1,737 research outputs found

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Adaptive group consensus of coupled harmonic oscillators with multiple leaders

    Get PDF
    In this paper, we investigate the group consensus of coupled harmonic oscillators with multiple leaders in an undirected fixed network. Unlike many existing algorithms for group consensus of multi-agent systems or cluster synchronization of complex dynamical networks, which require global information of the underlying network such as the eigenvalues of the coupling matrix or centralized control protocols, we propose a novel decentralized adaptive group consensus algorithm for coupled harmonic oscillators. By using the decentralized adaptive group consensus algorithm and without using any global information of the underlying network, all agents in the same group asymptotically synchronize with the corresponding leader even when only one agent in each group has access to the information of the corresponding leader. Numerical simulation results are presented to illustrate the theoretical results. © 2012 IEEE.published_or_final_versio
    • …
    corecore