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Adaptive Group Consensus of Coupled Harmonic Oscillators with
Multiple Leaders

Housheng Su† Michael Z. Q. Chen∗ Xiaofan Wang§ Najl V. Valeyev‡

Abstract— In this paper, we investigate the group consensus
of coupled harmonic oscillators with multiple leaders in an
undirected fixed network. Unlike many existing algorithms for
group consensus of multi-agent systems or cluster synchro-
nization of complex dynamical networks, which require global
information of the underlying network such as the eigenvalues
of the coupling matrix or centralized control protocols, we pro-
pose a novel decentralized adaptive group consensus algorithm
for coupled harmonic oscillators. By using the decentralized
adaptive group consensus algorithm and without using any
global information of the underlying network, all agents in the
same group asymptotically synchronize with the corresponding
leader even when only one agent in each group has access to the
information of the corresponding leader. Numerical simulation
results are presented to illustrate the theoretical results.

Keywords: Distributed control, multi-agent systems, group con-
sensus, adaptive control, leader.

I. INTRODUCTION

Recently, there has been increasing interest in the study of
multi-agent distributed coordination from diverse fields such
as biology, physics and engineering [1], [2], [3], [4], [5], [6],
[7], [8], [9], [9], [11], [12]. This is partly due to the great
potential applications of multi-agent distributed coordination,
such as cooperative control of unmanned aircrafts and mobile
robots [13], [14], [15]. Inspired by the pioneering models of
Reynolds [3] and Vicsek [4], many versions of distributed co-
ordinated control algorithms have been proposed, including
consensus [16], [17], [18], [19], [20], swarming [21], [22],
[23], [24], and flocking [12], [25], [26], [27], [28], [29], [30].

Consensus can be classified into complete consensus [16],
[17], [18], [19], [20] and group consensus [31], [32], [33].
In particular, group consensus algorithms [31], [32], [33]
for multi-agent systems or cluster synchronization algorithms
[34], [35] of complex dynamical networks aim to guide all
agents or nodes in the same cluster to reach the same state
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value. Group consensus of multi-agent systems was investi-
gated in undirected networks [31] and directed networks [32],
respectively. Furthermore, group consensus was studied with
communication delays on switching networks [33]. Cluster
synchronization of complex networks was investigated via
centralized adaptive pinning control [34] and in networks of
coupled nonidentical dynamical systems [35].

Most existing algorithms [31], [32], [33], [34], [35] for
group consensus of multi-agent systems or cluster synchro-
nization of complex dynamical networks are only concerned
with first-order dynamics. In reality, however, a broad class
of agents cannot be described by first-order dynamic models,
such as torque motors and gas jets, which are adjusted for
their desired motion directly by their acceleration rather than
by their speeds. Therefore, second-order type consensus al-
gorithms have been broadly investigated. Flocking algorithm-
s for multi-agent systems were proposed by a combination
of velocity consensus term with a local artificial potential
term [12], [25], [26], [27], [28], [29], [30]. In order to
track a virtual leader or multiple virtual leaders, navigational
feedback term was added to the basic flocking algorithm
[12], [28], [29], [30]. Second-order consensus of multi-agent
systems was presented to achieve both velocity and position
consensus [36], [37], [38]. Synchronization problems of
coupled harmonic oscillators in both fixed and switching
networks were investigated in [39]. Without any explicit
assumption on the network connectivity, synchronization of
coupled harmonic oscillators in a dynamic proximity network
was investigated in [40].

To the best of our knowledge, less attention has been
paid to the group consensus of multi-agents described by
second-order dynamics. In this paper, we will investigate the
group consensus problems for second-order linear harmonic
oscillator models in undirected fixed networks. Different
from many existing investigations on coupled harmonic
oscillators and group consensus, there are multiple leaders
in this paper. Unlike many existing algorithms for group
consensus of multi-agent systems [31], [32], [33] or cluster
synchronization of complex dynamical networks [34], [35],
which require global information of the underlying network
such as eigenvalues of the coupling matrix or centralized
control protocols, we propose a novel decentralized adaptive
group consensus algorithm for coupled harmonic oscillators.
By using the decentralized algorithm and without using any
global information of the underlying network, all agents in
the same group asymptotically synchronize with the corre-
sponding leader even when only one agent in each group has
access to the information of the corresponding leader.
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The rest of the paper is organized as follows. Section II
states the problems to be solved in this paper. Section III
establishes the new decentralized adaptive group consensus
algorithm. Section IV presents the results of simulation
studies. Finally, Section V draws the conclusions.

II. PROBLEM STATEMENT

We consider 𝑁 agents moving in an 𝑛-dimensional Eu-
clidean space. The behavior of each agent is described by a
harmonic oscillator in the following form

𝑞𝑖 = 𝑝𝑖,
�̇�𝑖 = −𝜔2𝑞𝑖 + 𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑞𝑖 ∈ R𝑛 is the position of agent 𝑖, 𝑝𝑖 ∈ R𝑛 is its
velocity vector, 𝑢𝑖 ∈ R𝑛 is its control input and 𝜔 is the
frequency of the oscillator. For notational convenience, we
also define

𝑞 =

⎡
⎢⎢⎢⎣
𝑞1
𝑞2
...
𝑞𝑁

⎤
⎥⎥⎥⎦ , 𝑝 =

⎡
⎢⎢⎢⎣
𝑝1
𝑝2
...
𝑝𝑁

⎤
⎥⎥⎥⎦ .

We define the neighboring graph 𝒢 = {𝒱, ℰ} to be
an undirected graph consisting of a set of vertices 𝒱 =
{1, 2, . . . , 𝑁}, whose elements represent agents in the group,
and a set of edges ℰ = {(𝑖, 𝑗) ∈ 𝒱 × 𝒱 : 𝑖 ∼ 𝑗}, containing
unordered pairs of vertices that represent neighboring rela-
tions. Vertices 𝑖 and 𝑗 are said to be adjacent if (𝑖, 𝑗) ∈
ℰ . Suppose there are 𝑑 leaders and 𝑑 nonempty subsets
{𝐺1, . . . , 𝐺𝑑} is a partition of the index set {1, 2, . . . , 𝑁},
where ∪𝑑

𝑙=1𝐺𝑙 = {1, 2, . . . , 𝑁} and 𝐺𝑙 ∕= ∅. The problem of
group consensus with multiple leaders is to design a control
input 𝑢𝑖 such that

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑞𝑖(𝑡)− 𝑞𝛾𝑙(𝑡)∥ = 0

and

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑝𝑖(𝑡)− 𝑝𝛾𝑙(𝑡)∥ = 0

for all 𝑖, where 𝑞𝛾𝑙 and 𝑝𝛾𝑙 are the position and velocity
of the 𝑙th leader, respectively. The dynamics of the leaders
satisfy

𝑞𝛾𝑙 = 𝑝𝛾𝑙,
𝑝𝛾𝑙 = −𝜔2𝑞𝛾𝑙. 𝑙 = 1, 2, . . . , 𝑑.

(2)

III. ADAPTIVE GROUP CONSENSUS OF COUPLED
HARMONIC OSCILLATORS WITH MULTIPLE

LEADERS

A. Algorithm Description

The proposed adaptive strategy for agent 𝑖 is designed as

𝑢𝑖 = −∑𝑁
𝑗=1,𝑗 ∕=𝑖 𝑐𝑖𝑗𝑎𝑖𝑗(𝑝𝑖 − 𝑝𝑗)− ℎ𝑖𝑐𝑖(𝑝𝑖 − 𝑝𝛾 �̂�),

�̇�𝑖𝑗 = ℎ𝑖𝑗𝑎𝑖𝑗𝑘𝑖𝑗(𝑝𝑖 − 𝑝𝑗)𝑇 (𝑝𝑖 − 𝑝𝑗),
�̇�𝑖 = ℎ𝑖𝑘𝑖(𝑝𝑖 − 𝑝𝛾 �̂�)𝑇 (𝑝𝑖 − 𝑝𝛾 �̂�),

(3)

where 𝐴 = (𝑎𝑖𝑗)𝑁×𝑁 is the adjacent matrix, 𝑐𝑖𝑗(0) = 𝑐 ≥ 0,
𝑐𝑖(0) ≥ 0 and �̂� is the subscript of the subset for which

𝑖 ∈ 𝐺�̂�. The positive constants 𝑘𝑖𝑗 = 𝑘𝑗𝑖 and 𝑘𝑖 are the
weights of the adaptive laws for parameters 𝑐𝑖𝑗(𝑡) and 𝑐𝑖(𝑡),
respectively. If agent 𝑖 is the neighbor of the 𝑙th leader, then,
ℎ𝑖 = 1; otherwise, ℎ𝑖 = 0. If agents 𝑖 and 𝑗 are in the
same cluster, then ℎ𝑖𝑗 = 1; otherwise, ℎ𝑖𝑗 = 0. Clearly, the
adaptive parameters 𝑐𝑖𝑗(𝑡) for agent 𝑖 only contain the state
information of its neighbors.

It is assumed in [31], [32], [33], [34] that for an 𝑁 ×𝑁
symmetric matrix

𝐴 =

⎡
⎢⎢⎢⎣
𝐴11 𝐴12 ⋅ ⋅ ⋅ 𝐴1𝑑

𝐴21 𝐴22 ⋅ ⋅ ⋅ 𝐴2𝑑

...
...

. . .
...

𝐴𝑑1 𝐴𝑑2 ⋅ ⋅ ⋅ 𝐴𝑑𝑑

⎤
⎥⎥⎥⎦ , (4)

where each block 𝐴𝑢𝑣(𝑢, 𝑣 = 1, . . . , 𝑑) is a zero-row-sum
matrix, and each block 𝐴𝑢𝑢 is irreducible which satisfies
𝑎𝑖𝑖 = −∑𝑘𝑢

𝑗=1,𝑗 ∕=𝑖 𝑎𝑖𝑗 where 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ≥ 0(𝑖 ∕= 𝑗) and 𝑘𝑢 is
the number of nodes in the subset 𝑢.

Remark 1: From Equation (4), the undirected graph is
not assumed to be connected, but each undirected subgraph
should be connected. Note also that, unlike the traditional
definition of coupling matrix of the network, the element 𝑎𝑖𝑗
with 𝑖 ∈ 𝐺𝑢 and 𝑗 ∈ 𝐺𝑣 in (4) may be negative here, which
is called an inhibitory coupling [31], [32], [33], [34]. This
provides a mechanism to desynchronize two nodes belonging
to two different clusters.

B. Main Results and Theoretical Analysis

The following assumption and lemmas are needed for our
main result.

Lemma 1: [41] If 𝐿 = (𝑙𝑖𝑗) ∈ R𝑁×𝑁 is a symmetric
irreducible matrix with 𝑙𝑖𝑖 = −∑𝑁

𝑗=1,𝑗 ∕=𝑖 𝑙𝑖𝑗 , 𝑙𝑖𝑗 = 𝑙𝑗𝑖 ≥
0(𝑖 ∕= 𝑗), then for any matrix 𝐸 = diag(𝑒, 0, . . . , 0) with
𝑒 > 0, all eigenvalues of the matrix 𝐿− 𝐸 are negative.

Lemma 2: [34] For any 𝑥 ∈ R𝑝, 𝑦 ∈ R𝑞 , and matrix
𝑀 = (𝑚𝑖𝑗) ∈ R𝑝×𝑞 ,

𝑥T𝑀𝑦 ≤ (1/2)max[𝑝, 𝑞] ⋅max
𝑖,𝑗

∣ 𝑚𝑖𝑗 ∣ (𝑥T𝑥+ 𝑦T𝑦).

Lemma 3: Let matrix 𝐴 be given as in Equation (4). Then,
under the adaptive strategy (3), one has

𝐵 = (𝑎𝑖𝑗𝑐𝑖𝑗(𝑡))

=

⎡
⎢⎢⎢⎣
𝐵11 𝐵12 ⋅ ⋅ ⋅ 𝐵1𝑑

𝐵21 𝐵22 ⋅ ⋅ ⋅ 𝐵2𝑑

...
...

. . .
...

𝐵𝑑1 𝐵𝑑2 ⋅ ⋅ ⋅ 𝐵𝑑𝑑

⎤
⎥⎥⎥⎦ ∈ R𝑁×𝑁

is a symmetric matrix, in which each block 𝐵𝑢𝑣(𝑢, 𝑣 =
1, . . . , 𝑑) is a zero-row-sum matrix and each block 𝐵𝑢𝑢

is with 𝑎𝑖𝑖𝑐𝑖𝑖(𝑡) = −∑𝑘𝑢

𝑗=1,𝑗 ∕=𝑖 𝑎𝑖𝑗𝑐𝑖𝑗(𝑡), 𝑎𝑖𝑗𝑐𝑖𝑗(𝑡) =
𝑎𝑗𝑖𝑐𝑗𝑖(𝑡) ≥ 0(𝑖 ∕= 𝑗) where 𝑘𝑢 is the number of nodes in the
subset 𝑢.

Proof: If nodes 𝑖 and 𝑗 are not in the same cluster, then
by the adaptive strategy (3), one has

�̇�𝑖𝑗(𝑡) = 0.
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If nodes 𝑖 and 𝑗 are in the same cluster, then by the adaptive
strategy (3), one has

�̇�𝑖𝑗(𝑡) = �̇�𝑗𝑖(𝑡).

Therefore, 𝐵 is a symmetric irreducible matrix. Similar
to (4), each block 𝐵𝑢𝑣(𝑢, 𝑣 = 1, . . . , 𝑑) is a zero-row-
sum matrix and each block 𝐵𝑢𝑢 is with 𝑎𝑖𝑖𝑐𝑖𝑖(𝑡) =
−∑𝑘𝑢

𝑗=1,𝑗 ∕=𝑖 𝑎𝑖𝑗𝑐𝑖𝑗(𝑡), 𝑎𝑖𝑗𝑐𝑖𝑗(𝑡) = 𝑎𝑗𝑖𝑐𝑗𝑖(𝑡) ≥ 0(𝑖 ∕= 𝑗),
where 𝑘𝑢 is the number of nodes in the subset 𝑢.

Lemma 4: Let matrix 𝐴 be given as in Equation (4). Then

𝑁∑
𝑗=1,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =
𝑁∑

𝑗=1,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗),

where 𝑝𝑖 = 𝑝𝑖 − 𝑝𝛾 �̂�.
Proof: From Lemma 3, each block 𝐵𝑢𝑣(𝑢, 𝑣 =

1, . . . , 𝑑) is a zero-row-sum matrix.

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗),

and
𝑁∑

𝑗=1,̂𝑖∕=�̂�

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =
𝑁∑

𝑗=1,̂𝑖∕=�̂�

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)

−
𝑁∑

𝑗=1,̂𝑖 ∕=�̂�

𝑎𝑖𝑗𝑐𝑖𝑗𝑝𝛾 �̂� +
𝑁∑

𝑗=1,̂𝑖∕=�̂�

𝑎𝑖𝑗𝑐𝑖𝑗𝑝𝛾 �̂�

=
𝑁∑

𝑗=1,̂𝑖 ∕=�̂�

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗).

Thus, this completes the proof of Lemma 4.
Lemma 5: Let matrix 𝐴 be given as in Equation (4). Then

∑𝑁
𝑖=1(𝑝𝑖 − 𝑝𝛾 �̂�)T

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =

1
2

∑𝑁
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)T(𝑝𝑖 − 𝑝𝑗).
Proof: Note that, if �̂� = �̂�, then nodes 𝑖 and 𝑗 are in

the same cluster, therefore

∑𝑁
𝑖=1(𝑝𝑖 − 𝑝𝛾 �̂�)T

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =
∑𝑁

𝑖=1 𝑝
T
𝑖

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗),

and

1
2

∑𝑁
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)T(𝑝𝑖 − 𝑝𝑗) =

1
2

∑𝑁
𝑖=1

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)T(𝑝𝑖 − 𝑝𝑗).

For the symmetry of the matrix 𝐴, 𝑐𝑖𝑗(0) = 𝑐𝑗𝑖(0) and 𝑘𝑖𝑗 =
𝑘𝑗𝑖,

𝑎𝑖𝑖𝑐𝑖𝑖 = −
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗 = −
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑗𝑖𝑐𝑗𝑖.

Thus,

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗𝑝
T
𝑖𝑝𝑖 =

1
2

{
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑗𝑖𝑐𝑗𝑖 +
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗

}
𝑝T
𝑖𝑝𝑖

and

𝑎𝑖𝑖𝑐𝑖𝑖 = −
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗 = −
𝑁∑

𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑗𝑖𝑐𝑗𝑖.

Thus,

𝑎𝑖𝑗𝑐𝑖𝑗𝑝
T
𝑖𝑝𝑗 + 𝑎𝑗𝑖𝑐𝑗𝑖𝑝

T
𝑗𝑝𝑖 =

1
2 (𝑎𝑖𝑗𝑐𝑖𝑗𝑝

T
𝑖𝑝𝑗 + 𝑎𝑖𝑗𝑐𝑖𝑗𝑝

T
𝑗𝑝𝑖 + 𝑎𝑗𝑖𝑐𝑗𝑖𝑝

T
𝑖𝑝𝑗 + 𝑎𝑗𝑖𝑐𝑗𝑖𝑝

T
𝑗𝑝𝑖).

From the analysis above, one has

∑𝑁
𝑖=1(𝑝𝑖 − 𝑝𝛾 �̂�)T

𝑁∑
𝑗=1,̂𝑖=�̂�,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗) =

1
2

∑𝑁
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)T(𝑝𝑖 − 𝑝𝑗).

Thus, this completes the proof of Lemma 5.
Our main results can be summarized in the following

theorem.
Theorem 1: Consider a system of𝑁 agents with dynamics

(1) and 𝑑 leaders with dynamics (2), where each follower
is steered by the adaptive strategy (3). Suppose that at least
one agent in each cluster is selected to be informed by the
corresponding leader. Let matrix A be given as in Equation
(4). Then, group consensus can be achieved, namely,

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑞𝑖(𝑡)− 𝑞𝛾𝑙(𝑡)∥ = 0

and

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑝𝑖(𝑡)− 𝑝𝛾𝑙(𝑡)∥ = 0

for all 𝑖.

Proof: From Equations (1), (2) and (3), the error
dynamics is given by

˙̃𝑞𝑖 = 𝑝𝑖,
˙̃𝑝𝑖 = −𝜔2𝑞𝑖 −

∑𝑁
𝑗=1,𝑗 ∕=𝑖 𝑐𝑖𝑗𝑎𝑖𝑗(𝑝𝑖 − 𝑝𝑗)− ℎ𝑖𝑐𝑖𝑝𝑖,

�̇�𝑖𝑗 = ℎ𝑖𝑗𝑎𝑖𝑗𝑘𝑖𝑗(𝑝𝑖 − 𝑝𝑗)𝑇 (𝑝𝑖 − 𝑝𝑗),
�̇�𝑖 = ℎ𝑖𝑘𝑖𝑝

𝑇
𝑖 𝑝𝑖,

(5)

For notational convenience, we also define

𝑞 =

⎡
⎢⎢⎢⎣
𝑞1
𝑞2
...
𝑞𝑁

⎤
⎥⎥⎥⎦ , 𝑝 =

⎡
⎢⎢⎢⎣
𝑝1
𝑝2
...
𝑝𝑁

⎤
⎥⎥⎥⎦ .

Consider a candidate for the Lyapunov function
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𝑄(𝑞, 𝑝, 𝑐𝑖𝑗 , 𝑐𝑖) =
1
2𝜔

2𝑞T𝑞 + 1
2𝑝

T𝑝

+ 1
2

∑𝑁
𝑖=1

[
𝑁∑

𝑗=1,𝑗 ∕=𝑖

(𝑐𝑖𝑗−𝑚)2

2𝑘𝑖𝑗
+ (𝑐𝑖−𝑚)2

𝑘𝑖

]
,

which is a positive definite function and radially unbounded
with respect to 𝑝 and 𝑞. The positive constant

𝑚 >
(𝑑− 1)max𝑢,𝑣[𝑘𝑢, 𝑘𝑣] ⋅max𝑖,𝑗 ∣ 𝑎𝑖𝑗𝑐𝑖𝑗 ∣

min𝑢 𝜆(𝐻𝑢𝑢 −𝐵𝑢𝑢)
.

Differentiating 𝑄(𝑡) gives

�̇�(𝑡) =
𝑁∑
𝑖=1

𝑝T
𝑖

⎡
⎣− 𝑁∑

𝑗=1,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝𝑖 − 𝑝𝑗)− ℎ𝑖𝑐𝑖𝑝𝑖
⎤
⎦

+
1

2

𝑁∑
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗(𝑐𝑖𝑗 −𝑚)(𝑝𝑖 − 𝑝𝑗)T(𝑝𝑖 − 𝑝𝑗)

+
𝑁∑
𝑖=1

ℎ𝑖(𝑐𝑖 −𝑚)𝑝T
𝑖𝑝𝑖

=
𝑛∑

𝑟=1

𝑁∑
𝑖=1

𝑝𝑟𝑇𝑖

⎡
⎣− 𝑁∑

𝑗=1,𝑗 ∕=𝑖

𝑎𝑖𝑗𝑐𝑖𝑗(𝑝
𝑟
𝑖 − 𝑝𝑟𝑗)− ℎ𝑖𝑐𝑖𝑝𝑟𝑖

⎤
⎦

+
1

2

𝑛∑
𝑟=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗𝑐𝑖𝑗(𝑝
𝑟
𝑖 − 𝑝𝑟𝑗)T(𝑝𝑟𝑖 − 𝑝𝑟𝑗)

−1

2

𝑛∑
𝑟=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1,𝑗 ∕=𝑖

ℎ𝑖𝑗𝑎𝑖𝑗𝑚(𝑝𝑟𝑖 − 𝑝𝑟𝑗)T(𝑝𝑟𝑖 − 𝑝𝑟𝑗)

+
𝑛∑

𝑟=1

𝑁∑
𝑖=1

ℎ𝑖(𝑐𝑖 −𝑚)𝑝𝑟𝑇𝑖 𝑝
𝑟
𝑖

=

𝑛∑
𝑟=1

𝑚

𝑑∑
𝑢=1

𝑝𝑢𝑟𝑇 (𝐵𝑢𝑢 −𝐻𝑢𝑢)𝑝
𝑢𝑟

+

𝑛∑
𝑟=1

𝑑∑
𝑢=1

∑
𝑣 ∕=𝑢

𝑥𝑢𝑟𝑇𝐵𝑢𝑣𝑥
𝑣𝑟

≤
𝑛∑

𝑟=1

[
𝑑∑

𝑢=1

𝑝𝑢𝑟𝑇 (𝑚𝐵𝑢𝑢 −𝑚𝐻𝑢𝑢)𝑝
𝑢𝑟

]

+(1/2)max
𝑢,𝑣

[𝑘𝑢, 𝑘𝑣] ⋅max
𝑖,𝑗

∣ 𝑎𝑖𝑗𝑐𝑖𝑗 ∣

⋅
𝑛∑

𝑟=1

⎡
⎣ 𝑑∑
𝑢=1

∑
𝑣 ∕=𝑢

(𝑝𝑢𝑟𝑇 𝑝𝑢𝑟 + 𝑝𝑣𝑟𝑇 𝑝𝑣𝑟)

⎤
⎦

≤
𝑛∑

𝑟=1

[
𝑑∑

𝑢=1

𝑝𝑢𝑟𝑇 (𝑚𝐵𝑢𝑢 −𝑚𝐻𝑢𝑢)𝑝
𝑢𝑟

]

+(𝑑− 1) ⋅max
𝑢,𝑣

[𝑘𝑢, 𝑘𝑣] ⋅max
𝑖,𝑗

∣ 𝑎𝑖𝑗𝑐𝑖𝑗 ∣

⋅
𝑛∑

𝑟=1

[
𝑑∑

𝑢=1

𝑝𝑢𝑟𝑇 𝑝𝑢𝑟

]
, (6)

where 𝑝𝑟 = [𝑝𝑟1, . . . , 𝑝
𝑟
𝑁 ]𝑇 = [𝑝1𝑟, . . . , 𝑝𝑢𝑟, . . . , 𝑝𝑑𝑟]𝑇 ∈

R𝑁 , 𝑝𝑢𝑟 ∈ R𝑘𝑢 is the vector in the 𝑢th cluster, and

𝐻 =

⎡
⎢⎢⎢⎣
𝐻11 0 ⋅ ⋅ ⋅ 0
0 𝐻22 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝐻𝑑𝑑

⎤
⎥⎥⎥⎦ .

According to (4), and at least one node in each cluster is
selected to be informed by the corresponding leader, from
Lemma 1 and Lemma 3, it can be verified that 𝐵𝑢𝑢 −𝐻𝑢𝑢

is negative-definite. Since the positive constant

𝑚 >
(𝑑− 1)max𝑢,𝑣[𝑘𝑢, 𝑘𝑣] ⋅max𝑖,𝑗 ∣ 𝑎𝑖𝑗𝑐𝑖𝑗 ∣

min𝑢 𝜆(𝐻𝑢𝑢 −𝐵𝑢𝑢)
,

one has
�̇�(𝑡) < 0.

Thus,

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑞𝑖(𝑡)− 𝑞𝛾𝑙(𝑡)∥ = 0

and

lim
𝑡→∞

𝑑∑
𝑙=1

∑
𝑖∈𝐺𝑙

∥𝑝𝑖(𝑡)− 𝑝𝛾𝑙(𝑡)∥ = 0

for all 𝑖. This completes the proof of Theorem 1.

Remark 2: A common feature of the works presented in
[33], [34] is that there are certain convergence conditions that
require global information on the underlying network such
as the eigenvalues of the coupling matrix of the network or a
centralized adaptive strategy. In protocol (3), each agent only
has the state information of its neighbors and only selects
those few agents that have access to the information of the
corresponding leader. Without using any global information
of the underlying network and under the control input (3),
all agents in the same group asymptotically synchronize with
the corresponding leader even when only one agent in each
group has access to the information of the corresponding
leader.

IV. SIMULATION STUDY

The simulation is performed with 8 agents on a real
line whose initial positions and velocities are randomly
chosen within [−4, 4] and [−2, 2], respectively. Suppose
2 nonempty subsets {𝐺1, 𝐺2} is a partition of the index
set {1, 2, . . . , 𝑁}, where 𝐺1 = {1, 2, 3, 4, 5} and 𝐺2 =
{6, 7, 8}. The network topology of the coupled harmonic
oscillators are shown in Fig. 1. The adjacency matrix 𝐴 =
(𝑎𝑖𝑗) of Fig. 1 is

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 −1 1 0
1 0 0 1 0 0 0 0
1 0 0 0 1 1 −1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 1 0 0 0 1 1
1 0 −1 0 0 1 0 1
0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Fig. 1. The coupled harmonic oscillators example with 𝑁 = 8 and 2
clusters.

There are 2 leaders whose initial positions and velocities
are 𝑞𝛾1 = 1, 𝑞𝛾2 = 2, 𝑝𝛾1 = 1 and 𝑝𝛾2 = 2, respectively.
Suppose that agent 1 and agent 6 are selected to be informed
by leader 1 and leader 2, respectively.

In the simulation, the parameter 𝜔 = 3.162, 𝑐𝑖𝑗(0) = 0,
𝑐𝑖(0) = 0, 𝑘𝑖𝑗 = 1 and 𝑘𝑖 = 1. Fig. 2 shows the
group consensus of coupled harmonic oscillators under the
control input (3). Plots 2(a) and 2(b) are respectively the
evolutions of the positions and velocities of the eight agents.
It is obvious from these plots that the control input (3) is
capable of achieving stable group consensus motion. Plot
2(c) depicts the adaptive weights of velocity feedback gains
which eventually tend to constant; Plot 2(d) presents the
adaptive coupling strengths that eventually tend to constant.

V. CONCLUSION

In this paper, we have investigated group consensus of
coupled harmonic oscillators with multiple leaders. By in-
troducing local adaptation strategies for both the weights
on the velocity navigational feedback and the velocity cou-
pling strengths, we proposed an adaptive group consensus
algorithm and showed that all agents in the same group
asymptotically synchronize with the corresponding leader
even when only one agent in each group has access to
the information of the corresponding leader. Compared with
other relevant results in the literature, the results obtained in
this paper only require local information of the underlying
network and the decentralized adaptive strategy, and are
therefore easier to apply. Other topics such as the directed
and switching network topology, the effects of time delay
and disturbance may warrant further studies.
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