of utility driven sampled data control systems.

1.1 Motivation

Computer based control systems, which are ubiquitous today, are essentially sampled

data control systems, wherein the control input to a ‘plant’ is computed based on a

sampled version of, often continuously varying, signals. In traditional time-triggered

control systems, this sampling of the sensor data and computation/execution of the

control is done periodically. A basic time-triggered sampled data control system

is shown in Figure 1.1 (for simplicity time-triggering has been shown only on the

actuation side). The control input to the plant is updated at discrete time instants

and it is held constant between updates. At discrete (and usually periodic) time

instants, the ‘external’ clock triggers the updates of the control input to the plant.

1



Figure 1.1: Time-triggered sampled data control.

The reasons for the popularity of this paradigm are ease of implementation and

applicability to a wide range of systems. However, such sampled data control sys-

tems come at the cost of increased inefficiency from a sampling and computational

perspective. This is because the period for sampling and control execution has to be

determined by a worst case analysis and is independent of the system’s state. This

issue assumes even greater significance in the context of Cyber Physical Systems.

For example, for control systems implemented on embedded computers with low

computational capabilities, or for control systems implemented over a network with

data rate constraints, parsimonious sampling and computation is helpful.

In this context, state based aperiodic sampling is a promising alternative. In

sampled data control systems, the requirement of a sampling mechanism is not usu-

ally reconstruction of the analog signal. Rather, it is to sufficiently serve the overall

control goal - such as stabilization of a fixed point (equilibrium point). Thus, state

based aperiodic sampling techniques have been explored over the years in different

2



forms and under different names [1–5], [6, 7] (Lebesgue sampling), [8] (interrupt-

based control or feedback triggered control), [9] (state-triggered control). More re-

cently, research in these directions has become focused as ‘event-triggered’ or ‘event

based’ control [10–22], which is a representative list of some early papers. A basic

event-triggered sampled data control system is shown in Figure 1.2. The triggering

Figure 1.2: Event-triggered sampled data control.

in this paradigm is, in general, aperiodic and is determined by a state/data de-

pendent event-triggering condition that explicitly encodes the control goal. Thus,

by appropriately designing the event-trigger, the control system samples only when

necessary - when the last sampled data is deemed no longer useful towards meeting

the control goal specifications. Thus, such control systems may be called ‘utility

driven sampled data control systems’.

Although this dissertation is closely related to the event-triggered control lit-

erature, we often (specially in this chapter) refer to our own work and that of others

in the literature by the phrases ‘utility driven sampled data control’, ‘utility driven

event-triggering’ and their variants. This has been done for two main reasons. First,

these phrases emphasise the explicit encodement of the control goal in the event-

3



triggering conditions. Second, the term ‘event’ in the control community has other,

well established connotations - such as in Discrete Event Systems [23] and in the

area of robotics, where the controller responds to events such as the robot encoun-

tering an obstacle in its path. In each of these cases, the term ‘event’ is referred

to something that is external to the control system. On the other hand, in the

event-triggered control paradigm of Figure 1.2 and in much of the literature on the

subject, ‘events’ and ‘event’ generation are internal mechanisms of the control sys-

tem. Thus, to highlight this important distinction, the phrase ‘utility driven . . . ’

and its variants are used in this dissertation.

At this stage a further clarification is needed. The sampled data control sys-

tems that we consider are based on emulating a given continuous time controller.

That is, the ‘control computer’ in Figure 1.2 is assumed to be given. The proposed

design methods simply prescribe the event-triggers that determine the sampling time

instants based on a notion of utility towards fulfilling a control goal. Indeed, this

is the approach adopted in much of event-triggered control literature. Moreover,

in this dissertation we restrict the control goal specifications to asymptotic stabi-

lization of an equilibrium point or a reference trajectory with a prescribed (state

dependent) minimum convergence rate. Our guiding principle during the design

of the event-triggers is to ensure the sampling instances to be as parsimonious as

possible while also ensuring that the event-triggering condition is sufficiently simple

enough. Obviously, each of these two requirements is in conflict with the other.

However, a precise mathematical formulation of a trade-off is beyond the scope of

this dissertation. Thus, the term ‘utility’ is also used in a somewhat mathematically

4



imprecise manner.

1.2 Outline and Contributions of the Dissertation

Much of the emerging area of utility driven event-triggered control and the closely

related field of self-triggered control [24–28] is applicable for fixed-point stabilization

under full state feedback. However, in practice, there are many applications where

there is some imperfection in the information available to an event-trigger. This

imperfection in the information may be due to varied factors such as exogenous

reference signals, quantization, imperfect knowledge of system’s dynamic parameters

or lack of full state feedback at an event-trigger either due to decentralization or

simply due to inherent lack of full state feedback in the system. This dissertation

addresses each of these issues in settings of varying generality. An outline and a

summary of the contributions of the dissertation follows.

The dissertation is broadly divided into three parts. The first part of the dis-

sertation is utility driven event-triggering under partial state information. Much of

the existing literature on event-triggered control assumes the availability of the full

state information to event-trigger. This assumption fails to be satisfied in two very

important scenarios - decentralized control systems and dynamic output feedback

control. The first scenario is addressed in Chapter 2, where in a control system with

decentralized sensors and a central controller is considered. The decentralized sen-

sors together are assumed to sense the complete state of the system, which however

transmit data to the central controller intermittently and asynchronously at time

5



instants determined by local utility driven event-triggers. In the literature, some ap-

proached this problem with restrictive assumptions. Others proposed event-triggers

that could guarantee only semi-global practical stability even for linear systems if

the sensors did not listen to the central controller. In contrast, the event-triggering

scheme that we propose guarantees semi-global asymptotic stability for nonlinear

systems and global asymptotic stability for linear systems without the sensors having

to listen to the controller. However, in the nonlinear case the design is conserva-

tive. Thus, we also propose a modification, wherein the sensors occasionally receive

updates from the controller.

Chapter 3 addresses the scenario where a system inherently lacks full state

feedback and instead an output feedback dynamic (for example, observer based)

controller has to be used. This chapter is concerned solely with Multi Input Multi

Output (MIMO) Linear Time Invariant (LTI) systems. As one might expect, this

problem is closely related to the subject matter of Chapter 2 and naturally extends

to the case where the sensors are decentralized and not co-located with the con-

troller. In this chapter, we in fact progress from a centralized architecture where

the sensors, controller and the actuators are co-located to a fully decentralized con-

trol system - a Sensor-Controller-Actuator Network (SCAN). Again, the existing

results in the literature guarantee only semi-global practical stability, while the pro-

posed utility driven event-triggering scheme guarantees global asymptotic stability.

Even in the most general of the architectures considered in this chapter, Sensor-

Controller-Actuator Network (SCAN), the assumptions on the system matrices are

fairly simple. Portions of this chapter have been published in [29,30].
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The second part expands the definition of utility driven sampling to include

sampling in both time and space. The fields of event-triggered control and coarsest

quantization have very similar motivations, although they are aimed at ‘coarse sam-

pling’ in time and space, respectively. In Chapter 4, we exploit the common principle

behind two fields, which is robustness/tolerance to measurement errors, to design

implicitly verified discrete-event emulation based controllers for asymptotic stabi-

lization of general nonlinear systems. In comparison to the coarsest quantization

literature, our quantizer design holds for general multi-input nonlinear continuous

time systems. A significant portion of the work in this chapter has been published

in [31].

The third part is on utility driven sampled data control for trajectory tracking.

Tracking a time varying trajectory or even a set-point is of tremendous practical

importance in many control applications. In these applications, the goal is to make

the state of the system follow a reference or desired trajectory, which is usually

specified as an exogenous input to the system. In Chapter 5, a method for designing

utility driven event-triggered controllers for trajectory tracking in nonlinear systems

is proposed. Parts of the work in this chapter have been published in [32,33], which

are also the first to consider this important problem.

In Chapter 6, we propose a utility driven sampled data implementation of an

adaptive controller for trajectory tracking in robot manipulators. This is motivated

by the fact that commonly, utility driven event-triggered controllers such as the one

presented in Chapter 5 rely on the knowledge of an accurate model of the system.

However, building a model of high accuracy is a time consuming process and in
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many cases, it may not even be possible. Therefore, it is important to extend the

design of implicitly verified event based controllers to cases where only a poor model

of the system is available. In this work, we propose an event-triggered emulation of

an adaptive controller from the existing literature. The proposed controller is tested

through simulations and experiments performed on a PHANToM Omni robotic ma-

nipulator. The contribution of this chapter is two fold. It is only the second work to

consider an event-triggered implementation of an adaptive controller and, further,

the only work applicable to a nonlinear and continuous time system. This chapter

also contributes to the as yet limited body of experimental results on utility driven

event-triggered control.

Finally, the dissertation is concluded in Chapter 7 with a summary and some

possible directions for future research.

1.3 Preliminaries

The aim of this section is to introduce the preliminaries of utility driven sampled

data control and highlight some important issues/factors affecting the design pro-

cess. To this end, we introduce some basic mathematical notation and consider the

problem of asymptotic stabilization of Multi Input Multi Output (MIMO) Linear

Time Invariant (LTI) systems.

Now, in sampled data control systems, the controller and/or the actuator make

use of sampled versions of continuous-time signals. Thus, let ζ be any continuous-

time signal (scalar or vector) and let {tζi } be the increasing sequence of discrete time
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instants at which ζ is sampled. Then we denote the resulting piecewise constant

sampled signal by ζs, that is,

ζs , ζ(tζi ), ∀t ∈ [tζi , t
ζ
i+1) (1.1)

Often it is useful to view the sampled data, ζs, as resulting from an error in the the

measurement of the continuous-time signal, ζ, which is denoted by

ζe , ζs − ζ = ζ(tζi )− ζ, ∀t ∈ [tζi , t
ζ
i+1) (1.2)

Note that ζe is discontinuous at t = tζi , for each i, because ζe(t
ζ
i ) = ζ(tζi )− ζ(tζi ) = 0

while lim
t↑tζi

ζe(t) = lim
t↑tζi

(ζ(tζi−1)− ζ(t)).

In time-triggered implementations, the time instants tζi in (1.1) are pre-determined

and are commonly a multiple of a fixed sampling period. On the other hand, in

event-triggered implementations the time instants tζi are determined implicitly by

a state/data based triggering condition that is checked online. Consequently, an

event-triggering condition may result in the inter sampling times tζi+1 − tζi to be

arbitrarily close to zero or it may even result in the limit of the sequence {tζi } to be

a finite number (Zeno behavior). Thus for practical utility, an event-trigger has to

ensure that these scenarios do not occur. The event-triggering condition may be as

simple as a threshold crossing of the measurement error, ζe. In utility driven sampled

data control, implicitly verified (guaranteed to meet the control goal) task specific

event-triggering conditions are designed so that the sampling is parsimonious.

Now, consider the continuous-time system

ẋ = Ax+Bus
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where x ∈ Rn, and us ∈ Rm, are the plant state and the control input to the plant,

respectively. The matrices A and B are of appropriate dimensions. The subscript s

in us indicates that the controller is a sampled data controller. In this dissertation,

we are interested in emulation based utility driven sampled data control. That is, the

controller is a sampled data version of a given continuous-time controller. Our job

then is to design a utility driven event-trigger that determines when the piecewise

constant sampled data signal us is updated.

Thus in the current example, let the control goal is global asymptotic stabi-

lization of the origin of the closed loop system and let the continuous-time controller

u = Kx be given to us. In other words, suppose that the gain matrix K renders

the matrix Ā = (A+BK) Hurwitz. Then, the closed loop system with the sampled

data controller is given by

ẋ = Ax+Bus, us = Kxs (1.3)

where xs is defined as in (1.1).

Now, given an n × n symmetric positive definite matrix Q, there exists a

symmetric positive definite matrix P that satisfies

PĀ+ ĀTP = −Q.

Then, consider the Lyapunov function V = xTPx and its derivative along the flow
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of the closed loop system

V̇ = xT [PĀ+ ĀTP ]x+ 2xTPBK(xs − x)

= −xTQx+ 2xTPBKxe

= −(1− σ)xTQx− σxTQx+ 2xTPBKxe (1.4)

where σ ∈ (0, 1) is a design parameter. This suggests that

V̇ ≤ −(1− σ)xTQx < 0, if 2xTPBKxe ≤ σxTQx

Thus, global asymptotic stability of the origin is guaranteed if, for example, the

time instants at which us = Kxs are given by

tx0 = 0

txi+1 = min{t ≥ txi : 2xTPBKxe ≥ σxTQx} (1.5)

Thus, the sampling time instants are given implicitly in terms of the last sampled

data and the current state of the system. Of course, the initial sampled data or the

first sampling instant is to be specified explicitly. The inter-sample times implicitly

defined by (1.5) can be shown to have a positive lower bound [14,34]. Now, note that

this state dependent event-trigger is designed specifically for the task of asymptotic

stabilization with a desired minimum rate of convergence. As one might expect,

there is a direct trade-off between the desired minimum rate of convergence (higher

is desirable) and the average sampling rate (lower is desirable). In the event-trigger

(1.5), there is a tunable design parameter σ that lets us trade the desired minimum

rate of convergence with the average sampling rate. Smaller σ value means a higher
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desired minimum rate of convergence as well as a higher average sampling rate. On

another note, in practice, there may be time delays in the control system which may

adversely affect the system. Although in the above example and in the rest of the

dissertation we do not explicitly address the issue of time delays, one may follow the

standard procedure in the literature (see [14] for example) to provide a bound on

safely tolerable time delays (higher is desirable). It suffices to say that the parameter

σ affects the bound on safely tolerable time delays - smaller σ allows larger time

delays. Therefore, there is again a trade-off between the average sampling rate

and tolerable time delays, or alternatively, there is a trade-off between the desired

minimum rate of convergence and tolerable time delays. In each of the proposed

event-triggers, in the forthcoming chapters of the dissertation, there is a tunable

parameter σ that analogously provides a trade-off between various characteristics.

In the example, the event-trigger is designed specifically for the task of asymp-

totic stabilization with a desired minimum rate of convergence. In other words, the

event-trigger explicitly encodes the control goal and triggers the sampling of the

signals only when it is necessary - when the last sampled data is no longer useful.

It is in this sense that (1.3)-(1.5) is called a utility driven sampled data control sys-

tem. This basic idea can be extended to design utility driven event-triggers for more

sophisticated control goals such as asymptotic stabilization, but without the require-

ment of monotonically decreasing Lyapunov function V (see [34] for example). In

this dissertation, the control goals are restricted to the simpler variety presented in

the example, but, in scenarios where the information available to the event-trigger

is imperfect. Chapters 2 and 3 are concerned with designing event-triggers that
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have access only to partial state information. In Chapter 4, quantization is consid-

ered in addition to sampling in time and proposes a method for co-designing the

event-trigger and the quantizer. In Chapter 5, it is in the form of exogenous refer-

ence trajectory. Chapter 6 explores the case where the dynamic parameters of the

robotic system are unknown and adaptively estimated. Finally, we recall the guiding

principle in our proposed designs - in addition to requiring the sampling to be parsi-

monious, we also want the event-triggers to be simple enough. Notice that in (1.5),

the complexity of the event-trigger increases with the state space dimension. For

example, each of the expressions in the inequality requires n3 multiplications to be

computed, where n is the state space dimension. Hence, the proposed event-triggers

are usually simpler and conservative than the “coarsest” possible event-triggers.
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Part I

Event-Triggering Under Partial State Information

14



Chapter 2

Decentralized Utility Driven Event-Triggering for Control of

Nonlinear Systems

2.1 Introduction

Much of the literature on event-triggered control utilizes the full state information

in the triggering conditions. However, in two very important classes of problems

full state information is not available to the event-triggers. These are systems with

decentralized sensing and/or dynamic output feedback control. In the latter case,

full state information is not available even when the sensors and the controller

are centralized (co-located). In systems with decentralized sensing, each individual

sensor has to base its decision to transmit data to a central controller only on

locally available information. These two classes of problems are receiving attention

in the community only recently - [35–39] (decentralized sensing) and [29, 30, 40–44]

(output feedback control). This chapter and the next present some useful ideas

towards addressing these problems.

2.1.1 Contributions

In this chapter we propose a methodology for designing implicitly verified decen-

tralized event-triggers for control of nonlinear systems. The system architecture we
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consider is one with full state feedback but with the sensors decentralized and not

co-located with a central controller. The proposed design methodology provides

event-triggers that determine when each sensor transmits data to a central con-

troller. The event-triggers are designed to utilize only locally available information,

making the transmissions from the sensors asynchronous. The proposed design guar-

antees asymptotic stability of the origin of the system with an arbitrary, but fixed

a priori, compact region of attraction. It also guarantees a positive lower bound for

the inter-transmission times of each sensor individually. In the special case of Linear

Time Invariant (LTI) systems, global asymptotic stability is guaranteed and scale

invariance of inter-transmission times is preserved. For nonlinear systems, we also

propose a variant with event-triggered communication from the central controller to

the sensors that significantly increases the average sensor inter-transmission times.

In the literature, decentralized event-triggered control was studied in [38, 39]

with the assumption that the subsystems are weakly coupled, which allowed the

design of event-triggers depending on only local information. Our proposed design

method requires much less restrictive assumptions. In [35–37], each sensor checks a

local condition (based on threshold crossing) that triggers asynchronous transmis-

sion of data by sensors to a central controller. However, this design guarantees only

semi-global practical stability (even for linear systems) if the sensors do not listen

to the central controller. Compared to this work, our proposed design guarantees

semi-global asymptotic stability even when the sensors do not listen to the central

controller. For linear systems, our proposed method gurantees global asymptotic

stability without the sensors having to listen to the central controller. A similarity
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between our work and [35–37] is that both are partially motivated by the need to

eliminate or drastically reduce the listening effort of the sensors to save energy.

The rest of the chapter is organized as follows. Section 2.2 describes and for-

mally sets up the problem under consideration. In Section 2.3, the design of asyn-

chronous decentralized event-triggers for nonlinear systems is presented - without,

and then with, feedback from the central controller. Section 2.4 presents the special

case of Linear Time Invariant (LTI) systems. The proposed design methodology is

illustrated through simulations in Section 2.5 and finally Section 2.6 provides some

concluding remarks.

2.2 Problem Setup

Consider a nonlinear control system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (2.1)

with the feedback control law

u = k(x+ xe) (2.2)

where xe is the error in the measurement of x. In general, the measurement error can

be due to many factors such as sensor noise and quantization. However, we consider

measurement error that is purely a result of “sampling” of the sensor data x. Before

going into the precise definition of this measurement error, we first describe the

broader problem. First, let us express (2.1) as a collection of n scalar differential
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equations

ẋi = fi(x, u), xi ∈ R, i ∈ {1, 2, . . . , n} (2.3)

where x = [x1, x2, . . . , xn]T . In this chapter we are concerned with a decentralized

sensing scenario where each component, xi, of the state vector x is sensed at a

different location. Although the ith sensor senses xi continuously in time, it transmits

this data to a central controller only intermittently. In other words, the controller

is a sampled-data controller that uses intermittently transmitted/sampled sensor

data. In particular, we are interested in designing a mechanism for asynchronous

decentralized utility driven event-triggering that renders the origin of the closed loop

system asymptotically stable.

To precisely describe the sampled-data nature of the problem, we now intro-

duce the following notation. Let {txij } be the increasing sequence of time instants

at which xi is sampled and transmitted to the controller. The resulting piecewise

constant sampled signal is denoted by xi,s, that is,

xi,s , x(txij ), ∀t ∈ [txij , t
xi
j+1), ∀j ∈ {0, 1, 2, . . .} (2.4)

As mentioned previously, the sampled data, xi,s, may also be viewed as resulting

from an error in the the measurement of the continuous-time signal, xi. This mea-

surement error is denoted by

xi,e , xi,s − xi = xi(t
xi
j )− xi, ∀t ∈ [txij , t

xi
j+1)

Finally, we define the sampled-data vector and the measurement error vector as

xs , [x1,s, x2,s, . . . , xn,s]
T , xe , [x1,e, x2,e, . . . , xn,e]

T
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Note that, in general, the components of the vector xs are asynchronously sampled

components of the plant state x. The components of xe are also defined accordingly.

Thus, the problem under consideration may be stated more precisely as fol-

lows. For the n sensors, we want to design event-triggers that depend only on

local information and implicitly define the non-identical sequences {txij } such that

(i) the origin of the closed loop system is rendered asymptotically stable and (ii)

inter-sample (inter-transmission) times txij+1 − txij are lower bounded by a positive

constant.

Finally, a point regarding the notation in the chapter is that the notation |.|

denotes the Euclidean norm of a vector. In the next section, the main assumptions

are introduced and the event-triggering conditions for the decentralized sensing ar-

chitecture is developed.

2.3 Decentralized Asynchronous Event-Triggering

In this section, the main assumptions are introduced and the event-triggers for the

decentralized asynchronous sensing problem are developed.

(A2.1) The closed loop system (2.1)-(2.2) is Input-to-State Stable (ISS) with respect

to measurement error xe. That is, there exists a smooth function V : Rn → R

as well as class K∞ functions1 α1, α2, α and γi for each i ∈ {1, . . . , n}, such

1A continuous function α : [0,∞) → [0,∞) is said to belong to the class K∞ if it is strictly

increasing, α(0) = 0 and α(r)→∞ as r →∞ [45].
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that

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V

∂x
f(x, k(x+ xe)) ≤ −α(|x|), if γi(|xi,e|) ≤ |x|, ∀i.

(A2.2) The functions f , k and γi, for each i ∈ {1, . . . , n}, are Lipschitz on compact

sets.

Note that the standard ISS assumption involves a single condition γ(|xe|) ≤ |x|

instead of the n conditions: γi(|xi,e|) ≤ |x|, for i ∈ {1, . . . , n}, in (A2.1). Given a

function γ(.) in the standard ISS assumption, one may define γi(.) as

γi(|xi,e|) = γ

( |xi,e|
θi

)
, i ∈ {1, . . . , n}

where θi ∈ (0, 1) such that θ2 =
n∑
i=1

θ2
i ≤ 1. Then, the n conditions in (A2.1) are

equivalent to |xi,e| ≤ θiγ
−1(|x|). Thus,

|xe| =

√√√√ n∑
i=1

|xi,e|2 ≤

√√√√ n∑
i=1

θ2
i γ
−1(|x|) ≤ γ−1(|x|)

which is the condition in the standard ISS assumption. Similarly, given (A2.1) one

may pick γ(.) = γi(.) for any i to get the standard ISS assumption, although in

practice it may be possible to choose a less conservative γ(.).

In this section, our aim is to constructively show that decentralized asyn-

chronous event-triggering can be used to asymptotically stabilize x ≡ 0 (the trivial

solution or the origin) with a desired region of attraction while also guaranteeing

positive minimum inter-sample times. Further, without loss of generality, the de-

sired region of attraction may be assumed to be a compact sub-level set S(c) of the
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Lyapunov like function V in (A2.1). Specifically, S(c) is defined as

S(c) = {x ∈ Rn : V (x) ≤ c} (2.5)

2.3.1 Centralized Asynchronous Event-Triggering

The proposed design of decentralized asynchronous event-triggering progresses in

stages. In the first stage, centralized event-triggers for asynchronous transmission

by the sensors are proposed in the following lemma. One of the key steps in the

result is choosing linear bounds on the functions γi(.) on appropriately defined sets

Ei. Given that x ∈ S(c), we define the sets Ei over which the error bounds in (A2.1)

are still satisfied, that is,

Ei(c) = {xi,e ∈ R : |xi,e| ≤ γ−1
i (|x|), x ∈ S(c)}

= {xi,e ∈ R : |xi,e| ≤ max
x∈S(c)

{γ−1
i (|x|)}} (2.6)

Then, by (A2.2), for each c ≥ 0 and each i ∈ {1, . . . , n}, there exist positive con-

stants Mi(c) such that

γi(|xi,e|) ≤
1

Mi(c)
|xi,e|, ∀xi,e ∈ Ei(c) (2.7)

Lemma 2.1. Consider the closed loop system (2.1)-(2.2) and assume (A2.1) and

(A2.2) hold. Suppose for each i ∈ {1, . . . , n}, the sampling instants, {txij } ensure

|xi,e| ≤ Mi(c)|x| for all time t ≥ 0, where Mi(c) are given by (2.7) and c ≥ 0 is

an arbitrary constant. Then, the origin is asymptotically stable with S(c), given by

(2.5), as the region of attraction.
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Proof. Suppose x(0) ∈ S(c) is an arbitrary point, we have to show that the trajectory

x(.) asymptotically converges to zero. Note that, by assumption, the sampling

instants are such that for each i ∈ {1, . . . , n}, |xi,e|
Mi(c)

≤ |x| for all time t ≥ 0. Then,

for all time t ≥ 0, (2.7) implies

γi(|xi,e|) ≤
1

Mi(c)
|xi,e| ≤ |x|, ∀x ∈ S(c)

Consider the ISS Lyapunov function V (.) in (A2.1), which is a function of

the state x. Letting E(c) , E1(c) × E2(c) × . . . × En(c), the time derivative of

the function V along the flow of the closed loop system, with a restricted domain,

V̇ (x, xe) : S(c)× E(c)→ R can be upper-bounded as

V̇ (x, xe) ≤ −α(|x|), ∀x ∈ S(c), ∀xe ∈ E(c)

Thus, the flow of the closed loop system is dissipative on the sub-level set, S(c), of

the Lyapunov function V . Therefore, the origin is asymptotically stable with S(c)

as the region of attraction.

The lemma does not mention a specific choice of event-triggers but rather a

family of them - all those that ensure the conditions |xi,e| ≤ Mi(c)|x| are satis-

fied. Thus, any decentralized event-triggers in this family automatically guarantee

asymptotic stability with the desired region of attraction. To enforce the conditions

|xi,e| ≤Mi(c)|x| strictly, event-triggers at each sensor would need to know |x|, which

is possible only if we have centralized information. One obvious way to decentralize

these conditions is to enforce |xi,e| ≤Mi(c)|xi|. However, such event-triggers cannot

guarantee any positive lower bound for the inter-transmission times, which is not

22



acceptable. So, we take an alternative approach, in which the next step is to derive

lower bounds for the inter-transmission times when the conditions in Lemma 2.1 are

enforced strictly.

Before analyzing the lower bounds for the inter-transmission times that emerge

from the event-triggers in Lemma 2.1, we introduce some notation. Noting that for

each c ≥ 0 the set S(c) contains the origin, Assumption (A2.2) implies that there

exist Lipschitz constants L(c) and D(c) such that

∣∣f(x, k(x+ xe))
∣∣ ≤ L(c)|x|+D(c)|xe| (2.8)

for all x ∈ S(c) and for all xe satisfying |xi,e|/|x| ≤ Mi(c), for each i. Similarly,

there exist constants Li(c) and Di(c) for i ∈ {1, 2, . . . , n} such that

∣∣fi(x, k(x+ xe))
∣∣ ≤ Li(c)|x|+Di(c)|xe| (2.9)

for all x ∈ S(c) and for all xe satisfying |xi,e|/|x| ≤Mi(c), for each i.

Now, consider the differential equation

φ̇ = a0 + a1φ+ a2φ
2 (2.10)

where a0, a1, a2 are non-negative constants. The solution of this differential equation

is denoted, as a function of time t and the initial condition φ0, as φ(t, φ0). In

particular, if a0 > 0 then φ(t, 0) is a strictly increasing function of time t and if

a0 = 0 then φ(t, 0) ≡ 0. Thus, the time it takes φ to evolve from 0 to a non-negative

constant w is expressed as

τ(w, a0, a1, a2) = min{{t ≥ 0 : φ(t, 0) = w} ∪ {∞}} (2.11)
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Notice that

τ(w, a0, a1, a2)



= 0, if w = 0

> 0, if w > 0

=∞, if w > 0, a0 = 0

(2.12)

Remark 2.1. Assuming a2 is non-zero, the solutions of the quadratic differential

equation (2.10) have a finite escape time. However, by definition (2.11), τ(w, a0, a1, a2)

is strictly less than the finite escape time of the solution φ(., 0). Thus on the time

interval of interest, [0, τ(w, a0, a1, a2)], the solution φ(., 0) is well defined.

Lemma 2.2. Consider the closed loop system (2.1)-(2.2) and assume (A2.2) holds.

Let c > 0 be any arbitrary known constant. For i ∈ {1, . . . , n}, let 0 ≤ wi ≤ Mi(c)

be any arbitrary constants and let Wi =

√√√√( n∑
j=1

w2
j

)
− w2

i . Suppose the sampling

instants are such that |xi,e|/|x| ≤ wi for each i ∈ {1, . . . , n} for all time t ≥ t0.

Finally, assume that for all t ≥ t0, x belongs to the compact set S(c). Then, for all

t ≥ t0, the time required for |xi,e|/|x| to evolve from 0 to wi is lower bounded by

Ti = τ(wi, a0,i, a1,i, a2,i) (2.13)

where the function τ is given by (2.11) and

a0,i = Li(c) +Di(c)Wi,

a1,i = L(c) +Di(c) +D(c)Wi, a2,i = D(c)

Further, if wi > 0 then Ti > 0.

Proof. By assumption, for all t ≥ t0, x belongs to a known compact set S(c) and

|xi,e|/|x| ≤ wi ≤ Mi(c) for each i. Thus, (2.8) and (2.9) hold for all t ≥ t0. Now,
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letting νi , |xi,e|/|x| and by direct calculation we see that for i ∈ {1, . . . , n}

dνi
dt

=
(xTi,exi,e)

−1/2xTi,eẋi,e

|x| − xT ẋ|xi,e|
|x|3

≤ |xi,e||ẋi,e||xi,e||x|
+
|x||ẋ||xi,e|
|x|3

≤ Li(c)|x|+Di(c)|xe|
|x| +

(
L(c)|x|+D(c)|xe|

)
|xi,e|

|x|2

where for xi,e = 0 the relation holds for all directional derivatives. Next, notice that

|xe|
|x| =

√√√√j=n∑
j=1

ν2
j ≤

√√√√(j=n∑
j=1

w2
j

)
− w2

i + ν2
i ≤ Wi + νi

where the condition that νi ≤ wi, the definition of Wi and the triangle inequality

property have been utilized. Thus,

dνi
dt
≤ Li(c) + L(c)νi +

(
Di(c) +D(c)νi

)
(Wi + νi)

= a0,i + a1,iνi + a2,iν
2
i

Now, let ti0 be any time instant such that νi(t
i
0) = 0. Next, consider the flow

φ̇i = a0,i + a1,iφi + a2,iφi

and its solution denoted, as a function of time t and the initial condition φi,0, as

φi(t, φi,0). Then, by the Comparison Lemma [45], it follows that

νi(t) ≤ φi(t− ti0, 0), ∀ t ≥ ti0

As a consequence Ti, given by (2.13) is a lower bound on the time it takes νi =

|xi,e|/|x| to evolve from 0 to wi. The final claim of the Lemma follows from the

property (2.12) of the function τ .
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Now, by combining Lemmas 2.1 and 2.2, we get the following result for the

centralized asynchronous event-triggering.

Theorem 2.1. Consider the closed loop system (2.1)-(2.2) and assume (A2.1)-

(A2.2) hold. Suppose the ith sensor transmits its measurement to the controller

whenever |xi,e|/|x| ≥ wi, where 0 < wi ≤Mi(c), with Mi(c) given by (2.7) and c ≥ 0

any arbitrary constant. Then, the origin is asymptotically stable with S(c) as the

region of attraction and the inter-transmission times of each sensor have a positive

lower bound given by Ti in (2.13).

Proof. The triggering conditions ensure that |xi,e|/|x| ≤ wi ≤ Mi(c) for all t >

0. Thus, Lemma 2.1 guarantees x ∈ S(c) for all t ≥ 0 and that the origin is

asymptotically stable with S(c) included in the region of attraction. Since S(c) is

positively invariant, Lemma 2.2 guarantees a positive lower bound for the inter-

transmission times.

Remark 2.2. In Lemma 2.2, the procedure for the computation of the lower bounds

to the inter-transmission times is quite similar to that in [14]. The significant dif-

ference is that in Lemma 2.2, the guaranteed lower bounds are for asynchronous

transmissions while [14] provides lower bounds for synchronous transmissions.

2.3.2 Decentralized Asynchronous Event-Triggering

Now, turning to the main subject of this chapter, in the decentralized sensing case,

unlike in the centralized sensing case, no single sensor knows the exact value of |x|

from the locally sensed data. We may let the event-trigger at the ith sensor enforce
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the more conservative condition |xi,e|/|xi| ≤ wi and still satisfy the assumptions

of Lemma 2.1, though such a choice cannot guarantee a positive minimum inter-

sample time. At this stage, it might seem that Lemma 2.2 cannot be used to design

an implicitly verified event-triggering mechanism in the decentralized sensing case.

However, Lemma 2.2 can be interpreted in an alternative way, which would aid in

our design goal.

Rather than providing a minimum inter-sampling time for an event-triggering

mechanism, Lemma 2.2 can be interpreted as providing a minimum time threshold

only after which it is necessary to check a data based event-triggering condition.

For example, the event-triggers in Theorem 2.1,

txij+1 = min{t ≥ txij :
|xi,e|
|x| ≥ wi}, i ∈ {1, . . . , n} (2.14)

can be equivalently expressed as

txij+1 = min{t ≥ txij + Ti :
|xi,e|
|x| ≥ wi} (2.15)

where Ti are the positive lower bounds for inter-sample times, that are guaranteed

by Lemma 2.2 in (2.13). In the latter interpretation, a minimum threshold for inter-

sample times is explicitly enforced, only after which, the state based condition is

checked. Now, in order to let the event-triggers depend only on locally sensed data,

one can let the sampling times, for i ∈ {1, . . . , n}, be determined as

txij+1 = min{t ≥ txij + Ti : |xi,e| ≥ wi|xi|} (2.16)

where Ti are given by (2.13). This allows us to implement decentralized asyn-

chronous event-triggering. The following theorem is the core result of this chapter
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and it shows that by appropriately choosing the constants Ti and wi, the event

triggers, (2.16), guarantee asymptotic stability of the origin while also explicitly

enforcing a positive minimum inter-sample time.

Theorem 2.2. Consider the closed loop system (2.1)-(2.2) and assume (A2.1) and

(A2.2) hold. Let c ≥ 0 be an arbitrary known constant. For each i ∈ {1, 2, . . . , n},

let wi be a positive constant such that wi ≤Mi(c), where Mi(c) is given by (2.7) and

Ti be given by (2.13). Suppose the sensors asynchronously transmit the measured

data at time instants determined by (2.16) and that txi0 ≤ 0 for each i ∈ {1, 2, . . . , n}.

Then, the origin is asymptotically stable with S(c) as the region of attraction and

the inter-transmission times of each sensor are explicitly enforced to have a positive

lower threshold.

Proof. The statement about the positive lower threshold for inter-transmission times

is obvious from (2.16) and only asymptotic stability remains to be proven. This can

be done by showing that the event-triggers (2.16) are included in the family of event-

triggers considered in Lemma 2.1. From the equivalence of (2.14) and (2.15), it is

clearly true that |xi,e|/|x| ≤ wi for t ∈ [txij , t
xi
j + Ti], for each i ∈ {1, 2, . . . , n} and

each j. Next, for t ∈ [txij + Ti, t
xi
j+1], (2.16) enforces |xi,e|/|xi| ≤ wi, which implies

|xi,e|/|x| ≤ wi since |xi| ≤ |x|. Therefore, the event-triggers in (2.16) are included

in the family of event-triggers considered in Lemma 2.1. Hence, x ≡ 0 (the origin)

is asymptotically stable with S(c) as the region of attraction.

Remark 2.3. The idea of an explicit threshold for the inter-transmission times

as in the event-triggers, (2.16), has been employed previously in [46]. However,
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in [46] such a mechanism is used to trigger the controller updates rather than the

asynchronous transmissions from the sensors to the controller. Further, in [46]

the controller utilizes synchronous measurements from the sensors to compute the

control input to the plant, which allows the lower bound for inter-transmission times

from [14] to be used. On the other hand, in the proposed decentralized asynchronous

event-triggering mechanism of Theorem 2.2 the controller utilizes asynchronously

received data to compute the control input to the plant and the inter-transmission

time thresholds in (2.16) need to be computed as in Lemma 2.2.

Remark 2.4. Although the assumption that txi0 ≤ 0, for each i, in Theorem 2.2 has

not been used in the proof explicitly, it serves two key purposes - avoiding having the

sensors send their first transmissions of data synchronously; and for the controller

to have some latest sensor data to compute the controller output at t = 0.

Remark 2.5. In Theorem 2.2, the parameters wi cannot be chosen in a decentralized

manner unless Mi(c) and hence c is fixed a priori. In other words, the desired region

of attraction S(c) has to be chosen at the time of the system installation. This

can potentially lead to the parameters wi to be chosen conservatively to guarantee

a larger region of attraction. One possible solution is to let the central controller

communicate the parameters wi to the sensors at t = 0. In any case, for t > 0, the

sensors need not listen for a communication and need only transmit their data to

the controller.

29



2.3.3 Decentralized Asynchronous Event-Triggering with Intermit-

tent Communication from the Central Controller

In Theorem 2.2, apart from the fact that the set S(c) is chosen a priori, conser-

vativeness in transmission frequency may also be introduced. This is because the

Lipschitz constants of the nonlinear functions γi(.), (2.7), are not updated after

their initialization, despite knowing that the system state is progressively restricted

to smaller and smaller subsets of S(c). Although we started from the idea that

energy may be saved by making sure that sensors do not have to listen, the cost

of increased transmissions may not be in its favor. Thus, we now describe a design

where the central controller intermittently communicates updated wi and Ti to the

event-triggers.

The first step in this design process is to characterize the region in which the

system state actually lies, given xs, the asynchronously transmitted data available

at the central controller. Since the central controller knows the parameters used by

each event-trigger, it may compute an estimate of |x| based on the centralized asyn-

chronous event-triggering of Theorem 2.1, of which (2.16) is an under-approximation.

Thus, we have that

|xi,s − xi| = |xi,e| ≤ wi|x|, ∀i ∈ {1, . . . , n}

from which we obtain

n∑
i=1

|xi,s − xi|2 ≤ W 2

n∑
i=1

|xi|2, where W =

√√√√ n∑
i=1

w2
i

=⇒ (1−W 2)
n∑
i=1

|xi|2 − 2
n∑
i=1

|xi,s||xi|+
n∑
i=1

|xi,s|2 ≤ 0
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which is the equation of an n-sphere. Thus, the system state is in the n-sphere given

by

|x− xc| ≤ R (2.17)

where xc =
1

1−W 2
xs, R =

W

1−W 2
|xs| (2.18)

Obviously, for these equations to make sense, W 2 has to be strictly less than 1.

However, this is not a restriction at all. Notice that, by definition, a centralized

event-trigger that enforces |xe| = |x − xs| ≤ W |x| asymptotically stabilizes the

origin of the system with the required convergence rate. Further, if W ≥ 1 then

|x− 0| ≤ W |x| for all x ∈ Rn. The implication is that the constant control u = k(0)

is sufficient to asymptotically stabilize the origin with required convergence rate.

In that case, there is no need for event-triggered control. Thus, without loss of

generality, we assume that W 2 < 1.

The next idea is to estimate an upper bound on the value of V (x). From

(2.17), we know that |x| ≤ |xc|+ R and hence that V (x) ≤ α2(|xc|+ R). However,

this may be conservative and a better estimate may be obtained by maximizing

V (x) on the set given by (2.17). In fact, on this set, V (x) is maximized on the

boundary of the n-sphere. This is because if the maximum does not occur on the

boundary and instead occurs only in the interior of the n-sphere (2.17), then the

maximizing sub-level set, SM , of V lies strictly and completely in the interior of the

n-sphere, which means SM is not the smallest sub-level set of V that contains the

complete n-sphere. Thus, an upper bound on the value of V (x) is provided by

V ≥ max{V (x) : |x− xc| = R} (2.19)
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The final idea is to update sensor event-trigger parameters wi and Ti at time

instants determined by an event-trigger running at the central controller, namely,

tVj+1 = min{t ≥ tVj + T : V ≤ ρV(tVj )} (2.20)

where T > 0 and ρ ∈ (0, 1) are arbitrary constants. To be precise, tVj+1 are the time

instants at which V is updated. In this chapter, we assume that these are also the

time instants at which new values of wi and Ti are communicated to the sensors as

well as updated by the sensors in (2.16). The initial condition V(tV0 ) = V(0) = c

may be chosen, where c determines the region of attraction S(c). Thus the ‘sampled’

version of V is denoted by

Vs , V(tVj ), ∀t ∈ [tVj , t
V
j+1), Vs(tV0 ) = Vs(0) = c (2.21)

where c > 0 is an arbitrary constant, tVj are given by (2.20) and V is given by (2.19).

Now, the ideas in this subsection are formalized in the following result.

Theorem 2.3. Consider the closed loop system (2.1)-(2.2) and assume (A2.1) and

(A2.2) hold. Let Mi(.) and Vs be given by (2.7) and (2.21), respectively. For each

i ∈ {1, 2, . . . , n}, let wi and Ti be positive piecewise-constant signals given by wi =

Mi(Vs) and (2.13) (with c = Vs), respectively. Suppose the sensors asynchronously

transmit the measured data at time instants determined by (2.16) and that txi0 ≤ 0

for each i ∈ {1, 2, . . . , n}. Then, the origin is asymptotically stable with S(c) as

the region of attraction and the inter-execution times of each event-trigger have a

positive lower bound.

Proof. Clearly, the Lyapunov function evaluated at the state of the system is at

all times lesser than the piecewise constant and non-increasing signal Vs. Thus,
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x ∈ S(Vs) at all times, where S(.) is given by (2.5). Hence, wi = Mi(Vs) and

Ti given by (2.13) guarantee asymptotic stability of the origin of the closed loop

system, with S(Vs(0)) as the region of attraction.

The inter-transmission times tVj are clearly lower bounded by T > 0. Note

that given Vs, the different parameters in Lemma 2.2 are clearly determined, as

is Ti in (2.16). Thus, the inter-transmission times of the ith sensor in the interval

[tVj , t
V
j+1) are lower bounded by Ti calculated with V(tVj ), which are guaranteed to

be positive by Lemma 2.2. The different parameters in Lemma 2.2 are upper and

lower bounded by positive constants determined by Vs(0). Thus, Ti for all time have

positive lower bounds Γi. Each inter-transmission time of the ith sensor is thus lower

bounded by Γi > 0.

Remark 2.6. As S(c1) ⊂ S(c2) if c1 ≤ c2, Mi(.) in (2.7) can be assumed to be

non-increasing functions of c. Since the signal Vs is non-increasing, wi = Mi(Vs)

are non-decreasing in time. Further, note that the aim of the event-triggers (2.16)

is to enforce the conditions |xi,e| ≤ wi|x|. Thus whenever wi and Ti are updated, the

new parameters in the event-triggers are consistent with and an improvement over

the previous parameters. Although wi are non-decreasing in time, the same cannot

be said about Ti. However, it is not a restriction and the inter-transmission times

are still lower bounded.

Remark 2.7. Computing the upper bound on V , (2.19), may be computationally

intensive depending on the Lyapunov function and the dimension of the system.

However, since the Lyapunov function is guaranteed to decrease even with no updates

33



to wi and Ti, there is no restriction on the time needed to compute the upper bound

on V and to update the parameters of the event-triggers. On the other hand, it is

true that the updates to all the event-triggers have to occur synchronously.

2.4 Linear Time Invariant Systems

Now, let us consider the special case of Linear Time Invariant (LTI) systems with

quadratic Lyapunov functions. Thus, the system dynamics may be written as

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (2.22)

u = K(x+ xe) (2.23)

where A, B and K are matrices of appropriate dimensions. As in the general case,

let us assume that for each i ∈ {1, 2, . . . , n}, xi ∈ R is sensed by the ith sensor.

Comparing with (2.22)-(2.23) we see that xi evolves as

ẋi = ri(A)x+ ri(BK)(x+ xe) (2.24)

where the notation ri(H) denotes the ith row of the matrix H. Also note that xe

and xi,e are defined just as in Section 2.2.

Now, suppose the matrix (A + BK) is Hurwitz, which is equivalent to the

following statement.

(A2.3) Suppose that for any given symmetric positive definite matrix Q, there exists

a symmetric positive definite matrix P such that

P (A+BK) + (A+BK)TP = −Q
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Then, the following Lemma describes a centralized asynchronous sensing mechanism

for linear systems.

Lemma 2.3. Consider the closed loop system (2.22)-(2.23) and assume (A2.3)

holds. Let Q be any symmetric positive definite matrix and let Qm be the small-

est eigenvalue of Q. For each i ∈ {1, 2, . . . , n}, let

θi ∈ (0, 1) s.t. θ =
n∑
i=1

θi ≤ 1 (2.25)

wi =
σθiQm

|ci(2PBK)| (2.26)

where σ ∈ (0, 1) is a design constant and ci(2PBK) is the ith column of the matrix

(2PBK). Suppose the sampling instants are such that for each i ∈ {1, . . . , n},

|xi,e|/|x| ≤ wi for all time t ≥ 0. Then, the origin is globally asymptotically stable.

Proof. Consider the candidate Lyapunov function V (x) = xTPx where P satisfies

(A2.3). The derivative of the function V along the flow of the closed loop system

satisfies

V̇ = xT [P (A+BK) + (A+BK)TP ]x+ 2xTPBKxe

≤ −(1− σ)xTQx+ |x|
[
|2PBKxe| − σQm|x|

]
≤ −(1− σ)xTQx+ |x|

[ n∑
i=1

|ci(2PBK)xi,e| − σQm|x|
]

≤ −(1− σ)xTQx+ |x|
[ n∑
i=1

|ci(2PBK)||xi,e| − σQm|x|
]

The sensor update instants have been assumed to be such that |xi,e|/|x| ≤ wi =

σθiQm

|ci(2PBK)| for each i and for all time t ≥ 0. Thus,

V̇ ≤ −(1− σ)xTQx
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which implies that the origin is globally asymptotically stable.

Lower bounds for the inter-sample times can be found in a manner analogous

to the general nonlinear case in Lemma 2.2.

Lemma 2.4. Consider the closed loop system (2.22)-(2.23). For each i ∈ {1, . . . , n},

let θi, wi be defined as in (2.25)-(2.26) and let Wi =

√√√√( n∑
j=1

w2
j

)
− w2

i . Suppose the

sampling instants are such that |xi,e|/|x| ≤ wi for each i ∈ {1, . . . , n} for all time

t ≥ t0. Then, for all t ≥ t0, the time required for |xi,e|/|x| to evolve from 0 to wi is

lower bounded by Ti > 0, where

Ti = τ(wi, a0, a1, a2) (2.27)

where the function τ is given by (2.11) and

a0 = |ri(A+BK)|+ |ri(BK)|Wi,

a1 = |A+BK|+ |ri(BK)|+ |BK|Wi, a2 = |BK|

Proof. Letting νi , |xi,e|/|x|, for i ∈ {1, . . . , n}, the an upper bound for the time

derivative of νi can be found by direct calculation.

dνi
dt

=
(xTi,exi,e)

−1/2xTi,eẋi,e

|x| − xT ẋ|xi,e|
|x|3

≤ |xi,e||ẋi,e||xi,e||x|
+
|x||ẋ||xi,e|
|x|3

≤ |ri(A+BK)||x|+ |ri(BK)||xe|
|x| +

(
|A+BK||x|+ |BK||xe|

)
|xi,e|

|x|2

where for xi,e = 0 the relation holds for all directional derivatives while the notation

ri(H) denotes the ith row of the matrix H. Next, notice that

|xe|
|x| =

√√√√j=n∑
j=1

ν2
j ≤

√√√√(j=n∑
j=1

w2
j

)
− w2

i + ν2
i ≤ Wi + νi
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where the condition that νi ≤ wi, the definition of Wi and the triangle inequality

property have been utilized. Thus,

dνi
dt
≤ |ri(A+BK)|+ |A+BK|νi +

(
|ri(BK)|+ |BK|νi

)
(Wi + νi)

= a0 + a1νi + a2ν
2
i

The claim of the Lemma now directly follows from analogous arguments as in the

proof of Lemma 2.2.

Next, the result for the centralized asynchronous event-triggering is presented,

whose proof is quite analogous to Theorem 2.1.

Theorem 2.4. Consider the closed loop system (2.22)-(2.23) and assume (A2.3)

holds. Let Q be any symmetric positive definite matrix and let Qm be the small-

est eigenvalue of Q. For each i ∈ {1, 2, . . . , n}, let θi and wi be defined as in

(2.25)-(2.26). Also suppose the ith sensor transmits its measurement to the con-

troller whenever |xi,e|/|x| ≥ wi. Then, the origin is globally asymptotically stable

and the inter-transmission times have a positive lower bound.

The following result is analogous to Theorem 2.2 and prescribes the constants

Ti and wi in the event triggers, (2.16), that guarantee global asymptotic stability of

the origin while also explicitly enforcing a positive minimum inter-sample time.

Theorem 2.5. Consider the closed loop system (2.22)-(2.23) and assume (A2.3)

holds. Let Q be any symmetric positive definite matrix and let Qm be the smallest

eigenvalue of Q. For each i ∈ {1, 2, . . . , n}, let θi, wi and Ti be defined as in (2.25),

(2.26) and (2.27), respectively. Suppose the sensors asynchronously transmit the
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measured data at time instants determined by (2.16). Then, the origin is globally

asymptotically stable and the inter-transmission times are explicitly enforced to have

a positive lower threshold.

In the context of the results for nonlinear systems in Section 2.3, the reason

we are able to achieve global asymptotic stability for LTI systems is because, the

system dynamics, the functions γi(.) are globally Lipschitz, thus giving us constants

wi and Ti that hold globally. In fact, for linear systems, something more is ensured

- the proposed asynchronous event-triggers guarantee a type of scale invariance.

Scaling laws of inter-execution times for centralized synchronous event-triggering

have been studied in [28]. In particular, Theorem 4.3 of [28], in the special case of

linear systems, guarantees scale invariance of the inter-execution times determined

by a centralized event-trigger |xe| = W |x|. The centralized and decentralized asyn-

chronous event-triggers developed in this chapter are under-approximations of this

kind of central event-triggering. In the following, we show that the scale invariance

is preserved in the asynchronous event-triggers. As an aside, we would like to point

out that the decentralized event-triggers proposed in [35–37] are not scale invariant.

In order to precisely state the notion of scale invariance and to state the result,

the following notation is useful. Let x(t) and z(t) be two solutions to the system:

(2.22)-(2.23) along with the event-triggers (2.16).

Theorem 2.6. Consider the closed loop system (2.22)-(2.23) and assume (A2.3)

holds. Let Q be any symmetric positive definite matrix and let Qm be the small-

est eigenvalue of Q. For each i ∈ {1, 2, . . . , n}, let θi, wi and Ti be defined as in
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(2.25), (2.26) and (2.27), respectively. Suppose the sensors asynchronously trans-

mit the measured data at time instants determined by (2.16). Assuming b is any

scalar constant, let [z(0)T , zs(0)T ]T = b[x(0)T , xs(0)T ]T ∈ Rn × Rn be two initial

conditions for the system. Further let tzi0 = txi0 < 0 for each i ∈ {1, . . . , n}. Then,

[z(t)T , zs(t)
T ]T = b[x(t)T , xs(t)

T ]T for all t ≥ 0 and txij = tzij for each i and j.

Proof. First of all, let us introduce two strictly increasing sequences of time, {tzsj }

and {txsj }, at which one or more components of zs and xs are updated, respec-

tively. Further, without loss of generality, assume tzs0 = txs0 . The proof pro-

ceeds by mathematical induction. Let us suppose that tzsj = txsj = tj for each

j ∈ {0, . . . , k} and that [z(t)T , zs(t)
T ]T = b[x(t)T , xs(t)

T ]T for all t ∈ [0, tk). Then,

letting tk+1 = min{tzsk+1, t
xs
k+1} the solution, z, in the time interval [tk, tk+1) satisfies

z(t) = eA(t−tk)z(tk) +

∫ t

tk

eA(t−σ)BKzs(tk)dσ

= beA(t−tk)x(tk) + b

∫ t

tk

eA(t−σ)BKxs(tk)dσ

Hence,

z(t) = bx(t), ∀t ∈ [tk, tk+1) (2.28)

Further, in the time interval [tk, tk+1)

zi,e(t) = zi(tk)− zi(t) = b(xi(tk)− xi(t)) = bxi,e(t) (2.29)

Similarly, for all t ∈ [tk, tk+1),

|zi,e(t)|
|z(t)| =

|xi,e(t)|
|x(t)| (2.30)
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Without loss of generality, assume zi,s is updated at tk+1. Then, clearly, at

least Ti amount of time has elapsed since zi,s was last updated. Next, by the

assumption that tzi0 = txi0 < 0 and the induction statement, it is clear that at

least Ti amount of time has elapsed since xi,s was also last updated. Further, it

also means that |zi,s(tk) − zi(tk+1)| ≥ wi|zi(tk+1)|. Then, (2.28)-(2.29) imply that

|xi,s(tk) − xi(tk+1)| ≥ wi|xi(tk+1)|, meaning tk+1 = tzsk+1 = txsk+1 = tk+1. Arguments

analogous to the preceding also hold for multiple zi,s updated at tk+1 instead of

one or even xi,s instead of zi,s. Since the induction statement is true for k = 0, we

conclude that the statement of theorem is true.

Remark 2.8. From the proof of Theorem 2.6, (2.30) specifically, it is clear that the

centralized asynchronous event-trggers of Theorem 2.4 also guarantee scale invari-

ance.

Remark 2.9. Scale invariance, as described in Theorem 2.6, means that the average

inter-transmission times over an arbitrary length of time is independent of the scale

(or the magnitude) of the initial condition of the system. Similarly for any given

scalar, δ ∈ (0, 1), the time and the number of transmissions it takes for |x(t)| to

reduce to δ|x(0)| is independent of |x(0)|. So, the advantage is that the ‘average’

network usage remains the same over large portions of the state space.

2.5 Simulation Results

In this section, the proposed decentralized asynchronous event-triggered sensing

mechanism is illustrated with two examples. The first is a linear system and the
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second a nonlinear system.

2.5.1 Linear System Example

We first present the mechanism for a linearized model of a batch reactor, [47]. The

plant and the controller are given by (2.22)-(2.23) with

A =



1.38 −0.20 6.71 −5.67

−0.58 −4.29 0 0.67

1.06 4.27 −6.65 5.89

0.04 4.27 1.34 −2.10


, B =



0 0

5.67 0

1.13 −3.14

1.13 0



K = −

0.1006 −0.2469 −0.0952 −0.2447

1.4099 −0.1966 0.0139 0.0823


which places the eigenvalues of the matrix (A+BK) at around {−2.98+1.19i,−2.98−

1.19i,−3.89,−3.62}. The matrix Q was chosen as the identity matrix. The sys-

tem matrices and Q have been chosen to be the same as in [35]. Lastly, the con-

troller parameters were chosen as [θ1, θ2, θ3, θ4] = [0.6, 0.17, 0.08, 0.15] and σ = 0.95.

For the simulations presented here, the initial condition of the plant was selected

as x(0) = [4, 7,−4, 3]T and the initial sampled data that the controller used was

xs(0) = [4.1, 7.2,−4.5, 2]T . The zeroth sampling instant was chosen as txi0 = −Ti for

sensor i. This is to ensure sampling at t = 0 if the local triggering condition was

satisfied. Finally the simulation time was chosen as 10s.

Figures 2.1(a) and 2.1(b) show the evolution of the Lyapunov function and its

derivative along the flow of the closed loop system, respectively. Figures 2.1(c) and
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2.1(d) show the inter-transmission times and the cumulative frequency distribution

of the inter-transmission times for each of the sensor. The cumulative frequency
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Figure 2.1: Batch reactor example: evolution of the (a) Lyapunov function, (b)

time derivative of Lyapunov function, along the flow of the closed loop system. (c)

Sensor inter-transmission times (d) cumulative frequency distribution of the sensor

inter-transmission times.

distribution of the inter-transmission times is a measure of the performance of the

event-triggers. A distribution that rises sharply to 100% indicates that event-trigger
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is not much better than a time-trigger. Thus, slower the rise of the cumulative

distribution curves, greater is the justification for using the event-trigger instead of

a time-trigger.

The lower thresholds for the inter-transmission times Ti for the example can

be computed as in Lemma 2.4 and have been obtained as

[T1, T2, T3, T4] = [11, 15.4, 12.6, 19.9]ms

which are also the minimum inter-transmission times in the simulations presented

here. These numbers are a few orders of magnitude higher and an order higher

than the guaranteed minimum inter-transmission times and the observed minimum

inter-transmission times in [35, 36]. The average inter-transmission times obtained

in the presented simulations were [T̄1, T̄2, T̄3, T̄4] = [24.9, 27.7, 34.5, 34.2]ms, which

are about an order of magnitude lower than those reported in [35, 36]. A possible

explanation for this phenomenon is that in [35, 36], the average inter-transmission

times depends quite critically on the evolution of the threshold η. Although the

controller gain matrix K and the matrix Q have been chosen to be the same, by

inspection of the plots in [35,36], it appears that the rate of decay of the Lyapunov

function V is roughly about half of that in our simulations. However, we would

like to point out that our average inter-transmission times are of the same order as

in [37] by the same authors. In any case, for LTI systems, our proposed method

does not require communication from the controller to sensors to achieve global

asymptotic stability. Lastly, as a measure of the usefulness of the event-triggering

mechanism compared to a purely time-triggered mechanism, Ti/T̄i was computed

43



for each i and were obtained as [T1/T̄1, T2/T̄2, T3/T̄3, T4/T̄1] = [0.44, 0.55, 0.36, 0.58].

The lower these numbers are, the better it is.

2.5.2 Nonlinear System Example

The general result for nonlinear systems is illustrated through simulations of the

following second order nonlinear system.

ẋ = f(x, xe) =

f1(x, xe)

f2(x, xe)

 = Ax+

 0

x3
1

+Bu (2.31)

where A =

0 1

0 −1

 , B =

0

1


where x = [x1, x2]T is a vector in R2 and the sampled data controller (in terms of

the measurement error) is given as

u = k(x+ xe) = K(x+ xe)− (x1 + x1,e)
3 (2.32)

where K = [k1, k2] is a 1× 2 row vector such that Ā = (A+BK) is Hurwitz. Then,

the closed-loop tracking error system with event-triggered control can be written as

ẋ = Āx+BKxe +

 0

x3
1 − (x1 + x1,e)

3



= Āx+

 0

h1 + h2

 (2.33)

where

h1 = −
(
x3

1,e + 3x1x
2
1,e + (3x2

1 − k1)x1,e

)
(2.34)

h2 = k2x2,e (2.35)
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Now, consider the quadratic Lyapunov function V = xTPx where P is a

symmetric positive definite matrix that satisfies the Lyapunov equation PĀ+ĀTP =

−Q, with Q a symmetric positive definite matrix. Let pm and pM be the smallest

and largest eigenvalues of the matrix P . Since P is a symmetric positive definite

matrix, pm and pM are each positive real numbers. Further,

α1(|x|) , pm|x|2 ≤ V (x) ≤ pM |x|2 , α2(|x|), ∀x ∈ R2

The time derivative of V along the flow of the closed loop system (2.33) can be

shown to satisfy

V̇ = −xTQx+ 2xTPB(h1 + h2)

≤ −(1− σ)Qm|x|2 + |x|
(
|2PB(h1 + h2)| − σQm|x|

)
where Qm is the smallest eigenvalue of the symmetric positive definite matrix Q and

σ is a parameter satisfying 0 < σ < 1.

Suppose that the desired region of attraction be S(c), for some non-negative

c (see (2.5) for the definition of S(c)). Let µ1 be the maximum value of x1 on the

sub-level set S(c). Then, we let

hc1 = |x1,e|3 + 3µ1|x1,e|2 + max
|x1|≤µ1

{3x2
1 − k1}|x1,e|

γ1(|x1,e|) ,
|2PB|hc1
σθ1Qm

, γ2(|x2,e|) ,
|2PBk2||x2,e|

σθ2Qm

where θ1 and θ2 are positive constants such that θ1 + θ2 = 1. It is clear that

Assumption (A2.1) is satisfied and we have

V̇ ≤ −(1− σ)Qm|x|2, if γi|xi,e| ≤ |x|, i ∈ {1, 2}
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Now, µ , α−1
1 (c) =

√
c/pm is the maximum value of |x| on the set S(c).

Hence, M1(c) in (2.7) has to be defined for the set on which |x1,e| ≤ R1 , γ−1
1 (µ).

Thus, we have that

1

M1(c)
=
|2PB|
σθ1Qm

(
R2

1 + 3µ1R1 + max
|x1|≤µ1

{3x2
1 − k1}

)
while

1

M2(c)
=
|2PBk2|
σθ2Qm

.

Now, only Ti for each i need to be determined. To this end, the closed loop

system dynamics (2.33) are bounded as in (2.8) and (2.9).

|f1(x, xe)| ≤ L1|x|+D1|xe|

|f2(x, xe)| ≤ L2|x|+D2,µ|xe|, ∀x s.t. |x| ≤ µ

Comparing with (2.33) the following can be arrived at.

L1 = |r1(Ā)|, D1 = 0, L2 = |r2(Ā)|

D2,µ =

√(
R2

1 + 3µ1R1 + max
|x1|≤µ1

{3x2
1 − k1}

)2

+ k2
2

In the example simulation results presented here, the following gains and pa-

rameters were used.

K = −
[
5 3

]
, Q =

1 0

0 1

 , θ1 = 0.9, θ2 = 0.1

σ = 0.9, c = 10, µ1 = µ

x(0) = [2.8,−2.6]T , xs(0) = [2.9,−2.7]T (2.36)

Notice that M2(c) is a constant independent of c. That is why θ2 has been

chosen much smaller than θ1. The parameter µ1 has been chosen to be equal to
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µ. To be consistent with asynchronous transmissions, the initial value of xs(0) has

been chosen to be different from x(0).

For the chosen parameters and the initial conditions, the initial value of the

Lyapunov function is V (0) = 8.574. Thus the initial state of the system is well

within the region of attraction, given by S(c) = S(10). The event-trigger param-

eters were obtained as [w1, w2] = [M1(c),M2(c)] = [0.0102, 0.0832] and [T1, T2] =

[9, 5]ms, which were also the minimum inter-transmission times. The average inter-

transmission times of the sensors for the duration of the simulated time were ob-

tained as [T̄1, T̄2] = [9.6, 25.8]ms. Thus for sensor 1, the average inter-transmission

interval is only marginally better than the minimum. The number of transmissions

by sensors 1 and 2 were 1041 and 388, respectively.

Figures 2.2(a) and 2.2(b) show the evolution of the Lyapunov function and

its derivative along the flow of the closed loop system, respectively. Figures 2.2(c)

and 2.2(d) show the inter-transmission times and the cumulative frequency distri-

bution of the inter-transmission times for each of the sensor. The sharp rise of the

cumulative distribution curve for Sensor 1 clearly indicates that the event-triggered

transmission is nearly equivalent to time-triggered transmission. On the other hand,

the slow rise of the cumulative distribution curve of Sensor 2 demonstrates the use-

fulness of event-triggering in its case.

Simulations were also performed for the case when the central controller inter-

mittently sends updates to the parameters of the sensor event-triggers, as in Theo-

rem 2.3. For the simulation results presented here, the controller gains, parameters

and the initial conditions have been chosen the same as in (2.36). Additionally, the
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Figure 2.2: Nonlinear system example: evolution of the (a) Lyapunov function, (b)

time derivative of Lyapunov function, along the flow of the closed loop system. (c)

Sensor inter-transmission times (d) cumulative frequency distribution of the sensor

inter-transmission times.

parameters in (2.20) were chosen as T = 0.5 and ρ = 0.5. The initial condition

Vs(0) = c = 10 was chosen. For the 2 dimensional system in this example, V in

(2.19) is the maximum value of V along a circle. V was then found in MATLAB by

maximization of V on the circle, which was parametrized by a single angle variable
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varying on the closed interval [0, 2π].

In this case, the number of transmissions by Sensor 1 were much lower at

106 while those by Sensor 2 were 324. Notice that w2 = M2(c) is a constant,

independent of the value of c. Thus, we see that the reduction in the number

of transmissions by Sensor 2 is only marginal while that of Sensor 1 is huge. The

average inter-transmission times of the sensors for the duration of the simulated time

were obtained as [T̄1, T̄2] = [94.3, 30.9]ms. The minimum inter-transmission times

were observed as 9.4ms and 9ms for Sensors 1 and 2, respectively. The number of

times the parameters of the sensor event-triggers were updated was 15.

The evolution of the Lyapunov function and its derivative along the flow of

the closed loop system were very similar to that in Figures 2.2(a) and 2.2(b), respec-

tively. Hence, they have not been presented here again. Figures 2.3(a) and 2.3(b)

show the inter-transmission times and the cumulative frequency distribution of the

inter-transmission times for each of the sensor. These two plots clearly show the

usefulness of the event-triggered transmissions. Figure 2.3(c) shows the evolution of

the wi parameters of the event-triggers at each of the sensors. As mentioned earlier,

w2 is independent of c and hence is a constant. The evolution of w1 shows that it

is a non-decreasing function of time. Finally, Figure 2.3(d) shows the evolution of

the Ti parameters of the event-triggers at the sensors (for clarity T2 has been scaled

by 20 times). Although, T1 evolves in a non-decreasing manner, the same is not the

case with T2. However, as mentioned in Remark 2.6, this does not pose any problem

and the inter-transmission times of the sensor are still lower bounded by a positive

constant.

49



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (seconds)

In
te

r−
sa

m
pl

e 
tim

es
 (

se
co

nd
s)

 

 
Sensor 1
Sensor 2

(a)

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Inter−sample times (milli−seconds)

C
um

. f
re

q.
 d

is
t. 

(p
er

ce
nt

ag
e)

 

 

Sensor 1
Sensor 2

(b)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t (seconds)

 

 
w1
w2

(c)

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t (seconds)

 

 

T1

20T2

(d)

Figure 2.3: Nonlinear system example with event-triggered communication from

the controller to the sensor event-triggers: (a) Sensor inter-transmission times (b)

cumulative frequency distribution of the sensor inter-transmission times. Evolution

of (c) wi, (d) Ti parameters of the sensor event-triggers.

2.6 Conclusions

In this chapter, we have developed a method for designing decentralized event-

triggers for control of nonlinear systems. The architecture of the systems considered
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in this chapter included full state feedback, a central controller and decentralized

sensors not co-located with the central controller. The aim was to develop event-

triggers for determining the time instants of transmission from the sensors to the

central controller. The proposed design ensures that the event-triggers at each

sensor depend only on locally available information, thus allowing for asynchronous

transmissions from the sensors to the central controller. Further, the design aimed

at completely eliminating (or drastically reducing) the need for the sensors to listen

to other sensors and/or the controller.

The proposed design was shown to guarantee a positive lower bound for inter-

transmission times of each sensor (and of the controller in one of the special cases).

The origin of the closed loop system is also guaranteed to be asymptotically stable

with an arbitrary, but priorly fixed, region of attraction. In the special case of linear

systems, the region of attraction was shown to be global with absolutely no need for

the sensors to listen. Finally, the proposed design method was illustrated through

simulations of a linear and a nonlinear example.

In the system architecture considered in this chapter, although the control

input to the plant is updated intermittently, it is not exactly event-triggered. In

fact, in all the results the inter-transmission times of each sensor individually have

been shown to have a positive lower bound. And the time interval between receptions

of the central controller from two different sensors can be arbitrarily close to zero.

Since the control input to the plant is updated each time the controller receives

some information, no positive lower bound can be guaranteed for the inter-update

times of the controller. However, it is not very tough to incorporate event-triggering
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(with guaranteed positive minimum inter-update times) or explicit thresholds on

inter-update times of the control by choosing smaller σ values in the event-triggers

for the sensors. Future work will include results with event-triggered actuation in

addition to event-triggered communication on the sensing side.

Next, although the transmissions of sensors have been designed to be asyn-

chronous, the communication from the central controller to the sensors in Section

2.3.3 have been assumed to be synchronous. In future, we aim to allow these commu-

nications also to be asynchronous. Although time delays have not been considered

explicitly, they may be handled as in most event-triggered control literature (see [14]

for example). Finally, it is worthwhile to investigate more sophisticated triggers for

updating the parameters wi and Ti (Section 2.3.3) as is a thorough study and quan-

tification of sensor listening effort.
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Chapter 3

Utility Driven Sampled Data Control of LTI Systems over

Sensor-Controller-Actuator Networks

3.1 Introduction

As mentioned in the beginning of the previous chapter, much of the event-triggered

control literature assumes the availability of full state information. However, in

many practical applications only a part of the state information can be directly

measured and a dynamic (for example, observer based) output feedback controller

must be utilized. Thus, it is important to develop utility driven event-triggered

implementations of dynamic output feedback controllers and this chapter is a con-

tribution towards this aim. The work in this chapter is closely related to that of the

previous chapter. As far as the individual decentralized event-triggers of the previ-

ous chapter are concerned, each has access only to a partial output of the system.

Thus, the proposed centralized event-triggered implementation of a dynamic output

feedback controller naturally extends to the decentralized event-triggering scenario.

In fact, in this chapter, we go one step further. We address the problem of utility

driven sampled data control over Sensor-Controller-Actuator Networks (SCAN).

Motivated by this, we group the nodes in a SCAN into three functional layers

- sensor layer, controller/observer layer and the actuator layer, with no two nodes
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being co-located. In practice though, several nodes from the same or different layers

may be co-located. Any such scenario can simply be treated as a special case of

the general framework of this chapter. The sensor nodes intermittently broadcast

their data to the nodes in the observer (dynamic controller) layer. The nodes in the

observer layer compute the state of the observer in a decentralized manner, with

each node in the observer layer intermittently broadcasting its data to other nodes

in the same layer. Each of the actuator nodes also intermittently receives data from

a corresponding unique observer node. Thus, communication between the layers is

unidirectional.

Sensor-Controller-Actuator Networks (SCAN) consist of physically distributed

nodes, each of which performs one or more of sensing, control computation and

actuation tasks in order to control a plant. If the aggregate feedback provided by

the sensor nodes does not constitute full state feedback, then the controller nodes

may also have to distributively estimate the state of the plant. Interest in such

networked control systems has been rising steadily, specially, in the context of large

scale systems such as power grids, building HVAC and even in vehicles. Some

of the challenges in SCAN are asynchronous transmission of data; asynchronous

and decentralized computation; decision making based only on local information

and time delays. Many of these features can be thought of as a manifestation of

asynchronously sampled data. Further, in SCAN there are constraints on data rate,

resources and energy. Given these factors, utility driven event-triggering techniques

have great potential for analyzing and designing SCAN.
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3.1.1 Contributions

The fundamental contribution of this chapter is a methodology for designing im-

plicitly verified utility driven event-triggered dynamic output feedback controllers

for Linear Time Invariant (LTI) systems. The proposed methodology provides a

means to achieve global asymptotic stability of the origin of the closed loop sys-

tem. The methodology naturally extends to a decentralized sensing scenario (as in

Chapter 2) and to the completely decentralized Sensor-Controller-Actuator Network

(SCAN) control system. Each of these architectures is important in its own right

and thus we address architectures where the sensors and the dynamic controller are

co-located (centralized event-triggering), one where they are not co-located (decen-

tralized sensing and actuation) and finally SCAN. In the latter architectures, all the

transmissions are asynchronous. The proposed event-triggering conditions depend

only on local information and include explicit positive lower thresholds for inter-

sampling times that are designed to ensure global asymptotic stability of the closed

loop system.

In the literature, among the few works that consider the problem of event-

triggered dynamic output feedback control, [40,41] proposed an event-triggered im-

plementation that can guarantee uniform ultimate boundedness of the plant state

and provided an estimate of minimum inter-communication time that holds semi-

globally (dependent on the initial state of the dynamic controller and the unknown

state of the plant). In comparison, the proposed controller guarantees asymptotic

stability and an estimate of inter-communication times that holds globally.
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In [42], a model based output feedback controller was proposed, where the

communication from the observer subsystem to the system model subsystem is trig-

gered by a condition that compares the observer state with that of a local copy of

system model subsystem. Again, the controller guarantees only uniform ultimate

boundedness of the closed loop state. In [43, 48] an output feedback control imple-

mentation for discrete-time systems is considered as an optimal control problem.

The proposed architecture includes a Kalman filter in the sensor subsystem and

identical observers in the sensor as well as actuator subsystems. The results provide

an upper bound on the optimal cost attained by the event-triggered system. In

comparison to [42,43,48], we do not require identical observers/models to be run at

different locations.

Recently, [49] proposed a method for designing continuous time decentralized

observers with discrete communication, wherein the sensor and the observer for

each subsystem are co-located. In addition, an observability condition for each of

the individual subsystems was assumed. Compared to [49], we consider non-co-

located sensor and observer nodes, require an observability condition only for the

overall system and further, incorporate decentralized dynamic control. Parts of the

work in this chapter have appeared in [29,30].

The rest of the chapter is organized as follows. Section 3.2 describes the main

problem under consideration and establishes the mathematical notation used in the

chapter. In Section 3.3, the design of decentralized event-triggering is presented in

a general setting, which is then applied to specific dynamic output feedback control

architectures in Section 3.4. The proposed design methodology is illustrated through
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simulations in Section 3.5 and finally Section 3.6 provides some concluding remarks.

In this chapter, the notation |.| is used to represent the Euclidean norm of a

vector and also the induced Euclidean norm of a matrix.

3.2 Problem Setup

Consider the closed loop system consisting of a Multi Input Multi Output (MIMO)

Linear Time Invariant (LTI) plant and an observer based dynamic controller

ẋ = Ax+Bu, y = Cx (3.1)

˙̂x = (A+ FC)x̂+BKx̂− Fy, u = Kx̂ (3.2)

where x ∈ Rn, x̂ ∈ Rn, y ∈ Rp and u ∈ Rm, are the plant state, the observer

state, the output of the plant and the control input to the plant, respectively. The

matrices A, B, C, F and K are of appropriate dimensions. Denoting the observer

estimation error and the state of the closed loop system, respectively, as

x̃ , x̂− x, ψ , [xT , x̃T ]T

where the notation [xT , x̃T ]T denotes the vector formed by concatenating the column

vectors x and x̃, the closed loop system may be written as

ψ̇ =

ẋ
˙̃x

 =

A+BK BK

0n,n A+ FC


x
x̃

 , Āψ (3.3)

where 0n,n represents an n×n matrix of zeroes. The dynamic controller (3.2) renders

the origin of the closed loop system (3.1)-(3.2) globally asymptotically stable if and

only if the matrix Ā is Hurwitz. Typically, (A,B) and (A,C) are assumed to
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be controllable and observable, respectively. This is sufficient to design the gain

matrices F and K (which exist) such that (A + FC), (A + BK) and hence Ā are

Hurwitz. For our purpose here, it is sufficient to assume that Ā is Hurwitz. In

this chapter, we are interested in event-triggered implementation of the dynamic

controller (3.2).

Before proceeding, we recall some of the notation introduced in Section 1.3.

Let ζ be any continuous-time signal (scalar or vector) and let {tζi } be the increasing

sequence of time instants at which ζ is sampled. Then we define the resulting

piecewise constant sampled signal, ζs, and the ‘measurement error’, ζe, as

ζs , ζ(tζi ), ∀t ∈ [tζi , t
ζ
i+1) (3.4)

ζe , ζs − ζ = ζ(tζi )− ζ, ∀t ∈ [tζi , t
ζ
i+1) (3.5)

In the sequel, it is sometimes convenient (and intuitive) to group together asyn-

chronously transmitted signals into a single vector. Let ζj,s ∈ Rdj , for j ∈ {1, . . . , q},

be q piecewise constant sampled data signals defined as in (3.4). Further, suppose

that the q signals are asynchronously sampled. That is, the q sequences {tζji } are

not necessarily identical. Then, the collection of q asynchronously sampled signals

is compactly represented as

ζ∗s = [ζT1,s, . . . , ζ
T
q,s]

T ∈ Rd, where d =

q∑
j=1

dj (3.6)

The measurement error is correspondingly defined as

ζ∗e , ζ∗s − ζ (3.7)

The specific form of event-triggering depends on the architecture of the closed
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loop system. In this chapter, we consider several different architectures ranging from

the centralized case (sensors and the controller are co-located) to the completely de-

centralized Sensor-Controller-Actuator Network (SCAN) control system. We would

like to clarify that Co-located components are assumed to have access to each others’

outputs at all times. Note that in this chapter, the terms ‘transmit’, ‘update’ and

‘sample’ are used interchangeably.

In this chapter, the sampled data control systems are designed to satisfy: (i)

global asymptotic stability of the closed loop system and (ii) a positive lower bound

for the inter-transmission times that holds globally. The proposed design procedure

can be divided into two major stages. In the first stage, utility driven event-triggers

are designed for asynchronous transmissions using centralized information (norm of

the complete state of the system). In the second stage, realizable event-triggers that

depend only on local information are derived by appropriately under-approximating

the centralized asynchronous event-triggers. The next section describes this proce-

dure in a general setting and in the subsequent section, it is applied to different

architectures.

3.3 Design of Decentralized Asynchronous Event-Triggering

This section presents the design of decentralized asynchronous event-triggering in a

general setting. Similarities may be found with the material of Section 2.4. Consider

the system

ξ̇ = Aξ +

q∑
j=1

Bjζj,s = Aξ + Bζ∗s (3.8)
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ζj,s ∈ Rdj is the sampled-data version of ζj, Bj ∈ Rnξ × Rdj is the jth input matrix,

ζ∗s = [ζT1,s, . . . , ζ
T
q,s]

T ∈ Rd is the asynchronously sampled-data version of ζ and is

defined according to (3.6), B = [B1, . . . ,Bq] ∈ Rnξ × Rm. With the continuous-time

feedback control law

ζ = Kξ, ζj = Kjξ, j ∈ {1, . . . , q} (3.9)

where Kj are appropriately defined block row matrices of K, the closed loop system

with the sampled-data controller can be expressed as

ξ̇ = (A+ BK)ξ + Bζ∗e = Āξ + Bζ∗e (3.10)

where Ā = (A+ BK) and ζ∗e = (ζ∗s − ζ) ∈ Rd is the measurement error due to sam-

pling. Finally, suppose that the continuous time control law would have stabilized

the closed loop system, that is,

(A3.1) Suppose that the matrix Ā is Hurwitz, which ensures that for each symmetric

positive definite matrix Q, there exists a symmetric positive definite matrix P

such that P Ā+ ĀTP = −Q.

Note that the design of the event-triggered controller is completed only with

the implicit specification of the sampling time instants, {tζji }, through the event-

triggers. In order to develop the decentralized asynchronous event-triggers, let us

first consider the following stability result.

Lemma 3.1. Consider the sampled-data system (3.8) and assume (A3.1) holds. Let

Q be any symmetric positive definite matrix and Qm its smallest eigenvalue. For
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each j ∈ {1, . . . , q}, let θj ∈ (0, 1), s.t. θ =

q∑
j=1

θj ≤ 1 and

wj =
σθjQm

|2PBj|
(3.11)

where σ ∈ (0, 1) is a design parameter. Suppose that for each j ∈ {1, . . . , q}, the

sampling instants t
ζj
i are such that |ζj,e| ≤ wj|ξ| for all time t ≥ 0. Then, ξ ≡ 0 (the

origin) is globally asymptotically stable.

Proof. Consider the candidate Lyapunov function V (ξ) = ξTPξ where P satisfies

(A3.1). Utilizing the measurement error interpretation, (3.10), of the system (3.8),

the derivative of the function V along the flow of the system is expressed as

V̇ = ξT [P Ā+ ĀTP ]ξ + 2ξTPBζ∗e

≤ −(1− σ)ξTQξ + |ξ|
[
|2PBζ∗e | − σQm|ξ|

]
≤ −(1− σ)ξTQξ + |ξ|

[ q∑
j=1

|2PBjζj,e| − σQm|ξ|
]

≤ −(1− σ)ξTQξ + |ξ|
[ q∑
j=1

|2PBj||ζj,e| − σQm|ξ|
]

The sampling instants have been assumed to be such that the conditions |ζj,e|/|ξ| ≤

wj =
σθjQm

|2PBj|
for each j are satisfied for all time t ≥ 0. Thus,

V̇ ≤ −(1− σ)ξTQξ

which implies that ξ ≡ 0 (the origin) is globally asymptotically stable.

Note that Lemma 3.1 holds for a family of asynchronous event-triggers, all

satisfying the conditions |ζj,e| ≤ wj|ξ|. In order to enforce these conditions strictly,

each event-trigger requires centralized (non-local) information, in the form of |ξ|.
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Our aim now is to derive realizable decentralized asynchronous event-triggers that

belong to the family considered in Lemma 3.1. To this end, consider the q centralized

asynchronous event-triggers for the sampled-data system (3.8)

t
ζj
i+1 = min

{
t ≥ t

ζj
i : |ζj,e| ≥ wj|ξ|

}
, j ∈ {1, . . . , q} (3.12)

where wj are given by (3.11). From (3.9), we have that ζj = Kjξ, where Kj ∈

Rdj × Rnξ is the jth block-row matrix of K. Since |ζj| ≤ |Kj||ξ|, enforcing the

conditions |ζj,e| ≤ wj|ζj|/|Kj| satisfies the requirements of Lemma 3.1. Although

these conditions utilize only locally available data, they fail to guarantee positive

minimum inter-sampling times. In order to design event-triggers that utilize only

locally available data while also guaranteeing minimum inter-sample times, let us

first analyze the emergent inter-sample times of the centralized asynchronous event-

triggers (3.12).

Now, consider the differential equation

φ̇ =
(
k + φ

)(
a+ bφ

)
(3.13)

where k, a, b are non-negative constants. The solution of this differential equation is

denoted, as a function of time t and the initial condition φ0, as φ(t, φ0). In particular,

if ka > 0 then φ(t, 0) is a strictly increasing function of time t and if ka = 0 then

φ(t, 0) ≡ 0. Thus, the time it takes φ to evolve from 0 to a non-negative constant

w is expressed as

τ(w, a, b, k) = min{{t ≥ 0 : φ(t, 0) = w} ∪ {∞}} (3.14)
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Notice that

τ(w, a, b, k)



= 0, if w = 0

> 0, if w > 0

=∞, if w > 0, ka = 0

(3.15)

Remark 3.1. Assuming b is non-zero, the solutions of the quadratic differential

equation (3.13) have a finite escape time. However, by definition (3.14), τ(w, a, b, k)

is strictly less than the finite escape time of the solution φ(., 0). Thus on the time

interval of interest, [0, τ(w, a, b, k)], the solution φ(., 0) is well defined.

The following lemma guarantees positive lower bounds for the emergent inter-

sample times for the system (3.8) with the event-triggers (3.12).

Lemma 3.2. Consider the closed loop system given by (3.8) and the event-triggers

(3.12). Let wj > 0 for j ∈ {1, . . . , q} be given by (3.11) and let W =

q∑
i=j

|Bj|wj.

Then for j ∈ {1, . . . , q}, the inter-sample times {tζji+1 − t
ζj
i } are lower bounded by

the positive constants

Tj = τ(wj, |Ā|+W − |Bj|wj, |Bj|, |Kj|). (3.16)

where the function τ is given by (3.14).

Proof. Letting νj , |ζj,e|/|ξ| and by direct calculation we see that for j ∈ {1, . . . , q}

dνj
dt

=
−(ζTj,eζj,e)

−1/2ζTj,eKj ξ̇
|ξ| − ξT ξ̇|ζj,e|

|ξ|3

≤
(
|Kj|+ νj

) |ξ̇|
|ξ|

≤
(
|Kj|+ νj

) |Āξ|+
q∑
j=1

|Bj||ζj,e|

|ξ|
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where for ζj,e = 0 the relation holds for all directional derivatives. This relation is

further simplified by considering (3.12), which ensures that the sampling instants

are such that for all time νj ≤ wj for each j ∈ {1, . . . , q}.

dνj
dt
≤
(
|Kj|+ νj

)(
|Ā|+W − |Bj|wj + |Bj|νj

)
Now, by definition, νi(t

ξj
i ) = 0 for every sampling time instant t

ξj
i . Next,

consider the flow

φ̇j =
(
|Kj|+ φj

)(
|Ā|+W − |Bj|wj + |Bj|φj

)
and its solution denoted, as a function of time t and the initial condition φj,0, as

φj(t, φj,0). Then, by the Comparison Lemma [45], it follows that

νj(t) ≤ φj(t− tξji , 0), ∀ t ≥ t
ξj
i

As a consequence Tj, given by (3.16) is a lower bound on the inter-sample times

{tζji+1 − t
ζj
i }. The fact that Tj > 0 follows from the property (3.15).

Remark 3.2. In Lemma 3.2, the procedure for the computation of the lower bounds

to the inter-transmission times is quite similar to that in [14]. The significant dif-

ference is that in Lemma 3.2, the guaranteed lower bounds are for asynchronous

sampling while [14] provides lower bounds for synchronous sampling.

Lemma 3.2 says that the inter-sample times that emerge from the event-

triggers (3.12) have positive lower bounds, given by (3.16). An exactly equivalent

method of implementing the event-triggers (3.12), for each j ∈ {1, . . . , q}, is as

follows.

t
ζj
i+1 = min

{
t ≥ t

ζj
i + Tj : |ζj,e| ≥ wj|ξ|

}
(3.17)
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In these event-triggers, the lower thresholds for the iner-sample times is explicitly

enforced, although the actual inter-sample times that emerge from (3.17) may have

lower bounds greater than Tj. The advantage with this implementation is that Tj

depends only on the system matrices and hence is locally known at the corresponding

event-trigger. In other words, the jth event-trigger (3.17) uses only locally available

information for time Tj after each of its transmissions. Thus, having guaranteed

a positive lower bound for inter-sample times, it is sufficient to under-approximate

|ξ| to guarantee global asymptotic stability of the closed loop system. One obvious

choice is to use the bound |ζj|/|Kj| ≤ |ξ| in the event-triggers, for j ∈ {1, . . . , q},

t
ζj
i+1 = min

{
t ≥ t

ζj
i + Tj : |ζj,e| ≥ wj

|ζj|
|Kj|

}
. (3.18)

A better option is to use the bound |K+
j ζj| ≤ |ξ|, where the notation .+ denotes the

pseudo-inverse of the matrix. In fact, this is the greatest lower bound for |ξ| given

ζj. Hence the event-triggers, for j ∈ {1, . . . , q},

t
ζj
i+1 = min

{
t ≥ t

ζj
i + Tj : |ζj,e| ≥ wj|K+

j ζj|
}

(3.19)

use only locally available information and achieve all the design requirements. While

the event-triggers we have described in [29, 30] are based on (3.18), the ones that

are described in this chapter utilize the improved version (3.19). Note, however,

that if ζj is scalar then (3.18) and (3.19) are equivalent. The following theorem

prescribes the constants Tj and wj in the event triggers, (3.19), that guarantee

global asymptotic stability of the origin.

Theorem 3.1. Consider the closed loop system (3.10) and assume (A3.1) holds. Let

Q be any symmetric positive definite matrix and let Qm be the smallest eigenvalue
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of Q. For each j ∈ {1, 2, . . . , q}, let wj and Tj be defined as in (3.11) and (3.16),

respectively. Suppose ζj are asynchronously updated at time instants determined by

(3.19). Then, the origin is globally asymptotically stable and the inter-transmission

times are explicitly enforced to have a positive lower threshold.

Proof. The statement about the positive lower threshold for inter-transmission times

is obvious from (3.19) and only asymptotic stability remains to be demonstrated.

This can be done by showing that the event-triggers (3.19) are included in the family

of event-triggers considered in Lemma 3.1. From the equivalence of (3.12) and (3.17),

it is clearly true that |ζj,e| ≤ wj|ξ| for t ∈ [t
ζj
i , t

ζj
i + Tj], for each j ∈ {1, 2, . . . , q}

and each i. Next, for t ∈ [t
ζj
i + Tj, t

ζj
i+1], (3.19) enforces |ζj,e| ≤ wj|K+

j ζj| ≤ wj|ξ|.

Therefore, the event-triggers, (3.19), are included in the family of event-triggers

considered in Lemma 3.1. Hence, ξ ≡ 0 (the origin) is globally asymptotically

stable.

In the next section, this general formulation is applied to specific architectures

of the control system.

3.4 Event-Triggered Implementations of The Dynamic Controller

In this section, the dynamic controllers and the event-triggering conditions are de-

veloped for different architectures.
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3.4.1 Architecture I - Centralized

In Architecture I, Figure 3.1, the observer and the sensor are co-located, which

means the observer has access to the sensor’s output at all times. The closed loop

Figure 3.1: Architecture I: Sensor output available to the controller at all time.

Co-located components have access to the others’ output at any given time.

system with the sampled data implementation of the observer and the controller is

given by

ẋ = Ax+Bus, y = Cx (3.20)

˙̂x = (A+ FC)x̂+BKx̂s − Fy, u = Kx̂ (3.21)

where the subscript s denotes the sampled versions of the corresponding continuous-

time signals. The second term, BKx̂s, in the observer, (3.21), is the natural choice

to model the effect of the sampled data control us = Kx̂s in the plant dynamics

(3.20).

The closed loop system can be written in terms of the measurement error,
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x̂e = x̂s − x̂, as

ψ̇ = Āψ +

BK
0n,n

 x̂e (3.22)

where ψ = [xT , x̃T ]T = [xT , (x̂ − x)T ]T , Ā is as defined in (3.3), 0n,n is the n × n

matrix of zeroes. Note that the sampled-data nature of the system is implicit in the

measurement error term, x̂e (or ψe).

In the notation of Section 3.3, ξ = ψ, ζ = x̂, Ā = Ā, B = G1, K = H1, where

where G1 ,

BK
0n,n

 , H1 ,

[
In In

]
(3.23)

so that x̂ = H1ψ. Here, the notation In denotes the n × n identity matrix. Since

there is only one event-trigger, q = 1, ζs = ζ∗s = x̂s and similarly, ζe = ζ∗e = x̂e.

Therefore, we have the following result as a direct consequence of Theorem 3.1.

Theorem 3.2. Consider the system given by (3.22) and assume (A3.1) is satisfied

with Ā = Ā. Let Q ∈ R2n be any positive definite matrix and let P be defined

according to (A3.1). Let the event-triggering condition be

ti+1 = min
{
t ≥ ti + T : |x̂e| ≥ w|H+

1 x̂|
}

where w =
σQm

|2PG1|
, in which Qm is the smallest eigenvalue of Q, 0 < σ < 1, G1 and

H1 are given by (3.23) while T = τ
(
w, |Ā|, |G1|, |H1|

)
, the function τ being as defined

in (3.14). Then, the origin of the closed loop system is globally asymptotically stable

and the inter-transmission times are lower bounded by T .

Note that the special structure of the matrix H1 implies that in this case, the

event-triggers of the form (3.18) and (3.19) (the one in the theorem) are exactly
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equivalent. Now, in Architecture I (Figure 3.1), since the sensor, the dynamic

controller and the event-trigger are all co-located, the event-trigger can in fact use

the additional information obtained from the sensor in determining the transmission

instants. In other words, an estimate of |ψ| better than |H+
1 x̂| may be obtained by

using the sensor data. Thus, let

H ,

In In

C 0p,n

 (3.24)

so that [x̂T , yT ]T = Hψ. The notation In again denotes the n × n identity matrix.

Therefore, we now have the following result.

Theorem 3.3. Consider the system given by (3.22) and assume (A3.1) is satisfied

with Ā = Ā. Let Q ∈ R2n be any positive definite matrix and let P be defined

according to (A3.1). Let the event-triggering condition be

ti+1 = min
{
t ≥ ti + T : |x̂e| ≥ w

∣∣∣H+[x̂T , yT ]T
∣∣∣}

where w =
σQm

|2PG1|
, in which Qm is the smallest eigenvalue of Q, 0 < σ < 1, G1

and H1 are given by (3.23), H is given by (3.24), while T = τ
(
w, |Ā|, |G1|, |H1|

)
,

the function τ being as defined in (3.14). Then, the origin of the closed loop system

is globally asymptotically stable and the inter-transmission times are lower bounded

by T .

Note that T remains the same as in Theorem 3.2.
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3.4.2 Architecture II - Centralized Synchronous

In Architecture II, Figure 3.2, the observer and the sensor are again co-located, which

means the observer has access to the sensor information at all times. However, the

Figure 3.2: Architecture II: Synchronous transmissions by the sensor and the con-

troller. Co-located components have access to the others’ output at any given time.

observer in this architecture utilizes sampled version of the sensor output so that

the dynamic controller has piecewise constant inputs (which simplifies the online

computation of the observer state, x̂). The controller and sensor outputs are sampled

synchronously at time instants determined by a single event-trigger. The observer

system in this case is given by

˙̂x = (A+ FC)x̂+BKx̂s − Fys (3.25)

where the subscript s denotes the sampled versions of the corresponding continuous-

time signals. The closed loop system may be written in terms of the measurement
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error x̂e = x̂s − x̂ and ye = ys − y as

ψ̇ = Āψ +Gs

x̂e
ye

 , where Gs ,

BK 0n,p

0n,n −F

 (3.26)

where ψ = [xT , x̃T ]T = [xT , (x̂ − x)T ]T , Ā is as defined in (3.3), 0a,b represents the

a× b matrix of zeroes. In the context of Section 3.3, ξ = ψ, ζ = [x̂T , yT ]T , Ā = Ā,

B = Gs, K = H, where H is the matrix defined in (3.24) and again q = 1 as there

is only one event-trigger.

Theorem 3.4. Consider the system given by (3.26) and assume (A3.1) is satisfied

with Ā = Ā. Let Q ∈ R2n be any positive definite matrix and let P be defined

according to (A3.1). Let the event-triggering condition be

ti+1 = min
{
t ≥ ti + T :

∣∣∣[x̂Te , yTe ]T
∣∣∣ ≥ w

∣∣∣H+[x̂T , yT ]T
∣∣∣}

where w =
σQm

|2PGs|
, in which Qm is the smallest eigenvalue of Q, 0 < σ < 1, Gs is

given by (3.26), H is given by (3.24), while T = τ
(
w, |Ā|, |Gs|, |H|

)
, the function

τ being as defined in (3.14). Then, the origin of the closed loop system is globally

asymptotically stable and the inter-transmission times are lower bounded by T .

3.4.3 Architecture III - Decentralized Architecture

In the decentralized architecture of Figure 3.3, the sensors are decentralized. Their

outputs are sampled and communicated to the central controller asynchronously

by independent event-triggers that depend only on local information. Further, the

different controller outputs are updated in parallel and asynchronously. The closed
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Figure 3.3: Architecture III: Centralized controller with decentralized sensors and

actuators, each transmitting its data asynchronously.

loop system is given by

ẋ = Ax+Bu∗s, y = Cx

˙̂x = (A+ FC)x̂+Bu∗s − Fy∗s , u = Kx̂

where x ∈ Rn is the state of the plant, x̂ ∈ Rn is the observer state, y ∈ Rp is

the vector of sensed outputs, u∗s ∈ Rm is the vector of inputs to the plant from

the actuators. The vectors u∗s and y∗s denote the asynchronously sampled versions

of the corresponding continuous-time signals as in (3.6). In other words, u∗s =

[u1,s, . . . , um,s] and y∗s = [y1,s, . . . , yp,s]. That is, each actuator output ui,s, for i ∈

{1, . . . ,m}, and each sensor output yj,s, for j ∈ {1, . . . , p}, represent asynchronously

sampled signals,

ui,s = u(tuik ), ∀t ∈ [tuik , t
ui
k+1)

yj,s = y(t
yj
k ), ∀t ∈ [t

yj
k , t

yj
k+1)

It is possible to define ui and yj as vectors (instead of scalars) with only minor

changes in notation. However, in this chapter we restrict to the scalar case for

72



simplicity.

In terms of the measurement error vectors u∗e = u∗s − u and y∗e = y∗s − y, the

closed loop system is

ψ̇ = Āψ +

 B 0n,p

0n,m −F


u∗e
y∗e

 , Gd ,

 B 0n,p

0n,m −F

 (3.27)

where ψ = [xT , x̃T ]T = [xT , (x̂ − x)T ]T , Ā is as defined in (3.3), 0a,b represents the

a× b matrix of zeroes. In the context of Section 3.3, ξ = ψ, ζ = [uT , yT ]T , Ā = Ā,

B ,

[
B̄ F̄

]
,

 B 0n,p

0n,m −F

 (3.28)

K ,

K̄
C̄

 ,

K K

C 0p,n

 (3.29)

where B̄ ∈ R2n × Rm, F̄ ∈ R2n × Rp, K̄ ∈ Rm × R2n and C̄ ∈ Rp × R2n are

appropriately defined block matrices. For this architecture, the number of event-

triggers is q = p + m. Denoting the ith column of B̄ and F̄ by B̄i and F̄i; and

similarly, the ith row of K̄ and C̄ by K̄i and C̄i, respectively, we have

ψ̇ = Āψ +
m∑
i=1

B̄iui,e +

p∑
j=1

F̄jyj,e (3.30)

ui = K̄iψ, yj = C̄jψ (3.31)

We now present the result for decentralized asynchronous event-triggering in dy-

namic output feedback control.

Theorem 3.5. Consider the system given by (3.30) and assume (A3.1) is satisfied

with Ā = Ā. Let Q ∈ R2n be any positive definite matrix and let P be defined
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according to (A3.1). For i ∈ {1, . . . ,m} and j ∈ {1, . . . , p}, let the event-triggering

conditions be

tuik+1 = min{t ≥ tuik + Tu,i : |ui,e| ≥ wu,i|K̄+
i ui|}

t
yj
k+1 = min{t ≥ t

yj
k + Ty,j : |yj,e| ≥ wy,j|C̄+

j yj|}

where wu,i =
σQmθu,i
2|PB̄i|

, wy,j =
σQmθy,j
2|PF̄j|

, in which Qm is the smallest eigenvalue

of Q, 0 < σ < 1, 0 < θu,i < 1, 0 < θy,j < 1 are design parameters such that∑
θu,i +

∑
θy,j = 1, B̄i and F̄j are given by (3.28). Let the inter-sampling time

thresholds be given by

Tu,i = τ(wu,i, |Ā|+W − |B̄i|wu,i, |B̄i|, |K̄i|)

Ty,j = τ(wy,j, |Ā|+W − |F̄j|wy,j, |F̄j|, |C̄j|)

where W =
∑ |B̄i|wu,i +

∑ |F̄j|wy,j, and the function τ is defined as in (3.14).

Then, the origin of the closed loop system is globally asymptotically stable and the

inter-sample times of ui and yj are lower bounded by Tu,i and Ty,j, respectively.

3.4.4 Architecture IV - SCAN

Finally, we consider a Sensor-Controller-Actuator Network (SCAN) control system

architecture, shown in Figure 3.4. The control system contains three functional lay-

ers - the sensor layer, the dynamic controller/observer layer and the actuator layer.

Each layer consists of non-co-located (physically distributed) nodes. The sensor,

observer and the actuator layers consist of p sensor nodes, n observer nodes and m

actuator nodes, respectively. In Figure 3.4, the solid arrows indicate physical links,
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Figure 3.4: The SCAN control architecture has three functional layers. Each node in

the sensor layer intermittently broadcasts its output to all the nodes in the observer

layer. Each node in the observer layer intermittently broadcasts its state to every

other node in that layer. Each of the first m nodes of the observer layer also

transmit intermittently to one of the actuator nodes. The dotted arrows indicate

even-triggered communication links, with the event-trigger running at the tail end

of the arrow. The solid arrows are physical links.
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while the dotted arrows indicate the links on which the communication is event-

triggered. The event-trigger for each of these links is located at the tail end of the

arrow and uses only information that is locally available at that node. Meanwhile,

the node or the nodes at the receiving end utilize the asynchronously transmitted

data (sampled data), indicated by the additional subscript s. Note that the arrows

that go from an arbitrary node ‘A’ to a layer circle in the figure indicate broadcast

communication from the node ‘A’ to all the nodes in the layer circle. The aggregate

observer state z = [z1, . . . , zn]T is simply a basis transformation of the vector x̂ of

(3.2). When this basis transformation is appropriately chosen, the communication

from the observer layer to the actuator layer is simplified and the actuator inputs

to the plant are ui = zi,s for i ∈ {1, . . . ,m}.

Figure 3.4 is a functional description of the control system and also represents

the most general case, where no two nodes are co-located. If some nodes (from the

same or different layers) are co-located, then each collection of co-located nodes need

not utilize the sampled versions of the data. Of particular interest is the case where

the observer node zi is co-located with the actuator node ui for i ∈ {1, . . . ,m}. In

the sequel, apart from the general case, this special case is also discussed briefly.

Next, in order to keep the notation simple, the data at each node is assumed to

be scalar. Our results can easily be generalized to the vector case with only minor

changes to the notation.

Now, let us consider the design of event-triggered dynamic output feedback

control over SCAN architecture of Figure 3.4. The heart of the SCAN architec-

ture of Figure 3.4 is the observer layer. Once this is designed, the decentralized
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asynchronous event-triggers can be designed using the results in Section 3.3. As

noted earlier, the nodes in the observer layer do not compute x̂ but rather a basis

transformation of x̂. Defining this transformation is our next task.

(A3.2) Assume that the column space of the matrix K, in (3.2), is of dimension m.

Under this assumption, the pseudoinverse K+ ∈ Rn ×Rm has only the trivial

null space. Consider the mapping

x̂ = K+u+ x̂N (K)

where x̂N (K) ∈ Rn−m is an element of the null space ofK and by definition, K+u is an

element of the row space of K. Assumption (A3.2) implies that this mapping is one-

to-one and onto. Further, since the row space and the null space of K are orthogonal

to each other, the basis for the two subspaces can be chosen independently. Thus,

let

S =

[
K+ KN

]
(3.32)

where KN ∈ Rn × Rn−m is an arbitrary matrix whose columns span the null space

of K. Then, the matrix S is invertible and satisfies

x̂ = Sz (3.33)

u = u∗s = KSz∗s = K̄z∗s , with K̄ =

[
Im 0m,n−m

]
(3.34)

where Im is the m×m identity matrix and 0m,n−m is m× (n−m) matrix of zeroes.

Note that there is no ‘sampling’ of the data between the actuator nodes and the
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plant. However, the notation u∗s is useful for keeping in mind that the actuation sig-

nals are the asynchronously transmitted signals K̄z∗s . Thus, the dynamic controller

(observer), (3.2), is equivalently expressed as

ż = S−1[(A+ FC)Sz +BK̄z∗s − Fy] (3.35)

where K̄ = KS has been used.

Letting H = S−1(A + FC)S, the sampled data version of the decentralized

observer is given by

ż = D(H)z + (H −D(H))z∗s + S−1BK̄z∗s − S−1Fy∗s

where D(H) is the diagonal matrix with its diagonal given by the diagonal of the

matrix H. It is more convenient to write the observer equation in terms of the

sampling induced measurement errors, as follows.

ż = S−1[(A+ FC)Sz +BK̄z∗s − Fy] + (H −D(H))z∗e − S−1Fy∗e

which when expressed in terms of x̂ is given as

˙̂x = (A+ FC)x̂+Bu∗s − Fy + S(H −D(H))z∗e − Fy∗e

Let us denote the observer estimation error and the state of the closed loop system,

respectively, as

x̃ , x̂− x, ψ , [xT , x̃T ]T

Then the closed loop system may be written compactly as

ψ̇ = Āψ +

 BK̄

S(H −D(H))

 z∗e −
0n,p

F

 y∗e (3.36)
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where the matrix Ā is as defined in (3.3). The following theorem prescribes the

decentralized asynchronous event-triggering mechanism for the SCAN control ar-

chitecture in Figure 3.4.

Theorem 3.6. Consider the closed loop system, (3.36), and assume that (A3.1)

holds with Ā = Ā. Also suppose (A3.2) holds. Let ζ = [zT , yT ]T and

B =

 BK̄ 0n,p

S(H −D(H)) −F

 , K =

S−1 S−1

C 0p,n

 .
Further, for each j ∈ {1, . . . , q = n + p}, let ζj ∈ R, Bj is the jth column of B and

Kj is the jth row of K. Let Q ∈ R2n×R2n be any symmetric positive definite matrix

and let Qm be the smallest eigenvalue of Q. For each j ∈ {1, 2, . . . , q}, let wj and

Tj be defined as in (3.11) and (3.16), respectively. Suppose ζj are asynchronously

transmitted at time instants determined by (3.19), with t
ζj
0 < 0. Then, ψ ≡ 0

(the origin) is globally asymptotically stable and the inter-transmission times are

explicitly enforced to have a positive lower threshold.

Proof. Assumption (A3.2) implies that S is invertible and that the matrices B and

K are well defined. The rest of the proof follows from Theorem 3.1.

Remark 3.3. In case the first m nodes of the observer layer, z, are co-located with

the corresponding actuator nodes, then u = K̄z may be used. In this case, the closed

loop system equation is given by

ψ̇ = Āψ +

 0n,n

S(H −D(H))

 z∗e −
0n,p

F

 y∗e (3.37)
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and Theorem 3.6 holds for this system if B is appropriately chosen as

B =

 0n,n 0n,p

S(H −D(H)) −F

 .
Remark 3.4. In Figure 3.4 and in our results, the sensor nodes and the observer

nodes have been assumed to intermittently broadcast their data to all the nodes in

the controller/observer layer. However, this has been done purely for ease of pre-

sentation. In practice, a sensor node yj need not transmit its data to the observer

node zk if the dynamics of zk is not dependent on yj. A similar statement for intra

observer layer communication also holds.

Remark 3.5. As discussed in Remark 2.3 of the previous chapter, the idea of an

explicit threshold for the inter-transmission times as in the event-triggers, (3.19),

has been employed previously in [46]. However, in [46] such a mechanism is used

to trigger the controller updates rather than the asynchronous transmissions from

the sensors to the controller. Further, in [46] the controller utilizes synchronous

measurements from the sensors to compute the control input to the plant, which

allows the lower bound for inter-transmission times from [14] to be used.

In Architectures I and II of this chapter, the transmissions/samplings are syn-

chronous. As a result, the inter-transmission time thresholds are exactly as those

obtained from [14]. On the other hand, in Architectures III and IV, the controller

has access only to asynchronously received data and the inter-transmission time

thresholds of each node need to be computed as in Lemma 3.2.

In the next section, simulation results are presented to illustrate the proposed
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event-triggered controllers.

3.5 Simulation Results

In this section, the proposed event-triggered dynamic output feedback controllers

are illustrated for a linearized model of a batch reactor, [47]. The plant and the

dynamic controller are given by (3.1)-(3.2) with

A =



1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


, B =



0 0

5.679 0

1.136 −3.146

1.136 0



C =

1 0 1 −1

0 1 0 0

 , K = −

0.1768 0.079 0.0794 −0.2464

1.0328 0.1896 −0.4479 0.7176



F = −



−2 0

−4 −1

−2 2

−1 −4


In the event-triggered controllers, Q = I8, the 8× 8 identity matrix, σ = 0.95 were

chosen. For the simulations presented here, the initial condition of the plant was

chosen as x(0) = [2, 3,−1, 2]T . The state of the centralized observer in Architec-

tures I-III was chosen as x̂(0) = [0, 0, 0, 0]T . The simulation time for each of the

simulations was Tsim = 10s.
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3.5.1 Architecture I

In this architecture, the sampled data is x̂s and its initial condition was chosen as

x̂s(0) = x̂(0). The inter-event time threshold of the event-triggers in Theorems 3.2

and 3.3 was obtained as T = 3ms. With the event-trigger of Theorem 3.2 (which is

essentially the one proposed in our previous work, [29]), the number of events, aver-

age inter-event time and minimum inter-event time were observed to be 543, 18.4ms

and 3ms, respectively. With the event-trigger of Theorem 3.3 the corresponding

values were 484, 20.7ms and 7.2ms, respectively. This clearly shows the improve-

ment over our previous results in [29]. The simulation results for Theorem 3.3 are

summarized in Figures 3.5 and 3.6. Figure 3.5 shows the evolution of the Lyapunov

function and its derivative along the flow of the closed loop system. Figure 3.6

shows the inter-transmission times and the cumulative frequency distribution of the

inter-event times.
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Figure 3.5: Architecture I: (a) The evolution of the Lyapunov function and (b) its

derivative along the flow of the closed loop system.
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Figure 3.6: Architecture I: (a) Inter-event times and (b) the cumulative frequency

distribution of the inter-event times.

3.5.2 Architecture II

In this architecture, the sampled data is [x̂Ts , y
T
s ]T and its initial condition was chosen

as [x̂Ts (0), yTs (0)]T = [x̂T (0), yT (0)]T . The inter-event time threshold of the event-

trigger in Theorem 3.4 was obtained as T = 0.9ms. For the presented simulation,

the number of events, average inter-event time and minimum inter-event time were

observed to be 1081, 9.3ms and 3.2ms, respectively. To give a comparison, with the

event-trigger corresponding to (3.18), these values were observed as 1548, 6.5ms and

2.2ms, respectively. Again the improvement over our previous results in [29] is clearly

visible. Figure 3.7 shows the evolution of the Lyapunov function and its derivative

along the flow of the closed loop system. Figure 3.8 shows the inter-transmission

times and the cumulative frequency distribution of the inter-event times.
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Figure 3.7: Architecture II: (a) The evolution of the Lyapunov function and (b) its

derivative along the flow of the closed loop system.
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Figure 3.8: Architecture II: (a) Inter-event times and (b) the cumulative frequency

distribution of the inter-event times.
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3.5.3 Architecture III

Finally in Architecture III, the sampled data is ζ∗s = [u∗Ts , y
∗T
s ]T . Even though

y(0) = [−1, 3]T , the initial sampled data was chosen as

ζ∗s (0) = [0, 0,−1.005, 3.01]T

to be consistent with the asynchronous transmission model. The zeroth transmission

instant was chosen as t
ζj
0 = −Tj for each j ∈ {1, . . . , 4}. This is to ensure sampling at

t = 0 if necessary. However, by choosing the initial sampled data sufficiently close to

the actual data, the asynchronous nature of transmissions is respected, as indicated

by the first transmission times by the controller and the sensors, which occur at

tζ1 = [0, 0, 0.6, 1.5]ms for the chosen initial conditions. The inter-transmission time

thresholds in the event-triggers of Theorem 3.5 were obtained as

Tu = [1.1, 0.8]ms, Ty = [0.7, 0.6]ms

which were also the minimum inter-transmission times for the presented simula-

tion. Over a simulation time of 10s, the average inter-transmission times were

obtained as T̄ = [5.3, 3.8, 3.6, 3.8]ms, which are roughly five times larger than the

inter-transmission time thresholds. Figure 3.9 shows the evolution of the Lyapunov

function and its derivative along the flow of the closed loop system. Figure 3.10

shows the inter-transmission times and the cumulative frequency distribution of the

inter-transmission times.
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Figure 3.9: Architecture III: (a) The evolution of the Lyapunov function and (b) its

derivative along the flow of the closed loop system.
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Figure 3.10: Architecture III: (a) Inter-transmission times and (b) the cumulative

frequency distribution of the inter-transmission times of the nodes. The curves

labelled with ui and yj denote the relevant inter-transmission time data of the con-

troller output ui and the sensor output yj, respectively.
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3.5.4 Architecture IV - SCAN

In the SCAN architecture, the initial condition of the observer was chosen as z(0) =

[0,−1, 1,−1]T . Denoting ζ = [zT , yT ]T as in Theorem 3.6, the initial sampled data

was chosen arbitrarily as

ζ∗s (0) = [−1.001,−1.001, 1.001,−1.001,−1.001, 3.002]T

so that it is consistent with the asynchronous transmission model. The zeroth

transmission instant was chosen as t
ζj
0 = −Tj for each j ∈ {1, . . . , 6}. This is to

ensure sampling at t = 0 if necessary. However, by choosing the initial sampled

data sufficiently close to the actual data, the asynchronous nature of transmissions

is respected, as indicated by the first transmission times by the 6 nodes which

occur at tζ1 = [6, 1.1, 0.4, 1.2, 0.4, 0.9]ms for the chosen initial conditions. The inter-

transmission time thresholds in the event-triggers, (3.19), were obtained as

T = 10−4 × [4.886, 4.676, 5.247, 3.976, 4.12, 3.881]s

which were also the minimum inter-transmission times for the presented simulation.

Over a simulation time of 10s, the average inter-transmission times for the nodes

were obtained as T̄ = [3.1, 3, 2.7, 2.6, 2.7, 3]ms, which are roughly an order of mag-

nitude larger than the inter-transmission time thresholds. Figure 3.11 shows the

evolution of the Lyapunov function and its derivative along the flow of the closed

loop system. Figure 3.12 shows the inter-transmission times and the cumulative

frequency distribution of the inter-transmission times of the nodes.
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Figure 3.11: Architecture IV: (a) The evolution of the Lyapunov function and (b)

its derivative along the flow of the closed loop system.
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Figure 3.12: Architecture IV: (a) Inter-transmission times and (b) the cumulative

frequency distribution of the inter-transmission times of the nodes. The curves

labelled with zi and yj denote the relevant inter-transmission time data of those

nodes, respectively.

88



3.6 Conclusions

In this chapter event-triggered dynamic output feedback controllers have been de-

veloped for architectures where the controller and the sensor are co-located as well

as where they are not co-located. In each case, a minimum inter-transmission time

is enforced by incorporating a lower threshold on inter-transmission interval in the

event-triggering conditions. The design of these thresholds was also presented. The

designed event-triggering conditions have been shown to ensure global asymptotic

stability of the origin of the closed loop system. The proposed controllers have been

illustrated through simulations. In Architecture III, the sensors, the controller and

the actuators are not co-located. Hence, the event-triggering conditions have been

designed for the sensors and controller outputs to be transmitted asynchronously.

In Architecture IV, control of LTI systems over Sensor-Controller-Actuator

Networks (SCAN) is considered. A SCAN is divided into three functional layers -

sensor layer, controller/observer layer and the actuator layer, each layer consisting

of several nodes. The communication between the nodes is intermittent and event-

triggered. Further, the flow of information is only from the sensor to observer to

actuator layer with the only intra-layer communication occurring in the observer

layer. With a careful choice of basis for decentralized estimation of the plant state

in the observer layer, each actuator node intermittently receives data from a cor-

responding unique observer node. The event-triggers are designed to utilize only

locally available information, making the nodes’ transmissions asynchronous. Some

of the future work will include relaxation of assumption (A3.2), extending the design
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to the case where an arbitrary communication graph is given and optimal placement

of the controller/observer nodes (see Remark 3.3 for example).

In each architecture, the observer and the controller gains can be chosen in-

dependently, as in the classical case. However, their effect on the exact conver-

gence rate and inter-sampling times has to be studied in detail. The inter-sample

time thresholds can also be made less conservative. Finally, in [44] (and references

therein), a self-triggered dynamic output feedback controller was presented that ren-

ders the origin of the closed loop system globally asymptotically stable under the

absence of exogenous disturbances. The controller was designed by allowing the

Lyapunov function to evolve non-monotonically and obtained larger inter-sample

times. It would be interesting to apply the ideas from the current chapter to design

event-triggered variants of [44], specially with decentralized asynchronous event-

triggering.
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Part II

Co-Design of Event-Triggering and Quantization
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Chapter 4

Utility Driven Co-design of Event-Trigger and Quantizer

4.1 Introduction

In this chapter we revisit the problem of control under data rate constraints and

limited information, a problem that has been actively researched in the last decade.

A good survey paper on this and other topics is [50]. Many papers have looked

at issues such as fundamental limits on communication rate for stabilization (see

for example [51–55]), while others have focused on asymptotic stabilization with

dynamic quantization [56–60]. Control under data rate constraints and limited

information occurs frequently in Cyber Physical Systems (CPS), often with the

additional constraint of limited computational capabilities.

The field of event-triggered control (example: [14,15,19]) also has similar mo-

tivations and seeks to systematically design controllers that update or sample the

control action at low average rates. These controllers are based on the princi-

ple of updating the control only when necessary (control by exception). In other

words, event-triggered control seeks to minimize the average rate of communication

instances, while the amount of information that can be conveyed at each commu-

nication instance is not limited. However, in practical situations quantization is

inevitable, and hence it is necessary to consider utility driven sampled data control

along with quantization. The survey paper [22] makes a related remark that the con-
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nection between quantized and even-triggered feedback must be studied. In [61,62]

event-triggered control systems with dynamic quantization are proposed. While [61]

considers a model based approach, with identical models of the plant running on the

sensing and the actuation side, [62] considers a zero-order-hold actuation. Keeping

in mind the limited computational resources, in this chapter we only consider static

quantizers.

Starting from very similar motivations as utility driven event-triggered control,

there is a body of literature that seeks to design coarsest static quantizers. Elia and

his co-workers first studied this problem in the context of quadratically stabilizable

linear time invariant systems [63, 64] (single input), [65] (two input), and demon-

strated that the coarsest quantizer is the logarithmic quantizer. Fu and Xie [66]

extended the results of [64] to linear multiple input systems by quantizing each

dimension separately, and their design resulted in an infinite-density logarithmic

quantizer. Finite density logarithmic quantizers for the multiple input case were de-

signed in [67–70]. All the above references focussed on Linear Time Invariant (LTI)

systems and, except for [63,64], the results were only developed for discrete time sys-

tems. While [63] designed an implicitly verified discrete-event controller, [64] studied

the optimal periodic sampling time. The references [71, 72] utilized a Robust Con-

trol Lyapunov Function (RCLF) approach to characterize the coarsest quantizers

for single input control affine nonlinear systems.

Systems with quantization can be viewed as switched systems [73], the switch-

ing surfaces being the boundaries of the quantization cells. In other words, a quan-

tizer is a discrete-event encoder, whose output is the quantization state. The quan-
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tization state evolves in a discrete set and the boundaries of the quantization cells

determines the event-trigger. The complexity of the event-triggering condition is

determined by the complexity of the shape of the quantization cells. An RCLF

approach to quantization in nonlinear systems may lead to very complicated geome-

tries (for example, see Equation (10) in [71]) and the event-triggering condition may

be as computationally intensive, if not more, as the original control law.

Thus, we see that on the one hand, event-triggered control [14,15,19] assumes

the availability of an infinite precision quantizer and on the other an RCLF quantizer

assumes that the induced event-trigger is computationally inexpensive. Therefore,

in the context of Cyber Physical Systems, there is a need to co-design the quantizer

and the utility driven event-trigger for emulation based control.

4.1.1 Contributions

In this chapter, we exploit the common principle behind utility driven sampled

data control and coarsest quantization (robustness to measurement errors) to de-

sign discrete-event controllers for semi-global asymptotic stabilization of general

nonlinear systems. Specifically, we propose a methodology for co-designing the

event-trigger and the quantizer in an emulation based controller. Although the re-

sultant quantizer is not necessarily coarsest, it is however a finite density logarithmic

quantizer and is easy to implement. The proposed algorithm produces an implicitly

verified emulation based discrete-event controller that asymptotically stabilizes the

origin with a specified arbitrary compact region of attraction. In the special case
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that a certain Lipschitz constant holds globally, the origin of the closed loop system

is globally asymptotically stable. In comparison to the coarsest quantization liter-

ature, our quantizer design holds for general multi-input nonlinear continuous time

systems. Compared to [61,62] we co-design the event-trigger and the static quanti-

zation, keeping in mind the applicability to control systems with low computational

capabilities. Another important aspect of the proposed quantizer is the presence

of hysteresis, which is utilized for guaranteeing a dwell time for the updates of the

discrete event controller. A significant portion of the work in this chapter has been

published in [31].

The rest of the chapter is organized as follows. Section 4.2 introduces the basic

notation and states precisely the problem under study. The design of the event-

trigger is discussed in Section 4.3 and the quantizer design is described in Section

4.4. An example of a two dimensional nonlinear system is provided in Section 4.5

and finally some concluding remarks are made in Section 4.6.

4.2 Problem statement

Note: The results in Sections 4.2 and 4.3 do not depend on a specific choice of a

norm. However, the proposed quantizer design utilizes the max or the infinity norm.

Therefore, we adopt this norm through out the chapter, and use the notation |y| to

denote the max norm, ||y||∞, of a vector y.

Consider a nonlinear system of the form

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (4.1)
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with feedback control u = κ(x) that renders the origin of the closed loop system

ẋ = f(x, κ(x)) (4.2)

globally asymptotically stable. Now, consider the problem of controlling the system

with quantized state feedback, where the quantizer is static. A static quantizer

can be modeled as a nonlinear function of the state. However, in this chapter we

consider quantizers with hysteresis (hence memory). Thus, we define the quantizer

function in a more general sense as follows.

Definition 4.1. A quantizer is a function q : Rn×Ω −→ Ω, where Ω = {ω0, ω1, ω2, . . . }

is a countable set, with ωk ∈ Rn for each k and
⋃
ωk∈Ω

{x ∈ Rn : q(x, ωk) = ωk} = Rn.

In this chapter ωk are called the generating points and Ω is called the generating

set (or the set of generating points) of the quantizer. The quantization density is

defined as

Definition 4.2. Quantization density: For 0 < ε ≤ 1, let N(ε) be the number of

elements ω ∈ Ω such that ε ≤ |ω| ≤ 1/ε. The quantization density of the quantizer

q is defined as

ηq = lim sup
ε→0

N(ε)

−2ln(ε)
. (4.3)

This definition is similar to the one in [64]. The presence of hysteresis in

the quantization state xq, and the interpretation of a quantizer as a discrete-event

encoder necessitates the treatment of xq as a state variable and the resultant closed

loop system as a hybrid system. In this chapter, we adopt the notation and theory

96



described in [74] (and the references therein) to study this hybrid system. Let

ξ = [x;xq] ∈ Rn × Ω denote the state of the hybrid system (the notation [x;xq]

denotes the concatenation of the vectors x and xq). Then, the closed loop hybrid

system may be expressed as

ξ̇ = F (ξ) :=


ẋ = f(x, κ(xq))

ẋq = 0

, ξ ∈ C (4.4)

ξ+ = G(ξ) :=


x+ = x

x+
q = q(x, xq)

, ξ ∈ D (4.5)

H = (C,F,D,G) (4.6)

where C ⊂ Rn × Ω and D ⊂ Rn × Ω are appropriately defined sets. The hybrid

system H is the collection of the flow set, C, the flow map, F , the jump set, D, and

the jump map, G. The quantizer is specified by the set Ω and the function q(x, xq).

As is clear from our formulation, the updates of the quantized state information, xq,

are not periodic, unlike in [64]. Rather, the quantized state is updated whenever a

state-dependent triggering condition is satisfied, that is when ξ ∈ D.

The event-trigger determines when the feedback is communicated and the

control updated. The quantizer determines what is communicated. As discussed

earlier, an efficient discrete event controller necessitates the co-design of the event-

trigger and the quantizer. Therefore, the problem under consideration in this chap-

ter is that of co-designing the event-trigger and the quantizer in emulation based

controllers for semi-global asymptotic stability of general nonlinear systems. Specif-
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ically, the problem is to design the sets Ω, C and D; and the quantizer function q

such that both the event-trigger and the quantizer are efficient. In the next section,

the design of the event-trigger (design of the sets C and D) is detailed.

4.3 Design of the Flow and the Jump Sets

The following are the main assumptions in the chapter.

(A4.1) The closed loop system (4.2) is input-to-state stable (ISS) with respect to

measurement error, i.e., there exists a C1 Lyapunov function, V : Rn → R,

that satisfies

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V

∂x
f(x, κ(x+ e)) ≤ −α(|x|), if γ(|e|) ≤ |x|

where α1(.), α2(.), α(.) and γ(.) are class K∞1 functions.

(A4.2) The function γ is Lipschitz on compact sets.

It is actually sufficient to assume that the origin of the system (4.2) is asymptotically

stable as opposed to the ISS assumption (A4.1). However, the ISS assumption keeps

the exposition focused and simpler.

Expressing the measurement/quantization error as

e , xq − x, (4.7)

1A continuous function α : [0,∞) → [0,∞) is said to belong to the class K∞ if it is strictly

increasing, α(0) = 0 and α(r)→∞ as r →∞ [45].
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let us define the flow and the jump sets as

C = {ξ ∈ Rn × Ω : |e| ≤ W |x|} (4.8)

D = {ξ ∈ Rn × Ω : |e| ≥ W |x|} (4.9)

where W is a positive constant. The sets C and D capture a simple event-triggering

condition. The stability aspects of the hybrid system (4.6) maybe studied through

a hybrid Lyapunov function candidate [74], which is defined as follows.

Definition 4.3 (Lyapunov-function candidate). Given the hybrid system H with

data (C,F,D,G) and the compact set A ⊂ Rp, the function Vh : dom Vh → R is

a Lyapunov-function candidate for (H,A) if (i) Vh is continous and nonnegative

on (C ∪ D) \ A ⊂ dom Vh, (ii) Vh is continuously differentiable on an open set O

satisfying C \ A ⊂ O ⊂ dom Vh, and (iii) lim
{ξ→A,ξ∈(dom Vh)∩(C∪D)}

Vh(ξ) = 0.

For the hybrid system (4.6), let

A , {ξ ∈ Rn × Ω : x = xq = 0} (4.10)

and define the hybrid Lyapunov function candidate for the pair (H,A) as

Vh(ξ) = V (x) + max{0, |xq − x| − 2W |x|} (4.11)

where V is given by (A4.1). Notice that Vh(ξ) = V (x) for all ξ ∈ C. The func-

tion Vh(ξ) is positive definite and its sub-level sets are compact. Also note that

〈∇Vh(ξ), F (ξ)〉 =
∂V

∂x
f(x, κ(xq)) for all ξ ∈ C \ A and in an open neighborhood of

C \ A.
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4.3.1 Selection of W

Let

Br = {x ∈ Rn : |x| ≤ r}. (4.12)

Er = {ξ ∈ Rn × Ω : |x| ≤ r, |xq| ≤ r}. (4.13)

Note that for each r finite, Br and Er are compact sets in Rn and Rn×Ω, respectively.

For each µ ≥ 0 define

R , {ξ : Rn × Ω : V (x) ≤ µ, |xq| ≤ R , α−1
1 (µ)} (4.14)

where α1(.) is the function from assumption (A4.1). Then, it is clear that R ⊂ ER.

For each compact set B that contains the origin, there is a µ ≥ 0 such that B ⊂ R.

Therefore, without loss of generality it is assumed that the prescribed region of

attraction is of the form (4.14). If assumption (A4.2) holds, then there exists a

constant WR > 0 such that

WR|x| ≤ γ−1(|x|), ∀x ∈ BR (4.15)

The design of the flow and the jump sets is complete if we specify how the

constant W is to be chosen. The following Lemma provides a methodology for

accomplishing this goal.

Lemma 4.1. Consider the hybrid system (4.6) with C and D defined as in (4.8)-

(4.9). Suppose assumptions (A4.1) and (A4.2) hold. Let the desired region of at-

traction be R, (4.14), for some µ ≥ 0. If W ≤ WR then

〈∇Vh(ξ), F (ξ)〉 < 0, ∀ ξ ∈ C ∩R \ A (4.16)
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Proof. By the definition of WR and the fact that W ≤ WR, it follows that

W |x| ≤ WR|x| ≤ γ−1(|x|), ∀x ∈ BR

Recall the definition of the flow set C, (4.8). Also,R is a subset of ER, (4.13). There-

fore, (C ∩ R) ⊂ {ξ ∈ Rn × Ω : |e| ≤ γ−1(|x|)} and assumption (A4.1) immediately

implies that (4.16) is true.

Remark 4.1. If the function γ is globally Lipschitz, then (4.16) holds for all ξ ∈

C \ A and not just for ξ ∈ (C ∩R) \ A.

If WR ≥ 1 then quantization is not required and a constant control u ≡ κ(0)

asymptotically stabilizes the origin of the nonlinear system (4.1). This is made more

precise in the following proposition and the subsequent discussion.

Proposition 4.1. Consider the hybrid system (4.6) with C and D defined as in

(4.8)-(4.9). If WR ≥ W > 1 and Ω = {0}, then the set A, (4.10), is asymptotically

stable with R included in the region of attraction.

Proof. The set (D ∩ R) = {x ∈ Rn × {0} : |x − 0| ≥ W |x|} ∩ R = ∅, the empty

set. On the other hand, (C ∩ R) = {x ∈ Rn × {0} : |x − 0| ≤ W |x|} ∩ R = R.

Lemma 4.1 then implies that the set A is asymptotically stable with R included in

the region of attraction.

IfWR ≥ W > 1 and Ω = {0}, then the setD is empty. Thus, the hybrid system

(4.6) is really just the continuous time system (4.4) with xq ≡ 0. If WR ≥ W = 1 and

Ω = {0}, then (C∩R) = (D∩R) = R and there can be jumps in the solutions of H,

(4.6). However, the jump map is the identity map, x+ = x and x+
q = xq = 0. Since
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the jump map is induced by the controller and is not inherent in the system, the

identity jump map can be ignored by the controller and we can focus only on purely

flowing solutions that start in R\A. All such solutions asymptotically converge to

the set A.

Therefore, in the sequel we assume that W = WR < 1 unless specifically

mentioned otherwise. In the next section the design process of the quantizer is

detailed.

4.4 Design of The Quantizer

Now, all that is left to be designed is the quantizer. Our goal here is the follow-

ing. Given an event-trigger, (4.8)-(4.9), satisfying Lemma 4.1, design an efficient

quantizer that semi-globally asymptotically stabilizes the origin of the system with

a prescribed compact region of attraction.

In the coarsest quantizer literature, robustness to measurement errors is ex-

ploited to design finite density logarithmic quantizers and in single input LTI systems

the coarsest quantizer. The quantizer in this chapter also utilizes the same princi-

ple, although indirectly through the simplified event triggering condition designed

in Section 4.3. In our opinion, this approach is better suited for continuous time

nonlinear systems for two reasons. Considering general nonlinear systems, the set

{x ∈ Rn : ∂V
∂x
f(x, κ(xq)) < 0} for an arbitrary xq can have a complicated shape.

This can potentially lead to a complex design process, that requires significant cus-

tomization for individual systems. The second drawback is that of implementation
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- checking, in real time, whether the state belongs to a particular quantization cell

can be as intensive, if not more, as computing the control itself. This defeats our

motivation of designing controllers that require low rate of communication and low

computation capabilities.

The proposed quantizer design is much simpler and applicable to a wide range

of nonlinear systems. The chief features of the proposed quantizer design are as

follows. The quantization cells are determined by the simplified triggering condition,

(4.8)-(4.9). In the triggering condition, the max or the infinity norm is used, leading

to a very easily implementable triggering condition and quantizer. The quantization

cells are allowed to be overlapped, and the resulting hysteresis is utilized to avoid

chattering of the controller.

Definition 4.4. For each k ∈ {0, 1, 2, . . .}, the quantization cell generated by ωk is

the set Ck = {x ∈ Rn : q(x, ωk) = ωk}.

In the hybrid system (4.6), xq changes only during jumps. In order to minimize

the number of control updates or jumps, it is necessary to ensure that at each jump

the state is mapped outside the jump set D, or more precisely, it is required that

ξ+ = G(ξ) ∈ (C \D) ∩ ER, ∀ξ ∈ (D ∩ ER) \ A (4.17)

However, x does not change during jumps, and x+
q = q(x, xq). Hence, the quantizer

needs to be designed such that x+
q 6= xq. Therefore, by the definition of a quantiza-

tion cell it is necessary that
(
Ck×{ωk}

)
∩(D∩ER)\A = ∅ for each k ∈ {0, 1, 2, . . .}.

103



In other words, the quantizer must be defined such that for each k ∈ {0, 1, 2, . . .}

(
Ck × {ωk}

)
∩ (C ∩ ER) = (Ck × {ωk}) ∩ ER (4.18)

Finally, A ⊂ C, A ⊂ D and A ∩ Ck = ∅ if ωk 6= 0. Hence, it is necessary to choose

ω0 = 0. Therefore, the quantizer has to satisfy the following constraints.

ωk ∈ Rn and |ωk| ≤ R, k ∈ {1, 2, . . .} (4.19)

Ck = {x ∈ Rn : |ωk − x| < WR|x|}, k ∈ {1, 2, . . .} (4.20)

ω0 = 0 (4.21)

C0 = {0} ∪ {x ∈ Rn : |x| > R} (4.22)

C0 ∪
( k=∞⋃

k=1

Ck
ρ

)
= Rn, 0 < ρ < 1 (4.23)

where Ck
ρ = {x ∈ Rn : |ωk−x| ≤ ρWR|x|} and Ck

ρ denotes the closure of the set Ck
ρ .

Note that Ck
ρ ⊂ Ck for each k. The constraint (4.23) has been introduced so that

the resultant quantizer is over designed and the quantization cells overlap. In other

words, the final constraint induces hysteresis in the quantizer, which is useful for

avoiding chattering. Moreover, excluding C0, each cell Ck is such that in the region

where Ck overlaps with no other cell, |ωk − x| ≤ ρWR|x|. Next, notice that the cell

C0 includes the region outside BR. Any arbitrary nominal value could have been

chosen as the quantization state for the region outside BR, and we have selected it

to be 0.
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We define the quantizer function as follows.

q(x, ωk) =



ωk, if x ∈ Ck

argmin
ωj

|ωj − x|
WR|x|

, if x /∈ Ck, x 6= 0

ω0, if x = 0

(4.24)

In the second case there can be more than one solution. Note that the quantizer

function satisfies (4.17).

The following theorem demonstrates that a quantizer that satisfies (4.19)-

(4.24) asymptotically stabilizes the set A with R in the region of attraction.

Theorem 4.2. Consider the hybrid system (4.6) with C and D defined as in (4.8)-

(4.9), and suppose assumptions (A4.1) and (A4.2) hold. Let the desired region of

attraction be R, (4.14), for some µ ≥ 0. Suppose that W ≤ WR and that the

quantizer is designed to satisfy (4.19)-(4.24). Then, the set A is asymptotically

stable and the region of attraction includes R.

Proof. The compact set R ⊂ ER, where R = α−1
1 (µ). The function Vh in (4.11)

is a hybrid Lyapunov candidate function for the pair (H,A). Consider the event-

trigger (the sets C and D) designed in (4.8)-(4.9). Given a quantizer that satisfies

(4.19)-(4.24), the following hold.

〈∇Vh(ξ), F (ξ)〉 < 0, ∀ ξ ∈ C ∩R \ A

Vh(G(ξ))− Vh(ξ) ≤ 0, ∀ ξ ∈ D ∩R \ A

where the first relation follows from Lemma 4.1, and the second from the fact that

the quantizer function q ensures satisfiability of (4.17). Hence, for every c > 0 no
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complete solution remains in the compact set {ξ ∈ Rn ×Ω : Vh(ξ) = c} ∩R. Recall

the definition of R, (4.14). The function V (x) decreases monotonously during flows

and does not change during jumps. The constraints (4.19) and (4.21) imply that

|xq| ≤ R at all times. Hence, R is forward-invariant2 and every maximal solution

that starts in R is a complete solution. Therefore, Theorem 23 in [74] implies that

the setA is asymptotically stable and the region of attraction includes the setR.

Corollary 4.1. Suppose in addition to assumptions (A4.1), (A4.2) the functions f

and κ are Lipschitz on compact sets. Then, there exists a constant τd > 0 such that

for all solutions starting in R \A the jumps are separated by at least an amount of

time τd.

Proof. Outside the set A, x+
q 6= xq and x+

q is given by the second case of (4.24).

Further, (4.23) implies that after a jump x ∈ Ck
ρ , where k is such that x+

q = ωk.

Therefore, |x+
q −x|/(WR|x|) ≤ ρ < 1. The rest of the proof follows from an analysis

similar to that in [14].

In Theorem 4.2, the set A is globally asymptotically stable if WR is a global

constant. Notice that in event-triggered control, the measurement error is reset

to zero at triggering instants. However, in the proposed discrete-event controller

|x+
q − x| 6= 0 and instead satisfies |x+

q − x| ≤ ρW |x|, which is not zero in general.

This is the reason why hysteresis is required in the quantizer, to avoid chattering.

Next, we demonstrate that a quantizer satisfying (4.19)-(4.24) indeed exists,

2See [74] for the definitions of the terms ‘forward invariance’, ‘maximal solution’ and ‘complete

solution’.
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and construct a minimal set of generating points Ω that satisfy (4.19)-(4.23). For

the sake of clarity, we first outline the design process for n = 1, that is, for nonlinear

systems (4.2) that are one dimensional.

4.4.1 Design of Ω in One Dimensional Systems

Now, we invert the problem and ask: given a point in the region of interest what are

the values ωk, (4.19), can take such that Ck, (4.20), contains that point. If the point

is 0 then it is contained in C0. Also, all cells other than C0 are intervals. Therefore,

we ask the more specific question: given ruk 6= 0 such that |ruk | ≤ R, what should ωk

be such that |ωk| ≤ |ruk | and |ωk − ruk | = ρWR|ruk |, where 0 < ρ < 1 is a constant.

Thus, ruk is the upper or the outer extreme of the interval Ck
ρ (see Figure 4.1) and

ρ is a parameter that allows us to over-design. The inverse problem has the unique

solution

ωk = (1− ρWR)ruk (4.25)

Then the inner or lower extreme of the interval Ck
ρ is

rlk =
ωk

1 + ρWR

(4.26)

Therefore, the interval Ck
ρ is the open interval (rlk, r

u
k) or (ruk , r

l
k) depending on

whether ruk is positive or negative, respectively. The points ruk and rlk are in the set

Ck (see Figure 4.1). If we now set ruk+2 = rlk then we can recursively determine the
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Figure 4.1: Design of Ω for 1-D systems. The blue lines indicate the actual quanti-

zation cells or intervals, while ruk and rlk indicate the extremities of the over-designed

quantization cells Ck
ρ .

set Ω. Following this procedure, we arrive at the following

ω0 = 0, ru1 = R, ru2 = −R

ωk = (1− ρWR)ruk , ∀k ∈ {1, 2, . . .}

rlk =
ωk

1 + ρWR

, ∀k ∈ {1, 2, . . .}

ruk+2 = rlk, ∀k ∈ {1, 2, . . .}

ωk+2 =
1− ρWR

1 + ρWR

ωk, ∀k ∈ {1, 2, . . .} (4.27)

Note the symmetry in the positive and negative generators ωk. Simple calculations

give the quantization density as

ηq =
2

ln
(

(1+ρWR)
(1−ρWR)

) (4.28)

Thus, the proposed quantizer is a finite density logarithmic quantizer. The design

process is summarized in Figure 4.1.
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4.4.2 Design of Ω in Two Dimensional Systems

The design process for two dimensional systems is based on that of one dimensional

systems, though there are also some significant differences. In 1-D systems there is

only one type of cell (other than C0). In 2-D systems, there is a larger variety of

cells. More specifically, in 2-D systems there are three types of cells, other than C0.

These are shown in Figure 4.2. The state variable x is the vector [x1;x2]. The χ1

and χ2 axes are the lines x1 = x2 and x1 = −x2, respectively. Type 1 cells are the

ones that lie completely within one of the quadrants of the χ1-χ2 axes. Type 2 cells

are the ones whose generators lie on either χ1 or χ2 axis. Type 3 cells are those

whose generators do not lie on the χ1-χ2 axes and yet the cell lies in more than one

of χ1-χ2 quadrants.

To describe the different types of cells algebraically, let us define Type 1 blocks

as (for arbitrary n)

Si(ω) , {x ∈ Rn : |ω − x| < ρWR|xi|}, i ∈ {1, 2, . . . , n}

Every cell Ck
ρ is the union of the n Type 1 blocks

Ck
ρ =

n⋃
i=1

Si(ω
k)

A cell Ck
ρ is of Type 1 if and only if it satisfies

Ck
ρ = Si(ω

k), for some i ∈ {1, 2, . . . , n} (4.29)

A cell Ck
ρ is of Type 2 if |ω1| = |ω2| = . . . = |ωn|. A Type 3 cell is one that

is neither of Type 1 nor Type 2. However, Type 3 cells can be approximated by
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Figure 4.2: Possible types of cells in 2-D systems, excluding C0. The dots are

the generators of the quantization cells, whose boundaries are represented by the

polygons.

appropriate Type 1 blocks, which have the same shape as Type 1 cells. Note that

similar statements hold for the quantization cells Ck with ρ = 1.

Figure 4.3 shows the geometry of Type 1 cells, Ck
ρ . They have two parallel

sides, which are in turn parallel to either x1 or x2 axes. Each cell is completely

determined by the lengths a and b, which are given as

a =
ρWR

(1− ρWR)
|ωk|, b =

ρWR

(1 + ρWR)
|ωk|

Note that a and b depend only on |ωk|. Also, the magnitude of the slope of the

non-parallel sides is equal to ρWR, which is independent of ωk. The two parallel

sides of the of the cell are at |ωk| + a and |ωk| − b distances away from the origin.
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Figure 4.3: Geometry of Type 1 cells.

That is, the cell is part of an annulus (in the max norm sense) whose outer radius

is |ωk|+ a and inner radius is |ωk| − b.

The information about the geometry can be used to solve the inverse problem:

given the outer radius of the cell what should |ωk| be? The solution is of course given

by (4.27) with ruk , rlk and ωk interpreted as the outer radius, the inner radius and

|ωk|, respectively. Using these facts we design the quantization cells with Type 1,

Type 2 cells and Type 1 approximation of Type 3 cells. The algorithm progresses in

stages by covering recursively one annulus after another with quantization cells. The

process of determining these annuli is similar to the 1-D case, with the difference

that the procedure (4.27) now gives the inner and outer radii (in the max norm

sense) of the overlapping annuli, Figure 4.4.

The design process is summarized in Figure 4.5. Figures 4.5(a) and 4.5(b)

demonstrate the process to cover an annulus of a given outer radius. The outer

radius of the annulus determines the radius at which the generators need to lie
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Figure 4.4: In the first stage of the design process, annuli are selected in a process

analogous to (4.27) and Figure 4.1. The inner and outer boundaries of the first

annulus are shown in blue, while those of the second annulus are shown in red.

according to the appropriate interpretation of (4.27). The generators are stacked

equidistantly on a line to completely cover a quadrant of the annulus with the

constraint that there be a generator on χ1 and χ2 axes. The process is repeated to

cover each quadrant of the annulus. Then, the inner radius of the of the so covered

annulus determines the outer radius of the next annulus. This process recursively

designs the Ω set completely.

Simple calculations yield that

Number of cells in an annulus = 4

⌈
1 + ρWR

ρWR

⌉
(4.30)

where d.e denotes the greatest integer function. Note that this number is indepen-

dent of the outer or inner radius of the annulus. Of course the number of annuli

required to cover a region is given by a number that is the same as in 1-D systems.
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Figure 4.5: Fig. 4.5(a) and Fig. 4.5(b) demonstrate the steps in covering an annulus.

The dots indicate the generators of the quantization cells. Fig. 4.5(c) and Fig. 4.5(d)

show that the procedure leads to a logarithmic quantizer in two dimensions.

Thus the quantization density in 2-D systems is

ηq = 4

⌈
1 + ρWR

ρWR

⌉
1

ln
(

(1+ρWR)
(1−ρWR)

) (4.31)

Hence, again the designed quantizer is a finite density logarithmic quantizer.
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4.4.3 Design of Ω in n Dimensional Systems

The design in higher dimensional systems is similar to the two stage process for 2-D

systems. In the first stage, an annulus of a given outer radius is covered and then

the outer radius is updated, thus yielding Ω recursively. As in the 2-D case there

are three main types of cells. Type 1 and Type 2 cells are similar to those in the

2-D case. However, Type 3 cells can be classified into multiple sub-types thus giving

rise to much richer design options. In this chapter, we do not however investigate

them further. We propose a direct adaptation of the 2-D case, that is using Type 1

approximation of Type 3 cells. This process gives the quantization density as

ηq = 2n

⌈
1 + ρWR

ρWR

⌉n−1
1

ln
(

(1+ρWR)
(1−ρWR)

) (4.32)

This is a finite density logarithmic quantizer. However, it is very inefficient as

the density grows exponentially with the dimension of the system. Hence, efficient

design in higher dimensions is a topic of future research.

4.5 Example

In this section, the proposed emulation based controller is illustrated through an

example. Consider the second order nonlinear system

ẋ1 = x2

ẋ2 =
1

l
(g sin(x1) + u). (4.33)

Let the control input be given as

u = κ(x) = −lλx2 − g sin(x1)−K(x2 + λx1). (4.34)
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where K > 0 and λ > 0. Let the Lyapunov function in assumptions (A4.1) be

V (x) =
l

2
(x2 + λx1)2 + λKx2

1. (4.35)

Routine calculations yield

∂V

∂x
f(x, κ(x+ e)) ≤ −α3(|x|) + Lβ(|x|)|e| (4.36)

where

α3(|x|) = min(K,Kλ2)|x|2

β(|x|) =
√

2
√
λ2 + 1|x|

L =
√

2
√

(λK + g)2 + (K + λl)2

Let us choose the constant W in the sets C and D as

W = Wr =
σmin{K,Kλ2}
L
√

2
√
λ2 + 1

, 0 < σ < 1

Then, it is clear that if |e| ≤ W |x| then

∂V

∂x
f(x, κ(x+ e)) ≤ −(1− σ)α3(|x|) = α(|x|)

that is assumption (A4.1) is satisfied. Further, since Wr is a global constant (inde-

pendent of r), the discrete-event controller guarantees global asymptotic stability of

the set A in the hybrid system H, (4.6).

The quantizer designed as in Section 4.4 with σ = 0.99 and ρ = 0.9 has

a density ≈ 2582. Figure 4.6 shows the evolution of |x| and |e|/W for a sample

trajectory. In the simulations the parameters g, l, K and λ were chosen as 10, 0.2,

1 and 1, respectively, from which W = 0.0447 is obtained. The number of jumps or
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equivalently the number of control updates was observed to be 165 in the simulated

time, giving an average update frequency of 33Hz. The minimum inter-update time

was observed to be 0.0011s.
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Figure 4.6: Evolution of |x| and |e|/W .

4.6 Discussion and Conclusions

This chapter revisits the problem of control under data-rate constraints. Specifically,

we have combined the ideas of event-triggered control and coarsest quantization to

propose a method for co-designing the event-trigger and the quantizer in emulation

based controllers for stabilization tasks. The resulting quantizer is a finite den-

sity logarithmic quantizer, applicable to general multi-input and multi-dimensional

continuous-time nonlinear systems. To the best of our knowledge, this work is the

first to look at the co-design of the event-trigger and the quantizer in emulation

based discrete-event controllers. The proposed design algorithm results in a con-

troller that guarantees semi-global asymptotic stability of the origin of the system

with a specified arbitrary compact region of attraction. In case a certain Lipschitz
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constant is global, the origin is globally asymptotically stable. If only semi-global

practical stability is desired, with any specified compact region of attraction and

ultimate bound, the quantizer has a finite number of cells. This makes the sensing

and control system very simple, and by storing the control values for each cell in

memory, the control response can be made significantly faster.

Several extensions are possible, such as treating W itself as a state, that is

updated during the jumps along with the quantized state. In the quantizer design

process, WR need not be held fixed. Instead, for each annulus R and hence WR

can be appropriately re-defined. This is possible only in nonlinear systems, and

it will lead to lower density quantizers than otherwise. Some future directions of

research are the use of coordinate transformations as pre and post processing stages

for lower density quantizers, and improvements to the design process in three and

higher dimensions. Finally, as mentioned in Section 4.3, the proposed design easily

extends to a case with a weaker assumption than the ISS one.
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Part III

Utility Driven Event-Triggering for Trajectory Tracking
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Chapter 5

Utility Driven Sampled Data Control for Trajectory Tracking

5.1 Introduction

In this chapter, we investigate an event triggered control algorithm for trajectory

tracking. Tracking a time varying trajectory or even a set-point is of tremendous

practical importance in many control applications. In these applications, the goal

is to make the state of the system follow a reference or desired trajectory, which is

usually specified as an exogenous input to the system. In this chapter, the reference

trajectory is generated by a reference system. The majority of the previous works in

the event-triggered control literature assumed a state feedback control strategy with

no exogenous input, some exceptions being [12,15,18,19,21,41,75], where unknown

disturbances appear as exogenous inputs. However, in this chapter, we consider

exogenous inputs that are available to the controller through measurements, namely

the reference trajectory and the input to the reference system.

5.1.1 Contributions

The main contribution of this chapter is the design of event-triggered controllers for

trajectory tracking in nonlinear systems, which is a special case of nonlinear systems

with exogenous inputs. It is assumed that the reference trajectory and the exogenous

input to the reference system are uniformly bounded. Given a nonlinear system and
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a continuous-time controller that ensures global uniform asymptotic tracking of the

desired trajectory, the proposed algorithm provides an event based controller that

guarantees uniform ultimate boundedness of the tracking error and ensures that the

inter-event times of the controller are bounded away from zero. In the special case

that the derivative of the exogenous input to the reference system is also uniformly

bounded, an arbitrarily small ultimate bound for the tracking error can be designed.

In this chapter, unlike in the event-triggered control literature, the continuous-time

control law is assumed to render the closed loop system asymptotically stable rather

than ISS with respect to measurement errors. Although on compact sets the latter

condition can be arrived at from the former, our choice allows a direct and clear

procedure for designing an event-triggering condition with time-varying components

that results in fewer controller updates. The results in this chapter for nonlinear

systems have appeared in [32,33].

The rest of the chapter is organized as follows. In Section 5.2 we set up the

problem and introduce the notation used in the chapter. Subsequently, in Section

5.3, the basic design procedure is highlighted for the special case of linear systems.

Then in Section 5.4 the general case of nonlinear systems is addressed and results

for three different classes of reference trajectories are presented. The theoretical

results in the chapter are illustrated through numerical simulations of a second order

nonlinear system in Section 5.5. Finally, the results are summarized in Section 5.6.
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5.2 Problem statement and notation

Consider a nonlinear system of the form

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (5.1)

which has to track a reference trajectory defined implicitly by the dynamical system

ẋd = fr(xd, v), xd ∈ Rn, v ∈ Rq (5.2)

where the external signal v and the initial condition of the signal xd determine the

specific reference trajectory. Let the tracking error be defined as x̃ , x − xd. In

general, a controller for tracking a reference trajectory depends on both the tracking

error as well as the reference trajectory. Hence, we assume that the control signal

is of the form

u = γ(ξ), where ξ , [x̃;xd; v] (5.3)

where the notation [a1; a2; a3] denotes the column vector formed by the concatena-

tion of the vectors a1, a2 and a3. Consequently, the closed loop system that describes

the tracking error is given as

˙̃x = f(x̃+ xd, γ(ξ))− ẋd. (5.4)

Now, consider a controller that updates the control only intermittently and

not continuously in time. Let ti for i = 0, 1, 2, . . . be the time instants at which the

control is computed and updated. Then, the tracking error evolves as

˙̃x = f
(
x̃+ xd, γ(ξ(ti))

)
− ẋd, for t ∈ [ti, ti+1). (5.5)
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The above dynamical system can also be viewed as a continuously updated control

system, albeit with an error in the measurement of the state and the exogenous

input. By defining the measurement error as

e ,


x̃e

xd,e

ve

 , ξ(ti)− ξ ,


x̃(ti)− x̃

xd(ti)− xd

v(ti)− v

 , t ∈ [ti, ti+1) (5.6)

the system in (5.5) can be rewritten as

˙̃x =
[
f(x̃+ xd, γ(ξ))− ẋd

]
+
[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
(5.7)

where we have expressed the above system as a perturbed version of the dynamical

system (5.4).

Our objective is to develop an event based controller for tracking a trajectory

within a desired ultimate bound. To this end, we assume that when the control is

updated continuously in time, the state x tracks the desired trajectory asymptoti-

cally, that is, there exists γ such that system (5.4) satisfies x̃→ 0 as t→∞. Then

a utility driven event-triggered trajectory tracking control mechanism is proposed

that (i) guarantees the tracking error to be uniformly ultimately bounded (within a

desired bound), and (ii) ensures a positive lower bound for control update times.

5.3 Linear Systems

Before we address the problem for general nonlinear systems, we first describe the

design procedure for linear systems. Thus, the plant and the reference system are
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given by

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (5.8)

ẋd = Arxd +Brv, xd ∈ Rn, v ∈ Rq (5.9)

where A, B, Ar and Br are matrices of appropriate dimensions. Letting x̃ , x− xd

and ξ , [x̃;xd; v], we assume that the control signal is of the form

u = Gξ = Gx̃x̃+Gxdxd +Gvv (5.10)

where G ∈ Rm ×R2n+q is a matrix while Gx̃, Gxd and Gv are appropriately defined

block matrices of G. In the sequel, each of the two forms is used depending on the

requirement. As a result, the closed loop system that describes the tracking error is

given as

˙̃x = Ax̃+BGξ + (A− Ar)xd −Brv. (5.11)

Then, the sampled data control system in terms of the measurement error, (5.6), is

given as

˙̃x =
[
Ax̃+BGξ + (A− Ar)xd −Brv

]
+BGe. (5.12)

Now, we state the main assumption that the continuous-time control law ren-

ders the origin of the closed loop system, (5.11), globally asymptotically stable.

(A5.1) Suppose [x̃;xd; v] ≡ 0 is an equilibrium solution for the dynamical system

in (5.4). Further, suppose that there exists a quadratic Lyapunov function,

V = x̃TPx̃, where P is a symmetric positive definite matrix, such that for all
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admissible xd and v,

a1‖x̃‖2 ≤ V (x̃) ≤ a2‖x̃‖2 (5.13)

2x̃TP
[
Ax̃+BGξ + (A− Ar)xd −Brv

]
≤ −a3‖x̃‖2 (5.14)

where a1, a2, and a3 are positive constants.

The notation ‖.‖ denotes the Euclidean norm of a vector. In the sequel, it is also used

to denote the induced Euclidean norm of a matrix. Note that (5.13) is technically

not required as it follows from the positive definiteness of the matrix P . However,

its purpose in the assumption is to collect all the relevant notation in a single place.

Also note that the meaning of ‘admissible xd and v’ in (A5.1) differs in each of our

main results, where in each case it is specified precisely.

Consider the Lyapunov function, V (.), in assumption (A5.1) as a candidate

Lyapunov function for the system (5.12). The time derivative of V (x̃), along the

flow of the tracking error system, (5.12), is given by

V̇ = 2x̃TP
[
Ax̃+BGξ + (A− Ar)xd −Brv

]
+ 2x̃TPBGe

≤ −a3‖x̃‖2 + 2x̃TPBGe

≤ −a3‖x̃‖2 + ‖x̃‖LT |e| (5.15)

where where |e| denotes the vector of the absolute values of the components of e

and L ∈ R2n+q is a non-zero vector, with non-negative elements, given by

L =

[
‖c1(2PBG)‖ ‖c2(2PBG)‖ . . . ‖c2n+q(2PBG)‖

]
(5.16)

where the notation ci(.) denotes the ith column of the matrix argument. Then,
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(5.15) suggests the following triggering condition.

t0 = min{t ≥ 0 : ‖x̃‖ ≥ r > 0}, and

ti+1 = min{t ≥ ti : LT |e| − σa3‖x̃‖ ≥ 0, ‖x̃‖ ≥ r} (5.17)

where σ ∈ (0, 1) and r > 0 are design parameters. The parameter r determines the

ultimate bound of the tracking error. It is necessary to update the control only when

‖x̃‖ ≥ r, for some r > 0, else it may result in the accumulation of control update

times. Notice that each update instant ti+1 is defined implicitly with respect to ti.

Hence, the initial update instant t0 has been specified separately. As the proposed

triggering condition does not allow the control to be updated whenever ‖x̃‖ < r, the

first update instant, t0, need not be at t = 0. Therefore, it is assumed that u = 0

for t ∈ (0, t0).

We now show that the triggering condition (5.17) ensures uniform ultimate

boundedness of the tracking error under suitable conditions. The first of the condi-

tions is the following assumption on the reference trajectory.

(A5.2) For all time t ≥ 0, ‖[xd; v]‖ ≤ d for some d ≥ 0 and v is piecewise continuous.

The following lemma that the event-triggering condition (5.17) ensures that

the tracking error is ultimately bounded, provided the sequence of control execution

times does not exhibit Zeno behavior (accumulation of inter-event times), in other

words either the sequence of control execution times is finite or lim
i→∞

ti =∞.

Lemma 5.1. Consider the event-triggered system given by (5.12) and (5.17). Sup-

pose that assumptions (A5.1) and (A5.2) are satisfied. If the sequence of control
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execution times does not exhibit Zeno behavior, then the tracking error, x̃, is uni-

formly ultimately bounded by a ball of radius r1 =

√
a2

a1

r.

Proof. The assumption that the sequence of control execution times does not exhibit

Zeno behavior implies that the triggering condition, (5.17), is well defined ∀t ∈

[0,∞) (if there are finitely many control updates, that is i ∈ {0, 1, . . . , N}, then

tN+1 =∞). As a result, (5.15) and (5.17) imply that

V̇ ≤ −(1− σ)a3‖x̃‖2 ≤ −(1− σ)a3r
2 < 0, ∀x̃ ∈ {x̃ ∈ Rn : ‖x̃‖ ≥ r} (5.18)

Thus, given any initial condition x̃(0), there is a finite time (dependent on the initial

condition) in which the solution enters the set {x̃ : V (x̃) ≤ a2r
2, ‖[xd; v]‖ ≤ d} and

stays there. Therefore, the tracking error, x̃, is uniformly ultimately bounded by a

ball of radius r1 =

√
a2

a1

r.

Now we show that, under suitable conditions, the inter-event times resulting

from (5.17) have a positive lower bound guaranteeing the non-occurrence of Zeno

behavior. For the first result, we need the following additional assumption.

(A5.3) For all time t ≥ 0, v is differentiable and ‖v̇‖ ≤ c for some c ≥ 0.

Theorem 5.1. Consider the event-triggered system given by (5.12) and (5.17). Sup-

pose that assumptions (A5.1), (A5.2) and (A5.3) are satisfied. Then, the tracking

error, x̃, is uniformly ultimately bounded by a ball of radius r1 =

√
a2

a1

r, and the

inter-event times (ti+1 − ti) for i ∈ {0, 1, 2, . . .} are uniformly bounded below by a

positive constant that depends on the bound of the initial tracking error.
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Proof. Uniform ultimate boundedness of the tracking error automatically follows

from Lemma 5.1 if the existence of a positive lower bound for the inter-event times

is shown. Note that for each i, ‖e(ti)‖ = 0 and ‖x̃(ti)‖ ≥ r. Further, note that

LT |e| ≤ ‖L‖‖e‖ for all e. Hence, the triggering condition (5.17) implies that the

inter-event times, (ti+1 − ti) ≥ T , where T is the time it takes ‖e‖ to grow from 0

to
σa3

‖L‖r ≤
σa3

‖L‖‖x̃‖. If we show that T > 0, then the proof is complete.

From (5.12), (5.9), (5.10) and triangle inequality property, we observe that

‖ ˙̃x‖ ≤ ‖(A+BGx̃)x̃‖+ ‖(A− Ar +BGxd)xd + (BGv −Br)v‖+ ‖BGe‖

‖ẋd‖ ≤ ‖Arxd +Brv‖

Now, note that the triggering condition (5.17) implies that ‖x̃(t0)‖ ≥ r and (5.18)

implies that for all time t ≥ t0, ‖x(t)‖ ≤ µ0, where

µ0 =

√
a2

a1

‖x̃(t0)‖

Thus, letting

P1 = ‖(A+BGx̃)‖, P2 =

∣∣∣∣∣∣∣∣[(A− Ar +BGxd) (BGv −Br)

]∣∣∣∣∣∣∣∣ , Pe = ‖BG‖

P3 =

∣∣∣∣∣∣∣∣[Ar Br

]∣∣∣∣∣∣∣∣
(A5.2) implies that

‖ ˙̃x‖ ≤ P1‖x̃‖+ P2‖[xd; v]‖+ Pe‖e‖

≤ P1µ0 + P2d+ Pe‖e‖

and ‖ẋd‖ ≤ P3d, while (A5.3) implies ‖v̇‖ ≤ c. Then, by letting P0 = P1µ0 + (P2 +
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P3)d and from the definition ė = −[ ˙̃x; ẋd; v̇] it follows that

d‖e‖
dt
≤ ‖ė‖ ≤ Pe‖e‖+ P0 + c (5.19)

Note that for ‖e‖ = 0, the first inequality holds for all the directional derivatives of

‖e‖. Then, according to the Comparison Lemma [45]

‖e‖ ≤ P0 + c

Pe
(ePe(t−ti) − 1), for t ≥ ti. (5.20)

Thus, the inter-event times are uniformly lower bounded by T , which satisfies

T ≥ 1

Pe
log

(
1 +

σa3rPe
‖L‖(P0 + c)

)
. (5.21)

Thus, we conclude that the uniform positive lower bound for the inter-event times,

T , is positive.

In the next section, the event-triggering condition and the corresponding re-

sults for nonlinear systems are given. We also demonstrate two additional results,

where the assumption (A5.3) is relaxed to include piecewise continuous v.

5.4 Nonlinear Systems

In this section, we address the problem for general nonlinear systems. We start by

stating the main assumptions.

(A5.4) Suppose f(0, γ(0))−fr(0, 0) = 0 and that there exists a C1 Lyapunov function

for the dynamical system in (5.4), V : Rn → R, such that for all admissible xd

128



and v,

α1(‖x̃‖) ≤ V (x̃) ≤ α2(‖x̃‖)

∂V

∂x̃

[
f(x̃+ xd, γ(ξ))− fr(xd, v)

]
≤ −α3(‖x̃‖)

where α1(.), α2(.), and α3(.) are class K∞ functions1.

(A5.5) The functions f , γ and fr are Lipschitz on compact sets.

The notation ‖.‖ denotes the Euclidean norm of a vector. In the sequel, it is also

used to denote the induced Euclidean norm of a matrix. Note that the meaning of

‘admissible xd and v’ in (A5.4) differs in each of our main results, where in each case

it is specified precisely. At this stage, it is enough to know that (A5.2) is satisfied

in each case. Now, consider the following family of compact sets:

S(R) = {ξ : V (x̃) ≤ α2(R), ‖[xd; v]‖ ≤ d}

δS(R) = {ξ : V (x̃) = α2(R), ‖[xd; v]‖ ≤ d} (5.22)

Note that for each R ≥ 0, the sets S(R) and δS(R) include all the admissible

reference signals, xd and v. For each set S(R) there exists, by assumption (A5.5), a

non-zero vector L(R) ∈ R2n+q, with non-negative elements, such that

‖f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))‖

≤ L(R)T |e| ≤ ‖L(R)‖‖e‖, ∀ ξ, (ξ + e) ∈ S(R) (5.23)

1A continuous function α : [0,∞) → [0,∞) is said to belong to the class K∞ if it is strictly

increasing, α(0) = 0 and α(r)→∞ as r →∞ [45].
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where |e| denotes the vector of the absolute values of the components of e. With-

out loss of generality, it may be assumed that each component of L(R) is a non-

decreasing function of R. In the sequel, we use the notation Si, δSi and Li to denote

S(‖x̃(ti)‖), δS(‖x̃(ti)‖) and L(‖x̃(ti)‖), respectively. Next, we define a continuous

function, β(.), that satisfies

β(R) ≥ max
‖w‖≤R

∣∣∣∣∣∣∣∣∂V (w)

∂w

∣∣∣∣∣∣∣∣, ∀R ≥ 0 (5.24)

We now derive the triggering condition that determines the time instants ti at which

the control is updated.

Consider the Lyapunov function, V (.), in assumption (A5.4) as a candidate

Lyapunov function for the system (5.5). The time derivative of V (x̃), along the

flow of the tracking error system, V̇ = (∂V/∂x̃) ˙̃x, may be obtained through the

measurement error interpretation, (5.7).

V̇ =
∂V

∂x̃

[
f(x̃+ xd, γ(ξ))− ẋd

]
+
∂V

∂x̃

[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
≤ −α3(‖x̃‖) +

∂V

∂x̃

[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
≤ −α3(‖x̃‖) + β(‖x̃‖)L(R)T |e|, ∀ ξ, (ξ + e) ∈ S(R) (5.25)

where the second last equation is obtained from assumption (A5.4), and (5.25) is

then obtained from (5.22)-(5.24). Then, (5.25) suggests a triggering condition.

Consider the following triggering condition (for the sake of clarity, the com-

plete system description including the state equation and the triggering condition
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are given).

˙̃x = f
(
x̃+ xd, γ(ξ(ti))

)
− ẋd, ∀t ∈ [ti, ti+1) (5.26)

t0 = min{t ≥ 0 : ‖x̃‖ ≥ r > 0}, and

ti+1 = min{t ≥ ti : LTi |e| −
σα3(‖x̃‖)
β(‖x̃‖) ≥ 0, ‖x̃‖ ≥ r} (5.27)

where 0 < σ < 1 and r > 0 is a design parameter that determines the ultimate bound

of the tracking error. It is necessary to update the control only when ‖x̃‖ ≥ r, for

some r > 0, else it may result in the accumulation of control update times. Notice

that each update instant ti+1 is defined implicitly with respect to ti. Hence, the

initial update instant t0 has been specified separately. As the proposed triggering

condition does not allow the control to be updated whenever ‖x̃‖ < r, the first

update instant, t0, need not be at t = 0. Therefore, it is assumed that u = 0 for

0 ≤ t < t0.

Under assumptions (A5.2), (A5.4) and (A5.5), the following lemma demon-

strates that the event-triggering condition (5.27) ensures ξ ∈ Si for all t ∈ [ti, ti+1),

for each i. Moreover, the lemma also demonstrates that the event-triggering condi-

tion (5.27) renders the tracking error ultimately bounded, provided the sequence of

control execution times does not exhibit Zeno behavior (accumulation of inter-event

times), in other words either the sequence of control execution times is finite or

lim
i→∞

ti =∞.

Lemma 5.2. Consider the system (5.4). Suppose that assumptions (A5.2), (A5.4)

and (A5.5) are satisfied. Then, in the event-triggered system (5.26)-(5.27), for each

i, ξ ∈ Si for all t ∈ [ti, ti+1). Further, if the initial condition is bounded and the
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sequence of control execution times does not exhibit Zeno behavior, then the tracking

error, x̃, is uniformly ultimately bounded by a ball of radius r1 = α−1
1 (α2(r)).

Proof. First, we establish by contradiction that for each i, ξ ∈ Si for all t ∈ [ti, ti+1).

Note that by definition, (ξ + e) = ξ(ti) ∈ Si and the triggering condition enforces

‖x̃(ti)‖ ≥ r. Further, since ‖x̃(ti)‖ ≥ r, the open r-ball is a proper subset of and

is contained within the interior of Si (that is, its intersection with δSi is an empty

set). Also note that sets Si and δSi (see (5.22) and the text following (5.23)) are

essentially a sub-level set and a level set, respectively, of the Lyapunov function V .

Now, let us assume that ξ does escape Si during the interval [ti, ti+1). Then, since

the tracking error x̃ is continuous as a function of time, there exists a t∗i ∈ [ti, ti+1)

such that ξ(t∗i ) ∈ δSi ⊂ Si and V̇ |t=t∗i > 0 (where V̇ |t=t∗i denotes V̇ evaluated at

t = t∗i ). However, as ξ(t∗i ) ∈ δSi ⊂ Si, (5.25) and (5.27) imply V̇ |t=t∗i ≤ −(1 −

σ)α3(‖x̃(t∗i )‖) < 0. Thus, having arrived at a contradiction, we conclude that no

such t∗i exists and that the first claim of the lemma is true. Consequently, (5.25)

and (5.27) again imply that the derivative V̇ along the flow of the system satisfies

V̇ ≤ −(1− σ)α3(‖x̃‖) < 0, ∀t ∈ [ti, ti+1), ‖x̃(t)‖ ≥ r (5.28)

and further, for each R ≥ r it is true that any solution that enters the set S(R) does

not leave it subsequently.

The assumption that x̃(0) is bounded and the definition of t0 imply that x̃(t0)

is also bounded. Then, the assumption that the sequence of control execution times

does not exhibit Zeno behavior implies that the triggering condition, (5.27), is well

defined and that V̇ ≤ −(1− σ)α3(‖x̃‖) < 0, ∀t ∈ [0,∞) s.t. ‖x̃(t)‖ ≥ r (if there are
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finitely many control updates, that is i ∈ {0, 1, . . . , N}, then tN+1 = ∞). Then, in

fact, it is true that S(R) is positively invariant for each R ≥ r. In particular, S0 is

positively invariant. Then, (5.28) implies that V̇ ≤ −(1−σ)α3(r) < 0 for all ξ ∈ S0

such that ‖x̃‖ ≥ r. Hence all solutions, ξ, with bounded initial conditions enter the

set S(r) in finite time and as S(r) is positively invariant, the solutions stay there.

Therefore the tracking error, x̃, is uniformly ultimately bounded by the closed ball

of radius r1 = α−1
1 (α2(r)).

Looking back at (5.27), it is clear that the functions α3 and β play a crucial

role in determining how often an event is triggered or in computing a lower bound

for the inter-event times. Specifically, the following definition is useful.

∆s2
s1
, min

s1≤‖x̃‖≤s2
σα3(‖x̃‖)/β(‖x̃‖) (5.29)

where s2 ≥ s1 > 0 are any positive real numbers, the functions α3 and β are as

defined in (A5.4) and (5.24), respectively. Since α3 and β are continuous positive

definite functions, ∆s2
s1

is well defined and positive for any given s2 ≥ s1 > 0.

Now we present the first main result of the chapter. It demonstrates, for a

particular class of reference trajectories, that in the event-triggered system (5.26)-

(5.27) the inter-event times are uniformly bounded away from zero while the tracking

error is uniformly ultimately bounded.

Theorem 5.2. Consider the system (5.4). Suppose that assumptions (A5.2), (A5.3),

(A5.4) and (A5.5) are satisfied. Then, for the event-triggered system (5.26)-(5.27),

the tracking error, x̃, is uniformly ultimately bounded by a ball of radius r1 =

α−1
1 (α2(r)), and the inter-event times (ti+1 − ti) for i ∈ {0, 1, 2, . . .} are uniformly
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bounded below by a positive constant that depends on the bound of the initial tracking

error.

Proof. Uniform ultimate boundedness of the tracking error follows from Lemma 5.2.

Only the existence of a positive lower bound for the inter-event times remains to

be shown. Note that for each i, ‖e(ti)‖ = 0 and ‖x̃(ti)‖ ≥ r. Hence, the triggering

condition (5.27) implies that the ith inter-update time, (ti+1 − ti), is at least equal

to the time it takes ‖Li‖‖e‖ to grow from 0 to σα3(‖x̃‖)/β(‖x̃‖). Recall from the

proof of Lemma 5.2 that every solution, ξ, stays in the set S0 for all t ∈ [t0, ti), for

each i. Thus, ‖Li‖ ≤ ‖L0‖ for each i. Notice

S0 ⊂ {ξ : ‖x̃‖ ≤ µ0, ‖[xd; v]‖ ≤ d} (5.30)

where µ0 = α−1
1 (α2(‖x̃(t0)‖)). Then, (5.29) implies ti+1 − ti ≥ T , where T is the

time it takes ‖e‖ to grow from 0 to ∆µ0
r /‖L0‖. If we show that T > 0, then the

proof is complete.

From (5.7), and triangle inequality property, we observe that

‖ ˙̃x‖ ≤ ‖f(x̃+ xd, γ(ξ))− ẋd‖+ ‖f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))‖ (5.31)

From (5.23), the second term is bounded by LT0 |e| ≤ ‖L0‖‖e‖ on the set S0. Since,

according to (A5.4), f(0, γ(0)) − fr(0, 0) = 0, (A5.5) then implies that there exist

Lipschitz constants P1 ≥ 0 and P2 ≥ 0 such that

‖ ˙̃x‖ ≤ P1‖x̃‖+ P2‖[xd; v]‖+ LT0 |e|

≤ P1µ0 + P2d+ ‖L0‖‖e‖
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where the second inequality is obtained from (5.30). Assumptions (A5.5)-(A5.2)

imply that there exists a constant P3 ≥ 0 such that ‖ẋd‖ ≤ P3d and (A5.3) implies

‖v̇‖ ≤ c. Then, by letting P0 = P1µ0 + (P2 + P3)d and from the definition ė =

−[ ˙̃x; ẋd; v̇] it follows that

d‖e‖
dt
≤ ‖ė‖ ≤ ‖L0‖‖e‖+ P0 + c (5.32)

Note that for ‖e‖ = 0, the first inequality holds for all the directional derivatives of

‖e‖. Then, according to the Comparison Lemma [45]

‖e‖ ≤ P0 + c

‖L0‖
(e‖L0‖(t−ti) − 1), for t ≥ ti. (5.33)

Thus, the inter-event times are uniformly lower bounded by T , which satisfies

T ≥ 1

‖L0‖
log

(
1 +

∆µ0
r

P0 + c

)
. (5.34)

As ‖L0‖ is finite and ∆µ0
r > 0, we conclude that the inter-event times have a uniform

positive lower bound, T .

In the next result, the conditions on the reference trajectory are relaxed by no

longer requiring it to satisfy assumption (A5.3). Instead, to ensure the absence of

Zeno behavior, a new assumption is made - that dv, the uniform bound on ‖v‖, is no

larger than a quantity determined by ∆µ0
r and L0. The new assumptions, in contrast

to Theorem 5.2, lead to a constraint on the choice of the radius r in the triggering

condition and ensure only local uniform ultimate boundedness of the trajectory

tracking error. Let L(R) , [Q(R);M(R)] and Li , [Qi;Mi] where Q(R), Qi ∈ R2n

and M(R),Mi ∈ Rq. Now, the second main result is presented.
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Theorem 5.3. Consider the system defined by (5.4). Suppose that the assump-

tions (A5.2), (A5.4) and (A5.5) hold. Also, for some R0 ≥ r suppose that ∆µ0
r −

2dv‖M(R0)‖ > 0, where µ0 = α−1
1 (α2(R0)), ∆µ0

r is given by (5.29) and dv is the

uniform bound on ‖v‖. If ‖x̃(0)‖ ≤ R0, then in the event-triggered system (5.26)-

(5.27), the tracking error, x̃, is uniformly ultimately bounded by a ball of radius

r1 = α−1
1 (α2(r)), and the inter-update times (ti+1 − ti) for i ∈ {0, 1, 2, . . .} are

uniformly bounded below by a positive constant that depends on R0.

Proof. The proof is very similar to that of Theorem 5.2, and hence only the essential

steps are described here. According to Lemma 5.2 each solution, ξ, with ‖x̃(0)‖ ≤

R0 stays in the set S(R0). Hence, ‖Mi‖ ≤ ‖M(R0)‖ and ‖Qi‖ ≤ ‖Q(R0)‖ for

each i. Since ‖v‖ is uniformly bounded by dv it follows that for each i, MT
i |ve| ≤

‖Mi‖‖ve‖ ≤ 2dv‖M(R0)‖, where ve = v(ti) − v and |ve| denotes the component-

wise absolute value of the vector ve. The definitions of Qi and Mi imply that

LTi |e| = QT
i |[x̃e;xd,e]|+MT

i |ve| ≤ QT
i |[x̃e;xd,e]|+ 2dv‖M(R0)‖.

Note that for each i, r ≤ ‖x̃(ti)‖ ≤ µ0. Thus, the triggering condition in (5.27)

implies that for each i, LTi−1|e(t−i )| ≥ ∆µ0
r , or equivalently, QT

i−1|[x̃e(t−i );xd,e(t
−
i )]| ≥

δ , ∆µ0
r −2dv‖M(R0)‖ > 0, the last inequality being one of the assumptions. Hence,

the inter-event times ti+1 − ti ≥ T , where T is the time it takes ‖[x̃e;xd,e]‖ to grow

from 0 to δ/‖Q(R0)‖. If we show that T > 0, then the proof is complete.

Following steps similar to those in the proof of Theorem 5.2, we know that there

exists a finite P0 ≥ 0 such that
d‖[x̃e;xd,e]‖

dt
≤ ‖Q0‖‖[x̃e;xd,e]‖+ P0 + 2dv‖M(R0)‖.

Note that for ‖[x̃e;xd,e]‖ = 0, the inequality holds for all the directional derivatives.
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Thus, the inter-event times are uniformly lower bounded by T , which satisfies

T ≥ 1

‖Q0‖
log

(
1 +

∆µ0
r − 2dv

P0 + 2dv‖M(R0)‖

)
. (5.35)

As ‖Q0‖ is finite, we conclude that the inter-event times have a lower bound, T ,

that is greater than zero.

Theorem 5.3 is somewhat conservative because only the uniform bound on ‖v‖

is utilized in determining the ultimate bound and the lower bound on the inter-event

times. A more useful result is obtained by imposing only slightly stricter constraints

on v - that jumps in v are separated in time by Tv > 0, that the magnitude of each

jump is upper bounded by a known constant and that v is Lipschitz between jumps.

This is expressed formally in the following assumption.

(A5.6) There exist constants c ≥ 0, Tv ≥ 0 and Jv ≥ 0 such that for all t, s ≥ 0, the

following holds: ‖v(t) − v(s)‖ ≤ c|t − s| +
⌈
|t−s|
Tv

⌉
Jv, where d.e is the ceiling

function.

Now the final result is presented.

Theorem 5.4. Consider the system defined by (5.4). Suppose that the assump-

tions (A5.2), (A5.4), (A5.5) and (A5.6) hold. Also, for some R0 ≥ r suppose that

∆µ0
r − Jv‖M(R0)‖ > 0, where µ0 = α−1

1 (α2(R0)) and ∆µ0
r is given by (5.29). If

‖x̃(0)‖ ≤ R0, then in the event-triggered system (5.26)-(5.27), the tracking error, x̃,

is uniformly ultimately bounded by a ball of radius r1 = α−1
1 (α2(r)), and the inter-

update times (ti+1−ti) for i ∈ {0, 1, 2, . . .} are uniformly bounded below by a positive

constant that depends on R0.
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Proof. Let e∗ , [ex̃; exd ; ev∗ ], where ev∗ , c(t− ti) for t ∈ [ti, ti+1) and each i. Then,

by (A5.6), ‖e‖ ≤ ‖e∗‖ +
⌈
|t−ti|
Tv

⌉
Jv. Now, let Tk be the time it takes ‖e∗‖ to grow

from zero to (∆µ
r − kJv‖M(R0)‖)/‖L0‖. Then, a lower bound on the inter-event

times is given by

max
k∈{1,2,...,N}

{min{kTv, Tk}}, N =

⌊
∆µ
r

Jv‖M(R0)‖

⌋
(5.36)

where b.c denotes the floor function. Following the proof of Theorem 5.2, Tk is

estimated as

Tk ≥
1

‖L0‖
log

(
1 +

∆µ
r − kJv‖M(R0)‖

P0 + c

)
. (5.37)

Note that Tk > 0 for k ∈ {1, . . . , N−1} and TN ≥ 0. Further, {kTv} is an increasing

sequence of positive numbers while {Tk} is a decreasing sequence. Thus the lower

bounded on inter-event times given by (5.36) is positive. The ultimate boundedness

of the tracking error follows from Lemma 5.2.

Remark 5.1. Notice from (5.23) that in order to compute Li = L(‖x̃(ti)‖) it is

necessary to compute the set Si = S(‖x̃(ti)‖) or at least a set of which Si is a

subset, such as Bi , {ξ : ‖x̃‖ ≤ α−1
1 (α2(‖x̃(ti‖)), ‖[xd; v]‖ ≤ d}. However, if

‖x̃(ti)‖ ≥ ‖x̃(ti−1)‖ then clearly some components of Li may be greater than those

of Li−1. But from Lemma 5.2, we know that Si ⊂ Si−1 for each i, so at time

instant ti instead of computing Li based on Bi, we can let Li = Li−1. Following this

rule, the sequence {Li} can be chosen to be component-wise non-increasing. The

triggering condition and the estimates of lower bounds on the inter-update times

depend critically on L and hence using a time-varying L lowers the overall average
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update rate. Computing L is in general a computationally costly task and it is not

useful to update L continuously in time like α3(‖x̃‖) and β(‖x̃‖).

In the next section our theoretical results are illustrated through simulations.

5.5 Examples and simulation results

The theoretical results developed in the previous sections are illustrated through

simulations.

5.5.1 Nonlinear System Example

First, we present the simulation results for the following second order nonlinear

system.

ẋ =

ẋ1

ẋ2

 =

0 1

0 −1

x+

 0

−x3
1

+

0

1

u

= Ax+

 0

−x3
1

+Bu (5.38)

The desired trajectory is a solution of the system [ẋd,1; ẋd,2] = [xd,2; v], where v is an

exogenous input, which along with the initial conditions of the state of the reference

system, xd = [xd,1;xd,2], determines the specific trajectory. The control function is

chosen as

γ(ξ) = Kx̃+ v + (x̃1 + xd,1)3 + xd,2 (5.39)

where K = [k1; k2]T is a 2× 1 row vector such that Ã = (A+BK) is Hurwitz, and

x̃ = [x̃1; x̃2] is the tracking error. Then, the closed-loop tracking error system with
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event-triggered control can be written as

˙̃x1 = x̃2

˙̃x2 = −(x̃2 + xd,2)− (x̃1 + xd,1)3 + γ(ξ + e)− v. (5.40)

Now, consider the quadratic Lyapunov function V = x̃TPx̃ where P is a positive

definite matrix that satisfies the Lyapunov equation PÃ+ ÃTP = −H, where H is

a given positive definite matrix. The time derivative of V along the flow defined by

(5.40) can be shown to satisfy

V̇ ≤ −x̃THx̃+ 2x̃TPB[γ(ξ + e)− γ(ξ)]

≤ −σa‖x̃‖2 + β(‖x̃‖)L(R)T |e|, ∀ξ, (ξ + e) ∈ S(R) (5.41)

where a > 0 is the minimum eigenvalue of H, β(‖x̃‖) = 2‖PB‖‖x̃‖ and

L(R) =
[
3(µ+ d1)2 + |k1|; |k2|; 3(µ+ d1)2; 1; 1

]
(5.42)

where µ = α−1
1 (α2(R)) and d1 ≤ d is the uniform bound on xd,1. If d1 is not known

explicitly then d from assumption (A5.2) may be used instead. Note that B has

been absorbed in β rather than in L(R), as it should have been according to their

definitions. This makes the β function point-wise lower. The vectors Li were com-

puted according to the procedure in Remark 5.1. Finally, given a desired ultimate

bound for the trajectory tracking error, the parameter r in the triggering condition

can be designed. Next, we present simulation results for two cases corresponding to

the two main classes of reference trajectories considered in this chapter.

Case I: The signals xd,1, xd,2, and v were chosen as sinusoidal signals with

peak-to-peak amplitude 2. This was done by choosing [xd,1(0), xd,2(0); v(0)] =
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[π/3; 1; 0] and v̇ = − cos(t). The initial condition of the plant was [x1(0);x2(0)] =

[5;−1]. The parameter d1 was chosen as 2.5 while the actual uniform bounds on xd,1

and ‖[xd; v]‖ were observed to be around 2 and 2.28, respectively. The parameters

in the controller were chosen as K = −[20; 20]T , σ = 0.95 and H was chosen as the

identity matrix. According to Theorem 5.2, we chose r = 0.0154 in the triggering

condition to achieve an ultimate bound of r1 = 0.1 in the tracking error.

The simulation results are shown in Figure 5.1(a). The Figure shows the norm

of the tracking error, the radius r in the triggering condition, the desired ultimate

bound r1 and W T
i |e|, where Wi = (2‖PB‖Li)/(σa). The figure demonstrates that

the tracking error is ultimately bounded, and well below the desired bound. We

recall that according to the triggering condition (5.27), the control is not updated

when ‖x̃‖ < r. Hence, as long as ‖x̃‖ ≥ r, the weighted measurement error, W T
i |e|,

is bounded above by the norm of the tracking error, ‖x̃‖, and an event is triggered

(control is updated) each time W T
i |e| ≥ ‖x̃‖. However, when ‖x̃‖ < r, W T

i |e| may

exceed ‖x̃‖. A zoomed version of the plot in Figure 5.1(a) is shown in Figure 5.1(b),

where it is clearly seen that the tracking error is only ultimately bounded.

The number of control executions in the simulated time duration was 301, and

the minimum inter-event time was observed to be 0.005s. The observed average

frequency of control updates was around 30Hz. Since most of the updates occur

before x̃ first enters the ball of radius r, it is important to also consider the average

frequency for this time period, and in this simulation it was found to be around

46Hz. If L is kept constant then these average frequencies are much higher at

943Hz and 1586Hz, respectively, with almost no change in the rate of convergence.
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Figure 5.1: Simulation results for Case I.

The theoretical estimate of the minimum inter-event time is around 6×10−8s, which

is orders of magnitude lower than the observed value.

Case II: In this case the result in Theorem 5.4 is illustrated, where the input

signal v is piecewise continuous. In the simulations it was defined as the piecewise

constant function, taking values in the set Q = {0,±0.1,±0.2, . . .} and defined as

v(t) = arg min
k∈Q

{| − sin(t)− k|}.

For the time instants when (− sin(t)) equals an odd multiple of 0.05, v(t) is chosen as

the higher or the lower of the two possible values based on whether the time deriva-

tive of (− sin(t)) is positive or negative, respectively. In the context of Theorem 5.4,

the constants c = 0 and Jv = 0.1.

The initial condition of the reference system was [xd,1(0);xd,2(0); v(0)] = [1; 1.003; 0].

From Theorem 5.4, we know that ∆µ
r has to be greater than Jv = 0.1, which implies

that r has to be greater than 0.0075. For the example system here, R0 in Theorem
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5.4 can assume any value. Thus, as in CASE I, r = 0.0154 was chosen. The rest of

the parameters were the same as in Case I. Figure 5.2 shows the simulation results.

The number of control updates were observed to be 304, with the minimum exe-

0 2 4 6 8 10
0

1

2

3

4

5

6

t

 

 
W

T

i
|e|
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Figure 5.2: Simulation results for Case II.

cution time at around 0.005s. The observed average frequencies of control updates

were found to be around 30Hz and 46Hz for the simulated time duration and the

time duration that x̃ takes to first enter the ball of radius r, respectively. These

average frequencies are comparable to those in Case I. The theoretical estimate of

the minimum inter-event time is around 3× 10−8s, which is very conservative.

5.5.2 Linear System Example

In this example, the plant and the reference system are given by (5.8)-(5.9) with

A = Ar =

0 1

0 0

 , B = Br =

0

1


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The control gain was chosen as

G =

[
−2 −3 0 0 1

]
Thus, in the notation of (5.10),

Gx̃ =

[
−2 −3

]
From (5.12), the tracking error is seen to evolve as

˙̃x = (A+BGx̃)x̃+BGe

The gain matrix Gx̃ has been chosen so that the eigenvalues of Ā = (A+BGx̃) are

at {−1,−2}. Thus, consider the candidate Lyapunov function

V (x̃) = x̃TPx̃

where P is the symmetric positive definte matrix satisfying

PĀ+ ĀTP = −I2

where I2 is a 2× 2 identity matrix. In the simulations, σ = 0.95, r1 = 0.1 have been

chosen, giving L = [1.414; 2.121; 0; 0; 0.707], σ ∗ a3 = 0.95 and r = 0.038. The initial

condition of the plant x(0) = [5; 0] has been chosen. The reference trajectory and

the input to the reference system were chosen as

[xd; v] = [cos(ωt);−ω sin(ωt);−ω2 cos(ωt)]

Then, a number of simulations, parametrized by ω, were performed. The parameter

ω was varied from 1 to 10 in steps of 0.1. Notice that

‖[xd; v]‖ =
√

cos2(ωt) + ω2 sin2(ωt) + ω4 cos2(ωt)

=
√

(1 + w4 − w2) cos2(ωt) + w2 ≤
√

1 + w4 = d
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and

‖v̇‖ ≤ w3 = c

Thus, the theoretical lower bound on inter-event times may be computed, (5.21) as

a function of w, which is shown in Figure 5.3. In each of the simulation, the initial
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Figure 5.3: Theoretical lower bound on inter-event times for the linear system ex-

ample.

tracking error is x̃(0) = [4; 0]. Each simulation was performed until the time it took

the trajectory to reach the r-ball. In the corresponding time duration, the minimum

and the average inter-event times were found. The resulting relationship with w is

shown in Figure 5.4. Clearly, the the theoretical lower bound for the inter-event

times in Figure 5.3 is very conservative. However, Figure 5.4 clearly demonstrates

one of the most significant advantages of the utility driven event-triggered control -

the ability to adjust to the sampling rate according to the requirement.
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Figure 5.4: Observed average (T̄ ) and minimum (Tmin) inter-event times observed

in the simulations parametrized by ω.

5.6 Conclusions

In this chapter, we developed an event based control algorithm for trajectory track-

ing in nonlinear systems. It was demonstrated that given a nonlinear dynamical

system, and a continuous-time controller that ensures uniform asymptotic tracking

of the desired trajectory, an event based controller can be designed that not only

guarantees uniform ultimate boundedness of the tracking error, but also ensures

that the inter-event times for the control algorithm are uniformly bounded away

from zero. The first result demonstrated that uniform boundedness with an arbi-

trary ultimate bound for the tracking error can be achieved, provided the reference

trajectory, the exogenous input to the reference system, and its derivative are all

uniformly bounded. However, the minimum guaranteed inter-event time decreases
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along with the ultimate bound. In the second and third results, we relaxed the as-

sumption on the derivative of the input to the reference system, and demonstrated

that the tracking error is uniformly ultimately bounded. In these cases, the analyt-

ical results show that it may not be feasible to reduce the ultimate bound below a

certain threshold and moreover, the result is only local in general.

The theoretical results were demonstrated through simulations of a second

order nonlinear system. The theoretical lower bounds on inter-update times have

been found to be very conservative. This is partially due to the fact that the

estimates are based on the rate of change of ‖e‖ (made necessary by the presence of

exogenous signals) rather than that of ‖x̃‖/‖e‖ as in [14]. Thus, there is significant

room for improvement in these estimates and how they are computed. Numerical

simulations indicated that the ultimate bound on the tracking error is much lower

than the desired value, which is another area for improvement of the theoretical

predictions. Finally, it is important to extend these results to output feedback

systems.
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Chapter 6

Utility Driven Sampled Data Adaptive Control for Tracking in

Robot Manipulators

6.1 Introduction

Many of the utility driven event-triggered controllers in the literature are essentially

sampled data versions of continuous time controllers, with the sampling instants

determined by state based triggering conditions. While utility driven event-triggered

controllers implicitly guarantee stability, they have a drawback. These controllers

rely critically on the knowledge of a good model of the system. For example, the

results in [14,32] are general enough to hold for robotic manipulators when perfect

knowledge of the system is available. However, building a model of high accuracy is

a time consuming process and in many cases, it may not even be possible. Therefore,

it is important to extend the design of implicitly verified event based controllers to

cases where only a poor model of the system is available. This is specially important

in the field of robotics, where adaptive and robust controllers are often used.

It is our opinion that event-triggered controllers can have a significant impact

in the field of robotics. For example, many industrial robotics applications use vi-

sual feedback, which inherently works at a low rate. Hence, we are interested in

introducing specific event-triggered controllers for robotics. Therefore, in this chap-
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ter we develop a specific event-triggered adaptive controller for trajectory tracking

in robotic manipulators. That is, we incorporate adaptation in the proposed con-

troller. The controller is demonstrated through simulations and experiments on a

two-link planar robotic manipulator.

6.1.1 Contributions

The contribution of this chapter is twofold. In this chapter, we design a specific

event-triggered controller applicable in the field of robotics. In addition, the pro-

posed controller incorporates adaptation. The only other reference in the event-

triggered control literature that explores adaptation is [76], where in a Kalman

filter like approach was adopted to estimate the system parameters of a discrete

time linear system. We explore the problem of adaptation for continuous-time tra-

jectory tracking in nonlinear robotic systems. Finally, this work adds to the limited

body of work on event-triggered implementations in experiments [5, 12, 22, 77–80].

By incorporating adaptation, we allow for larger modelling errors and thus make

safe experimentation of event-triggered controllers more feasible.

The rest of the chapter is organized as follows. In Section 6.2, an event-

triggered implementation of the controller of [81] is presented under the assumption

that the controller has exact knowledge of the robot dynamics. Then in Section 6.3,

the adaptive controller of [81] is introduced, and the design of the proposed event

based adaptive controller is described. In Section 6.4 the dynamic model of a planar

two-link robot is presented. The simulation and experimental results are presented
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in Section 6.5. Finally, some concluding remarks are made in Section 6.6 and some

future directions of work are proposed.

6.2 Event-Triggered Control

In this section we introduce the idea of event-triggered control, and design an event-

triggered controller for trajectory tracking in robotic manipulators through a process

similar to that in [32]. Secondly, in this section we provide motivation for incorpo-

rating adaptation in the event-triggered controller. Consider a standard n-degree of

freedom rigid robot model of the form, [82],

M(q)q̈ + C(q, q̇)q̇ +G(q) = u, q ∈ Rn, u ∈ Rn (6.1)

where M : Rn −→ Rn×n, C : Rn × Rn −→ Rn×n and G : Rn −→ Rn. Let

xd , [qd; q̇d] ∈ Rn × Rn be the state of the desired trajectory that the robot has to

track. Here the notation [a1; a2] denotes the column vector formed by concatenating

the vectors a1 and a2. This notation is used in this chapter to refer to various

concatenated vectors. Let q̃ , q− qd, then the tracking error is defined as x̃ , [q̃; ˙̃q].

Let u = γ(ξ) ∈ Rm be a known continuous-time control law for trajectory tracking,

where ξ is the data that the controller depends on. For example in the passivity

based Slotine-Li controller [83] or in the controller of [81],

ξ = [x̃;xd; q̈d] (6.2)
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More specifically, consider the controller of [81], an event-triggered implementation

of which is proposed controller in this chapter.

u = γ(ξ) = M(q)q̈d + C(q, ρ)q̇d +G(q)−Kd
˙̃q −Kpq̃

= Y (q, ρ, q̇d, q̈d)θ −Kd
˙̃q −Kpq̃ (6.3)

where ρ , q̇ − λq̃, Kd = KT
d > 0 and Kp = KT

p > 0. Additionally

λ =
λ0

1 + ‖q̃‖ (6.4)

where λ0 is a positive constant and ‖.‖ denotes the Euclidean norm. The second

relation in (6.3) is a result of the well-known fact that the Lagrangian robot dy-

namics are linearly parametrizable [82]. In the sequel, Y (q, ρ, q̇d, q̈d) is nearly always

shortened to Y to make the notation compact.

(A6.1) Assume that the controller gains are chosen such that

λ0 < min

{
Kd,m

3MM + 2CM
,

4Kp,m

Kd,M +Kd,m

}
(6.5)

where Kd,m ≡ σm(Kd), Kd,M ≡ σM(Kd), Kp,m ≡ σm(Kp), with σm(.), σM(.)

the minimum and maximum eigenvalues respectively. The constants Mm, MM

and CM satisfy

0 < Mm ≤ ‖M(q)‖ ≤MM (6.6)

‖C(q, w)‖ ≤ CM‖w‖, for all w (6.7)

where w denotes an arbitrary vector.

The following result shows that when Assumption (A6.1) is satisfied the robot

manipulator asymptotically tracks the desired trajectory. The result as well as its

proof are taken from [81].
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Proposition 6.1 (Prop. 2.1, [81]). Suppose that assumption (A6.1) holds. Then the

closed loop system (6.1, 6.3) is globally convergent, that is q̃ and ˙̃q asymtptotically

converge to zero, and all the internal signals are bounded.

Proof. The proof strongly relies on the following well known properties of C(q, .).

C(q, x)y = C(q, y)x (6.8)

C(q, x+ αy) = C(q, x) + αC(q, y) (6.9)

for all x, y, q ∈ Rn and α ∈ R.

Using (6.9), the closed loop system given by (6.1) and (6.3) can be shown to

satisfy

M(q)¨̃q + C(q, q̇) ˙̃q + λC(q, q̃)q̇d +Kd
˙̃q +Kpq̃ = 0 (6.10)

Consider the positive-definite candidate Lyapunov function

V (q̃, ˙̃q) =
1

2
ψTM(q)ψ +

1

2
q̃TKpq̃ (6.11)

where ψ = ˙̃q + λq̃. The time derivative of the candidate Lyapunov function along

the flow of the system (6.10) is given by

V̇ =ψT [λM(q) ˙̃q + λ̇M(q)q̃ + λC(q, q̇)q̃ − λC(q, q̃)q̇d −Kdq̇ −Kpq̃] + ˙̃qTKpq̃

where (6.9) and the skew-symmetry of Ṁ(q)−2C(q, q̇) [82] have been used. Further,

applying (6.8) and (6.9) yields

V̇ =− ψT [Kd − λM(q)] ˙̃q + λ̇ψTM(q)q̃ + λψTC(q, ˙̃q)q̃ − λq̃TKpq̃ (6.12)
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Now we introduce a new variable, namely,

ψ1 = ˙̃q +
λ

2
q̃

Then, (6.12) can be rewritten as

V̇ =− ψT1
[
Kd − λM(q)

]
ψ1 + λ̇ψTM(q)q̃ + λψTC(q, ˙̃q)q̃

−
(
λq̃

2

)T [
4
Kp

λ
− (Kd − λM(q))

](
λq̃

2

)
(6.13)

Now we establish a bound on the second term

λ̇ψTM(q)q̃ =− λq̃T ˙̃q

‖q̃‖(1 + ‖q̃‖)ψ
TM(q)q̃

=− λq̃T (ψ1 − λ
2
q̃)

‖q̃‖(1 + ‖q̃‖) (ψ1 +
λ

2
‖q̃‖)TM(q)q̃

≤λMM‖q̃‖
1 + ‖q̃‖

(
‖ψ1‖2 + 2‖ψ1‖

(λ
2
q̃
)

+
∣∣∣∣∣∣λ

2
q̃
∣∣∣∣∣∣2)

≤2λMM‖q̃‖
1 + ‖q̃‖

(
‖ψ1‖2 +

∣∣∣∣∣∣λ
2
q̃
∣∣∣∣∣∣2)

≤2λ0MM

(
‖ψ1‖2 +

∣∣∣∣∣∣λ
2
q̃
∣∣∣∣∣∣2) (6.14)

and on the third term

λψTC(q, ˙̃q)q̃ =λ

(
ψ1 +

λ

2
q̃

)T
C(q, q̃)

(
ψ1 −

λ

2
q̃

)
≤λCM‖q̃‖

(
‖ψ1‖2 + 2‖ψ1‖

(λ
2
q̃
)

+
∣∣∣∣∣∣λ

2
q̃
∣∣∣∣∣∣2)

≤2λCM‖q̃‖
(
‖ψ1‖2 +

∣∣∣∣∣∣λ
2
q̃
∣∣∣∣∣∣2)

≤2λ0CM

(
‖ψ1‖2 +

∣∣∣∣∣∣λ
2
q̃
∣∣∣∣∣∣2) (6.15)

where (6.8) and (6.7) have been used in the first and the second steps, respectively.

Replacing these bounds in (6.13) and rearranging terms we obtain

V̇ (q̃, ˙̃q) ≤ −k1‖ψ1‖2 − k2

∣∣∣∣∣∣∣∣λ2 q̃
∣∣∣∣∣∣∣∣2 (6.16)

153



where

k1 = Kd,m − 3λ0MM − 2λ0CM (6.17)

k2 = 4λ−1
0 Kp,m −Kd,M − 2λ0MM − 2λ0CM (6.18)

The condition (6.5) ensures that k1 and k2 are positive. Thus V (q̃, ˙̃q) is a non-

increasing function bounded from below. The definition of V (q̃, ˙̃q), (6.11), then

implies that ψ, q̃ ∈ Ln∞, and consequently ˙̃q, ψ1 ∈ Ln∞. Further, since λ ∈ L∞, (6.16)

implies that ψ1, q̃ ∈ Ln2 . From square integrability of q̃ and the fact that ˙̃q ∈ Ln∞

we conclude that q̃ asymptotically converges to zero. Also notice that ˙̃q ∈ Ln2 and

that the tracking error dynamics (6.10) implies ¨̃q ∈ Ln∞. Thus, ˙̃q also asymptotically

converges to zero.

Now let us consider the event-triggered implementation of the controller (6.3).

Recall the notation, from Section 1.3, used to denote the sampled data versions of

different signals in the system. The sampled data version of any signal ζ (which can

be a scalar, a vector or a matrix) is denoted by ζs. In particular, the data sampled

by the controller is denoted by ξs, and is defined as

ξs(t) = ξ(ti), for all t ∈ [ti, ti+1), for each i (6.19)

where ti are the sampling instants. All the other sampled data signals are similarly

defined. The ‘measurement error’ of the sampled data is denoted by

e , ξs − ξ = ξ(ti)− ξ, for t ∈ [ti, ti+1), i ∈ {0, 1, 2, ...} (6.20)

The sampled data controller is then given as

us = γ(ξs) = Ysθ −Kd
˙̃qs −Kpq̃s (6.21)
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Utilizing the measurement error view, the closed loop tracking error system can be

written as a perturbation of (6.10).

M(q)¨̃q + C(q, q̇) ˙̃q + λC(q, q̃)q̇d +Kd
˙̃q +Kpq̃ =

(Ys − Y )θ −Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃) (6.22)

Before we describe the event-triggering condition we state the assumptions

that are made regarding the desired trajectory and the robot.

(A6.2) The desired trajectory [qd; q̇d], and its first two derivatives are uniformly bounded

by known constants. That is, qd, q̇d, q̈d and
...
q d exist for all time, and are uni-

formly bounded by known constants d0, d1, d2 and d3, respectively.

(A6.3) The matrices M(.), C(., .) and G(.) are globally Lipschitz.

The following lemma is used to bound the terms on the right hand side of

(6.22). In the sequel, the notation |.| denotes the component-wise absolute value

of a vector or matrix. A Lipschitz vector is similar to a Lipschitz constant. More

specifically, it is a vector of non-negative elements other than the zero vector.

Lemma 6.1. Suppose that assumptions (A6.2),(A6.3) and conditions (6.6), (6.7)

hold. Also assume that Kp = KT
p > 0 and Kd = KT

d > 0. Then, there exist Lipschitz

vectors LY and D that depend only on the sampled data, and the uniform bound on

q̇d such that

‖(Ys − Y )θ‖ ≤ LTY |e| (6.23)

‖Kd( ˙̃qs − ˙̃q) +Kp(q̃s − q̃)‖ ≤ DT |e| (6.24)
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Proof. Equation (6.24) is satisfied with D = [Kp,M1n;Kd,M1n; 03n], where 1n is an

n dimensional vector of 1’s and 03n is a vector of zeros of dimension 3n. Next, by

(6.6) and assumption (A6.3), there exist constants MM and LM , respectively, such

that

‖M(qs)q̈d,s −M(q)q̈d‖ = ‖(M(qs)−M(q))q̈d,s +M(q)(q̈d,s − q̈d)‖

≤ LM‖q̈d,s‖‖qs − q‖+MM‖q̈d,s − q̈d‖

Again, by (6.7) and assumption (A6.3), there exist constants CM and LC , respec-

tively such that

‖C(qs, ρs)q̇d,s − C(q, ρ)q̇d‖ = ‖C(qs, q̇d,s)ρs − C(q, q̇d)ρ‖

= ‖(C(qs, q̇d,s)− C(q, q̇d))ρs + C(q, q̇d)(ρs − ρ)‖

≤ LC‖ρs‖(‖qs − q‖+ ‖q̇d,s − q̇d‖) + CMd1‖(ρs − ρ)‖

where ρ = q̇ − λq̃, ρs the sampled version of ρ and d1 is a known upper bound for

‖q̇d‖ from assumption (A6.1). Next, note that

‖(ρs − ρ)‖ = ‖(q̇s − λsq̃s)− (q̇ − λq̃)‖

≤ ‖q̇s − q̇‖+ ‖q̃s‖|λs − λ|+ λ‖q̃s − q̃‖

Now, note that

|λs − λ| = λ0

∣∣∣∣ 1

1 + ‖q̃s‖
− 1

1 + ‖q̃‖

∣∣∣∣ ≤ λs

∣∣∣‖q̃s‖ − ‖q̃‖∣∣∣
≤ λs‖q̃s − q̃‖
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Noting that λ ≤ λ0, for all q̃, we see that

‖(ρs − ρ)‖ ≤ ‖q̇s − q̇‖+ λs‖q̃s‖‖q̃s − q̃‖+ λ0‖q̃s − q̃‖

≤ LTρ |e|

where Lρ is a vector that depends only on the sampled data. Finally, assumption

(A6.3) also guarantees a constant LG such that

‖G(qs)−G(q)‖ ≤ LG‖qs − q‖

By the linear parametrizability of robot dynamics, we know that

Y (q, ρ, q̇d, q̈d)θ = M(q)q̈d + C(q, ρ)q̇d +G(q)

Hence, there exists a Lipschitz vector LY that depends only on the sampled data

such that

‖(Ys − Y )θ‖ ≤ LTY |e|

Notice that the process of computing the Lipschitz vectors is simplified consid-

erably by allowing them to depend on the sampled data. For example, the approach

adopted in Chapter 5 requires an appropriate set to be defined first over which a

Lipschitz vector is computed. Such a Lipschitz vector holds for any two points in

the set. However, we only need to estimate the ‘error’ in a function with respect to

a fixed sampled value. Using this fact, for the system under consideration in this

chapter, it is possible to find a Lipschitz vector in terms of the sampled data that
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holds ‘globally’ - in the sense that one of the points where the function is evaluated

at is the fixed sample point while the other can be any arbitrary point. As seen

from the results in the sequel, such a formulation simplifies the analysis considerably

compared to that in Chapter 5.

Now let

α(x̃) = k1

∣∣∣∣∣∣∣∣ ˙̃q +
λ

2
q̃

∣∣∣∣∣∣∣∣2 + k2

∣∣∣∣∣∣∣∣λ2 q̃
∣∣∣∣∣∣∣∣2 (6.25)

β(x̃) = ‖ψ‖ = ‖ ˙̃q + λq̃‖ (6.26)

where k1 and k2 are given by (6.17) and (6.18), respectively. Then we define the

sampling or control execution instants implicitly with an event-triggering condition

in the following way.

t0 = 0

ti+1 = min{t ≥ ti : β(x̃)LT |ξ(ti)− ξ(t)| ≥ σα(x̃)} (6.27)

where σ ∈ (0, 1) is a design parameter, L = LY + D with LY and D satisfying

Lemma 6.1. Notice that each update instant ti+1 is defined implicitly with respect

to ti. Hence, the initial update instant t0 has been specified separately. Given

this event-trigger, the following result demonstrates the global convergence of the

tracking error to zero.

Theorem 6.2. Under assumptions (A6.1)-(A6.3) and dynamics (6.1), (6.21), (6.27),

the tracking error, x̃ = [q̃; ˙̃q] globally asymptotically converges to zero.

Proof. Consider the candidate Lyapunov function.

V (q̃, ˙̃q) =
1

2
ψTM(q)ψ +

1

2
q̃TKpq̃
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Through the measurement error view of (6.22) and the analysis of 6.1, it can be

shown that the derivative of the candidate Lyapunov function along the flow of the

closed loop system (6.1), (6.21), (6.27) satisfies the following.

V̇ ≤ −α(x̃) + ψT
[
(Ys − Y )θ −Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

]
≤ −α(x̃) + β(x̃)LT |e|

where the second step is obtained using the definitions of β, (6.26) and L. The

triggering condition (6.27) ensures that β(x̃)LT |e| ≤ σα(x̃), which then implies that

V̇ ≤ −(1− σ)α(x̃)

Then, asymptotic convergence of q̃ and ˙̃q to zero follows from arguments used in the

proof of Proposition 6.1.

Now, it must be pointed out that both the control law (6.21) and the triggering

condition (6.27) (through L) depend on the knowledge of a good model of the robot

system. However, in many applications an accurate model is not available. If only

a poor model is available then the tracking performance may deteriorate. It would

be useful for practical applications to incorporate adaptation in the event-triggered

controller. In the next section, we present the methodology for accomplishing this

goal.

6.3 Event Based Adaptive Control

In this section, the adaptive controller from [81] for tracking in robot manipulators

is introduced, and a utility driven event-triggered implementation of it is developed.
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Consider the following controller and adaptation law from [81]

u = M̂(q)q̈d + Ĉ(q, q̇ − λq̃)q̇d + Ĝ(q)−Kd
˙̃q −Kpq̃

= Y (q, q̇ − λq̃, q̇d, q̈d)θ̂ −Kd
˙̃q −Kpq̃ (6.28)

˙̂
θ = −Γ−1Y T (q, q̇ − λq̃, q̇d, q̈d)ψ (6.29)

where Y (.) is a regressor matrix, ψ = ˙̃q + λq̃, Γ is an arbitrary positive definite

matrix and θ̂ is a vector of estimates of the true system parameters θ, which depend

on parameters such as link masses and link lengths. Then, the following result can

be proven, which is taken from [81] and stated here without proof.

Proposition 6.3 (Prop. 3.1, [81]). Suppose that assumption (A6.1) holds. Then

the adaptive system (6.1, 6.28, 6.29) is globally convergent, that is q̃ and ˙̃q asymtp-

totically converge to zero, and all the internal signals are bounded.

The proof of this proposition is similar to Proposition 6.1 and relies on the

candidate Lyapunov function

V (q̃, ˙̃q, θ̃) =
1

2
ψTM(q)ψ +

1

2
q̃TKpq̃ +

1

2
θ̃TΓθ̃ (6.30)

where Γ = ΓT is a positive definite matrix and θ̃ , θ̂−θ is the parameter estimation

error.

Now, we develop an event-triggered adaptive controller based on (6.28)-(6.29).

First, we make the following assumption

(A6.4) An upper bound on each of the parameters θi is known, that is, θ̄ is known

such that θi ≤ θ̄i.
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Note that the conditions (6.6), (6.7), (A6.3) on the one hand and (A6.4) on other are

not entirely independent. However, (A6.4) is a convenient form to base our design

on.

Now, the complete system including the robot dynamics, the event-triggered

controller and the adaptation law are as follows.

M(q)q̈ + C(q, q̇)q̇ +G(q) = us, q ∈ Rn (6.31)

us = Ysθ̂s −Kd
˙̃qs −Kpq̃s = γ(ξs), if t ≥ t0 (6.32)

ξ , [q̃; ˙̃q; qd; q̇d; q̈d; θ̂] (6.33)

ξs(t) = ξ(ti), for all t ∈ [ti, ti+1), for each i

t0 = 0

ti+1 = min{t ≥ ti : β(x̃)LT |ξ(ti)− ξ(t)| ≥ σα(x̃)} (6.34)

˙̂
θ = −Γ−1Y T

s ψ, if t ≥ t0 (6.35)

where σ ∈ (0, 1) is a design parameter. Notice that the data required by the con-

troller is, ξ, now additionally includes θ̂ compared to that in Section 6.2. Equations

(6.32)-(6.34) provide a complete description of the event-triggered controller. The

condition that implicitly defines the sampling instants (6.34) is the event-trigger.

The functions α and β are given by (6.25) and (6.26), respectively. The vector

L = LY +D+N , where LY and D satisfy Lemma 6.1 (with e defined appropriately

to include θ̂s − θ̂) whereas N is a Lipschitz vector that satisfies

‖Ys(θ̂s − θ̂)‖ ≤ NT |e|

More specifically, N = [0T , Column-wise sum of |Ys| ]T , where 0 is a vector of zeros
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of appropriate dimension. Given this complete system, the following result demon-

strates the global convergence of the tracking error to zero.

Theorem 6.4. Under assumptions (A6.1)-(A6.3) and dynamics (6.31)-(6.35), the

tracking error, x̃ = [q̃; ˙̃q] globally asymptotically converges to zero.

Proof. Using the measurement error approach, the tracking error dynamics can be

shown to satisfy

M(q)¨̃q + C(q, q̇) ˙̃q + λC(q, q̃)q̇d +Kd
˙̃q +Kpq̃

= (Ysθ̂s − Y θ)−Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

which is essentially a perturbed version of (6.10). Now, consider the candidate

Lyapunov function (6.30). Again, following the analysis in Proposition 6.1, the

derivative of the Lyapunov function along the flow of the closed loop system (6.31)-

(6.35) can be shown to satisfy

V̇ ≤ −α(x̃) + θ̃TΓ ˙̃θ + ψT
[
(Ysθ̂s − Y θ)−Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

]
= −α(x̃) + θ̃TΓ ˙̃θ + ψT

[
(Ys − Y )θ + Ys(θ̂s − θ̂) + Ysθ̃ −Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

]
= −α(x̃) + ψT

[
(Ys − Y )θ + Ys(θ̂s − θ̂)−Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

]
+ θ̃T

[
Γ ˙̃θ + Y T

s ψ
]

= −α(x̃) + β(x̃)LT |e|+ 0

where the last step is obtained using the definition of β, (6.26), the definition of L and

the adaptation law (6.35). The event-trigger (6.34) ensures that β(x̃)LT |e| ≤ σα(x̃),

which then implies that

V̇ ≤ −(1− σ)α(x̃) < 0
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The rest of the proof is similar to that of Proposition 6.1.

Notice that in our treatment so far, the implementation aspects arising out of

implicitly defined sampling instants given by (6.34) have not been discussed. For

example, implicitly defined inter-sample times may exhibit zeno behavior - sampling

infinitely many times in a finite time period, which is something not realistically

implementable. Ideally, it is good to have a positive lower bound between every two

consecutive sample times. Given that sampling the complete system data involves

sampling an external desired trajectory as well as parameter estimates resulting

from adaptation along with the state of the robot system, it is not easy to provide

analytical bounds that hold globally, semi-globally or even over significant regions

of the state space. Therefore, in the following subsection, we provide a method to

analytically estimate the inter-sample time as a function of only the tracking error,

independent of the robot parameter estimation error.

6.3.1 Inter-sample times

The basic idea behind the method we have adopted to estimate the inter-sampling

times is to estimate an upper bound on ‖e‖, and a lower bound on σα(x̃)
‖L‖β(x̃)

as functions

of time since the last sample. Then, from (6.34) it is seen that, the time required for

the above two quantities to equal each other provides a lower estimate of the inter-

sample time. As a first step, we provide estimates of α(x̃) and β(x̃) as functions of

‖x̃‖.
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α(x̃) = k1

(
˙̃q +

λ

2
q̃
)T(

˙̃q +
λ

2
q̃
)

+ k2

(λ
2
q̃
)T(λ

2
q̃
)

= [q̃; ˙̃q]T

λ
2

4
(k1 + k2)In

λ
2
k1In

λ
2
k1In k1In

 [q̃; ˙̃q]

where In is a n× n identity vector and [q̃; ˙̃q] is a concatenated column vector. The

two distinct eigenvalues of the matrix are given by

sα =
λ2(k1 + k2) + 4k1

8
±

√(
λ2(k1 + k2)− 4k1

)2
+ 16λ2k2

1

8

Note λ =
λ0

1 + ‖q̃‖ is a function of ‖q̃‖ and so are the eigenvalues sα. Now, since

λ0 > 0, λ > 0 for any finite value of ‖q̃‖. Thus, both the eignevalues, sα, are strictly

positive for any finite value of ‖q̃‖ and the smaller eigenvalue converges to 0 as ‖q̃‖

converges to ∞. We denote the smaller of the eigenvalues sα as

a(q̃) ,
λ2(k1 + k2) + 4k1

8
−

√(
λ2(k1 + k2)− 4k1

)2
+ 16λ2k2

1

8
(6.36)

Thus for any finite x̃,

a(q̃)‖x̃‖2 ≤ α(x̃) (6.37)

Similarly,

β(x̃) = ‖ψ‖ =

√
( ˙̃q + λq̃)T ( ˙̃q + λq̃)

=

√√√√√√√
[
q̃ ˙̃q

]λ2In 2λIn

2λIn In


q̃

˙̃q


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The 2n× 2n matrix in the above equation has only two distinct eigenvalues, which

are given by

sβ =
(λ2 + 1)±

√
(λ2 + 1)2 + 12λ2

2

The largest eigenvalue is an increasing function of λ and since λ ≤ λ0 for all q̃, the

following quantity is an upper bound for the eigenvalues sβ.

b2 =
(λ2

0 + 1) +
√

(λ2
0 + 1)2 + 12λ2

0

2
(6.38)

Then,

β(x̃) = ‖ψ‖ ≤ b‖x̃‖ (6.39)

The next step in the procedure is to estimate an upper bound on the rate of

change of ‖e‖. Notice that e = ξs−ξ = ξ(ti)−ξ, for t ∈ [ti, ti+1) and each i, where ξ

is the data given in (6.33). Therefore, ė = −ξ̇. Hence, we look at how the derivative

of each of the components of ξ (see (6.33)) can be bounded, starting with that of θ̃.

From (6.35), we see that

d‖θ̃‖
dt
≤ ‖Γ−1Y T

s ψ‖ ≤ b‖Γ−1Y T
s ‖.‖x̃‖ (6.40)

where (6.39) has been used to obtain the second inequality. The rate of change of

the desired trajectory, and its derivatives is provided by Assumption (A6.2). In fact,

only the constant d3 is required here, as seen in the following equation.

d

dt


‖qd‖

‖q̇d‖

‖q̈d‖

 =


0 1 0

0 0 1

0 0 0




‖qd‖

‖q̇d‖

‖q̈d‖

+


0

0

d3

 (6.41)
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Next, from the robot dynamics (6.31) and the sampled data controller (6.32),

the equation of motion can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q)

= Y θ + (Ysθ̂s − Y θ)−Kd
˙̃qs −Kpq̃s

= M(q)q̈d + C(q, ρ)q̇d +G(q) + (Ysθ̂s − Y θ)−Kd
˙̃qs −Kpq̃s

After rearranging terms we obtain

M(q)¨̃q + C(q, q̇) ˙̃q + C(q, λq̃)q̇d = (Ys − Y )θ + Ys(θ̂s − θ̂) + Ysθ̃ −Kd
˙̃qs −Kpq̃s

where θ̃ = θ̂ − θ. Thus,

¨̃q = M−1(q)[−C(q, q̇) ˙̃q − C(q, λq̃)q̇d + (Ys − Y )θ + Ys(θ̂s − θ̂) + Ysθ̃ −Kd
˙̃qs −Kpq̃s]

Then by assumption (A6.1) and Lemma 6.1, it follows that

d‖¨̃q‖
dt
≤ 1

Mm

[
CM‖q̇‖‖ ˙̃q‖+ CM‖λq̃‖‖qd‖+ ‖L‖‖e‖+ ‖Ys‖‖θ̃‖+Kd‖ ˙̃qs‖+Kp‖q̃s‖

]
(6.42)

Now, we introduce two new variables. Let ex̃ and ed be the measurement error

in the tracking error x̃ and the rest of the data, respectively. That is,

ex̃ = x̃s − x̃ (6.43)

ed = [qd,s; q̇d,s; q̈d,s; θ̂s]− [qd; q̇d; q̈d; θ̂] (6.44)

Hence, e = [ex̃; ed]. From (6.40)-(6.42) along with the facts that ė = −ξ̇ and

ξ = ξs − e, we see that

d

dt

‖ex̃‖
‖ed‖

 ≤ A

‖ex̃‖
‖ed‖

+B1
CM‖q̇‖‖ ˙̃q‖

Mm

+B2 (6.45)
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where A and B2 are matrices that depend on sampled data and system constants,

and B1 = [1; 0]. Thus, for any finite ξs, the matrices A, B1 and B2 are finite.

However, we still have a nonlinear term. To simplify the analysis let us consider a

ball in R2n centred around x̃s. More specifically, if we let Rs , ‖x̃s‖, then consider

the ball defined by Rh
s , {x̃ : ‖ex̃‖ ≤ hRs} for any arbitrary h > 0. On this set

‖ ˙̃q‖ ≤ (1 + h)Rs and hence it is possible to obtain a linear differential equation as

follows

d

dt

‖ex̃‖
‖ed‖

 ≤ A1

‖ex̃‖
‖ed‖

+B3, ∀ e s.t. ‖ex̃‖ ≤ hRs (6.46)

where A1 and B3 depend on sampled data and are finite for any finite ξs. At

any given sample instants ti, ξs = ξ = ξ(ti). Hence, ‖e‖ = 0 at t = ti for each i.

Therefore, by using the Comparison Lemma [45] and (6.46) it is possible to estimate

the time it takes for ‖ex̃‖ to grow from 0 to hRs. Let this time be T1. Therefore,

(6.46) is useful for further analysis only over this time period.

The triggering condition ensures that

‖e‖ ≤ α(x̃)

‖L‖β(x̃)

and the inter-sample time is lower bounded by the time it takes ‖e‖ to grow from 0

to
α(x̃)

‖L‖β(x̃)
. The estimation of this time can be simplified in the following way. On

the set Rh
s = {x̃ : ‖ex̃‖ ≤ hRs}, a(‖q̃‖) attains a minimum, which we denote by ahs .

Thus on this set,

α(x̃)

‖L‖β(x̃)
≥ ahs‖x̃‖2

‖L‖b‖x̃‖ =
ahs (‖x̃s − ex̃‖)
‖L‖b (6.47)
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Notice that this equation is well defined for all x̃ 6= 0. Now let T2 be the time defined

as

T2 = min{(t− ti) > 0 : b‖L‖‖e‖ = ahs (‖x̃s‖ − ‖ex̃‖)} (6.48)

This time T2 can be found numerically or estimated analytically from (6.46). Then,

the inter-sample time ti+1 − ti ≥ min{T1, T2} when ξs = ξ(ti). Clearly, this inter-

sample time is greater than zero if x̃s 6= 0. However, the analysis presented so far

is not powerful enough to provide an explicit and non-conservative lower bound for

inter-sample times over a region of interest. We believe numerical analysis would

reveal such bounds much more efficiently. Note, however, finding estimates of T1

and T2 for any given sampling point doesn’t require the exact knowledge of the robot

parameters, which is a significant advantage from a practical perspective.

In the next section, we present a dynamic model of a two-link planar manip-

ulator on which we have performed simulations and conducted experiments.

6.4 Two Link Planar Manipulator

In this section we describe the dynamic model of a planar two-link revolute joint

arm, with both the joints driven by motors mounted at the base. We choose this

model because of a similar driving mechanism in PHANToM Omni. A schematic of

the arm is shown along with the generalized coordinates in Figure 6.1. The M(q),

C(q, ρ) and G(q) matrices can be easily found from the Euler-Lagrange equations,
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Link 2

Link 1

Figure 6.1: A schematic of a two link planar revolute manipulator with the second

link remotely driven from base of Link 1.

and are given as follows.

M(q) =

 m1l
2
c1

+m2l
2
1 + I1 m2l1lc2 cos(q2 − q1)

m2l1lc2 cos(q2 − q1) m2l
2
c2

+ I2


C(q, ρ)

=

 0 −m2l1lc2 sin(q2 − q1)ρ2

m2l1lc2 sin(q2 − q1)ρ1 0



G(q) =

(m1lc1 +m2l1)gcos(q1)

m2lc2gcos(q2)


where mi, li, lci and Ii are the mass, length, distance of the center of mass from the

joint, and moment of inertia about the center of mass of the ith link, respectively.
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Thus, the regressor matrix is given as

Y (q, ρ, q̇d, q̈d)
T

=



q̈d,1 0

q̈d,2 cos(q2 − q1)− q̇d,2 sin(q2 − q1)ρ2 q̈d,1 cos(q2 − q1) + q̇d,1 sin(q2 − q1)ρ1

0 q̈d,2

cos(q1) 0

0 cos(q2)


and the vector of parameters is given as

θ =



m1l
2
c1

+m2l
2
1 + I1

m2l1lc2

m2l
2
c2

+ I2

(m1lc1 +m2l1)g

m2lc2g


(6.49)
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The vector LY is given as

LY =



θ̄2(φs,1 + d1φs,2) + θ̄4

θ̄2(φs,1 + d1φs,2) + θ̄5

θ̄2d1

θ̄2d1

θ̄2φs,1 + θ̄4

θ̄2φs,1 + θ̄5

θ̄2(|ρs,1|+ d1)

θ̄2(|ρs,2|+ d1)

θ̄1 + θ̄2

θ̄3 + θ̄2

0



(6.50)

φs,1 = |ρs,1q̇d,s,1|+ |ρs,2q̇d,s,2|+ |q̈d,s,1|+ |q̈d,s,2|

φs,2 = λs(1 + 2|q̃s,1|+ 2|q̃s,2|)

where ρsk = q̇s,k−λsq̃s,k, for k = 1, 2, 0 is a vector of zeros of appropriate dimension

and θ̄i are from (A6.4). As in section 6.3, L = LY + N + D. Notice that most of

the elements in these vectors are constants or easily computable functions of the

sampled data. Of course when a good model of the system is available (the system

parameters θi are known with good accuracy), θ̄i in the definition of LY may simply

be replaced with θi. In the next section we present the simulation and experimental

results.
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6.5 Results

In both the simulation and experimental results presented here, the position vari-

ables of the desired trajectory was chosen as

qd,1 = −0.4(cos(0.8t)− 1.1)

qd,2 = −0.4(cos(0.3πt)− 1)− (π/2)

The signals q̇d, q̈d and
...
q d were defined simply as the corresponding derivatives of

qd. The control gains and the parameters were chosen as

λ0 = 0.7, Kd = 0.03, Kp = 0.7, σ ∈ {0.95, 0.6, 0.2}

Γ = diag([30, 40, 50, 10, 10]T )

d2 = 0.5

where d2 is the uniform upper bound on |q̇d,1| and |q̇d,2|. The initial condition of the

robot was chosen as

[q1, q2, q̇1, q̇2]T (0) = [0,−π/2, 0, 0]T

6.5.1 Simulation Results

In the simulations, the true robot parameters were assumed to be the following.

m1 = 0.065, m2 = 0.065, I1 = 10−5, I2 = 10−5

l1 = 0.14, l2 = 0.2, lc,1 = 0.07, lc,2 = 0.09, g = 9.8

thus giving θ = [0.0016; 0.0008; 0.0005; 0.1338; 0.0573].
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In the first set of simulations, we avoid adaptation and show the effect of an

inaccurate knowledge of the parameters θi. In these set of simulations σ = 0.95

was chosen. Figure 6.2 shows the results when the controller has exact knowledge

of the robot parameters (Figure 6.2(a)), and when the controller has an inaccurate

knowledge of the robot parameters (Figure 6.2(b)). These figures show the norm of

the tracking error, ‖x̃‖. In addition, the former figure also shows the measurement

error scaled such that it equals ‖x̃‖ whenever the equality is satisfied in the triggering

condition (6.27). In the first case, the norm of the tracking error converges to

zero very quickly while in the latter case the tracking error does not converge even

after a long time. In the second case, the controller assumes robot parameters

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t (seconds)

 

 
Q | e|
| | x̃| |

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (seconds)

 

 
| | x̃| |

(b)

Figure 6.2: (a) Controller has exact knowledge of the robot parameters. The figure

shows norm of the tracking error and the scaled measurement error. (b) Controller

has inaccurate knowledge of the robot parameters. The figure shows norm of the

tracking error.

to be θ̂ = [0.0019; 0.0010; 0.0004; 0.1605; 0.0459] while the actual parameters were
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θ = [0.0016; 0.0008; 0.0005; 0.1338; 0.0573], which represents a plus/minus 20% error

in each of the parameters.

For the simulations with adaptation, we first assumed

θ̄ = [0.0035, 0.0035, 0.002, 0.2, 0.1]T , hl = 10−8

where hl is a lower bound on (θ1θ3−θ2
2), which can be easily shown to be positive for

a two link manipulator. Using these quantities, MM , Mm and CM can be estimated

as

MM =
θ̄1 + θ̄3 +

√(
θ̄1 + θ̄3

)2 − 4hl

2

Mm =
θ̄1 + θ̄3 −

√(
θ̄1 + θ̄3

)2 − 4hl

2

CM = θ̄2

Finally, the initial system parameter estimates have been chosen as

θ̂(0) = [0.0001, 0.0001, 0.0001, 0.01, 0.001]T

The choice of such low initial values for θ̂ is motivated by the fact that initial torques

will be lower in the absence of knowledge of the system parameters.

Figure 6.3 shows, for the cases of σ = 0.6 and σ = 0.95, the norm of the

tracking error, ‖x̃‖ = ‖[q̃; ˙̃q]‖. As expected, the convergence is faster for the case

with the smaller σ = 0.6. Figure 6.4 shows the desired and the actual joint positions

as functions of time.

The observed minimum inter-update times and average frequency in simula-

tions are reported in Table 6.1.
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Figure 6.3: The norm of the tracking error and the scaled measurement error. (a)

σ = 0.6 (b) σ = 0.95

Table 6.1: The observed minimum inter-update times and average frequency in

simulations.

σ Observed minimum Observed

inter-update time (s) average Frequency (Hz)

0.6 0.0017 28

0.95 0.0028 26.5

Next, we present the experimental results of the algorithm on a PHANToM

Omni.
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Figure 6.4: The desired joint positions and the actual positions of the robot. (a),

(b) σ = 0.6, (c), (d) σ = 0.95

6.5.2 Experimental Results

PHANToM Omni, a picture shown in Figure 6.5, is a 6 degree of freedom robotic

manipulator. It uses IEEE-1394 Firewire to communicate with a computer. The

OpenHaptics 3.0 [84] is an API that allows one to program the PHANToM Omni

and one can perform tasks such as reading the sensors and controlling the joint
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torques.

Figure 6.5: PHANToM OmniTM

For the experiments presented here, only the second and third joint have been

kept active. The first joint was never actuated, and the remaining joints were either

removed or constrained to a fixed position. Hence, this provides a simple test bed

for the event-triggered controller developed in the previous sections.

The OpenHaptics 3.0 API does not provide the capability to arbitrarily choose

the sampling and control update instants. The API samples the sensors and updates

the control torques at a roughly constant inter-tick period of 1 milli-seconds. Figure

6.6 shows the cumulative frequency distribution of the inter-tick times for a typical

experiment. As can be seen most of the ticks occur with a 1 milli-second period or a

frequency of 1000Hz. Hence, in the experiments the event-triggering condition was

checked at a roughly constant frequency of 1000Hz.

The experimental results are presented in Figure 6.7. Joint 2 tracking is com-

parable to the simulation results, though with more error near the peaks. In the

beginning of the experiment, Joint 1 tracking error converges to zero faster com-

pared to the simulation results. This is because of the physical joint limits, due to

which Joint 1 is at equilibrium in the beginning of the experiment. On the other
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Figure 6.6: The cumulative frequency distribution of the inter-tick times of the

PHANToM OmniTM.

hand, in the simulation, joint limits are not considered, and hence Link 1 is in free

fall in the beginning, which contributes to the sharp rise in the tracking error and

slightly slower convergence of Joint 1 tracking error. In experiments, there are also

unmodeled factors such as friction which contribute to the persisting tracking error,

specially near the peaks and troughs of the qd,1 and qd.2.

The observed minimum inter-update times and average frequency in simu-

lations are reported in Table 6.2. The observed minimum inter-update time is,

however, partly determined by the roughly fixed sampling and control update fre-

quency inherent in the Phantom Omni system. Figure 6.8 shows the cumulative

distribution of the control inter-update times. The maximum inter-update time was

around 0.6s and 0.98s, in the experiments with σ = 0.6 and σ = 0.95, respectively.
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Figure 6.7: The desired joint positions and the actual positions of the robot. (a),

(b) σ = 0.6, (c), (d) σ = 0.95

6.6 Conclusions

A major drawback of the event-triggered control paradigm is that it requires an

accurate model of the system, which is not always possible to obtain. Motivated by

this challenge to the practical utility of event-triggered control, we seek to design

event based adaptive controllers. In this chapter, an event based implementation
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Table 6.2: The observed minimum inter-update times and average frequency in

experiments.

σ Observed minimum Observed

inter-update time (s) average Frequency (Hz)

0.6 9.8× 10−4 50

0.95 9.8× 10−4 34
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Figure 6.8: The cumulative frequency distribution of the control inter-update times

in the experiments. (a) σ = 0.6, (b) σ = 0.95

of an adaptive controller for trajectory tracking in robot manipulators has been

presented. More precisely, an existing continuous-time adaptive controller from the

literature was chosen and an event-trigger was designed in a manner similar to

that in [32] for trajectory tracking applications. Then, simulation and experimental

results on a two-link planar manipulator were presented demonstrating the efficacy
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of the algorithm. Both simulation and experimental results demonstrate the promise

that event based algorithms hold in robotic applications. Future work will include

improving the event-triggering and adaptation to obtain better results and numerical

analysis necessary for estimating the inter-update times.
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Chapter 7

Conclusions

This dissertation is motivated by the need to design efficient sampled data controllers

through utility driven event-triggering. Much of the existing literature in the area is

applicable for fixed-point stabilization under full state feedback. This dissertation

explores a few important classes of problems where only imperfect information, of

different kinds, is available.

The dissertation is broadly divided into three parts. The first part of the disser-

tation is utility driven event-triggering under partial state information. Much of the

existing literature on event-triggered control assumes the availability of the full state

information to the event-trigger. This assumption fails to be satisfied in two very

important scenarios - decentralized control systems and dynamic output feedback

control. The first scenario is addressed in Chapter 2, where in a control system with

distributed sensors and a central controller is considered. The decentralized sen-

sors together are assumed to sense the complete state of the system, which however

transmit data to the central controller intermittently and asynchronously at time

instants determined by local utility driven event-triggers. We were able to approach

this problem with less restrictive assumptions than in some of the references. Unlike

in the literature, we were also able to guarantee semi-global asymptotic stability for

nonlinear systems and global asymptotic stability for linear systems without the
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sensors having to listen to the controller. However, in the nonlinear case the de-

sign is conservative. Thus, we also proposed a modification, wherein the sensors

occasionally receive updates from the controller.

Chapter 3 addressed the scenario where a system inherently lacks full state

feedback and an output feedback dynamic (for example, observer based) controller

has to be used. This chapter is concerned solely with Multi Input Multi Output

(MIMO) Linear Time Invariant (LTI) systems. This problem naturally extends to

the case where the sensors are decentralized and not co-located with the controller.

In this chapter, we in fact progress from a centralized architecture where the sensors,

controller and the actuators are co-located to a fully decentralized control system

- a Sensor-Controller-Actuator Network (SCAN). Again, unlike in the existing lit-

erature, we were able to guarantee global asymptotic stability. Even in the most

general of the architectures considered in this chapter, Sensor-Controller-Actuator

Network (SCAN), the assumptions on the system matrices are fairly simple. In

future, the ideas used in these two chapters will be utilized to design schemes to

decentralize sophisticated centralized event-triggers.

The second part expands the definition of utility driven sampling to include

sampling in both time and space. The fields of event-triggered control and coarsest

quantization have very similar motivations, although they are aimed at ‘coarse sam-

pling’ in time and space, respectively. In Chapter 4, we exploit the common principle

behind the two fields, which is robustness/tolerance to measurement errors, to design

implicitly verified discrete-event emulation based controllers for asymptotic stabi-

lization of general nonlinear systems. In comparison to the coarsest quantization
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literature, our quantizer design holds for general multi-input nonlinear continuous

time systems.

The third part is on utility driven sampled data control for trajectory tracking.

Tracking a time varying trajectory or even a set-point is of tremendous practical

importance in many control applications. In these applications, the goal is to make

the state of the system follow a reference or desired trajectory, which is usually

specified as an exogenous input to the system. In Chapter 5, a method for designing

utility driven event-triggered controllers for trajectory tracking in nonlinear systems

is proposed.

In Chapter 6, we propose a utility driven sampled data implementation of an

adaptive controller for trajectory tracking in robot manipulators. This is motivated

by the fact that commonly, utility driven event-triggered controllers such as the one

presented in Chapter 5 rely on the knowledge of an accurate model of the system.

However, building a model of high accuracy is a time consuming process and in

many cases, it may not even be possible. Therefore, it is important to extend the

design of implicitly verified event based controllers to cases where only a poor model

of the system is available. In this work, we propose an event-triggered emulation of

an adaptive controller from the existing literature.
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