134 research outputs found

    Decentralized Restless Bandit with Multiple Players and Unknown Dynamics

    Full text link
    We consider decentralized restless multi-armed bandit problems with unknown dynamics and multiple players. The reward state of each arm transits according to an unknown Markovian rule when it is played and evolves according to an arbitrary unknown random process when it is passive. Players activating the same arm at the same time collide and suffer from reward loss. The objective is to maximize the long-term reward by designing a decentralized arm selection policy to address unknown reward models and collisions among players. A decentralized policy is constructed that achieves a regret with logarithmic order when an arbitrary nontrivial bound on certain system parameters is known. When no knowledge about the system is available, we extend the policy to achieve a regret arbitrarily close to the logarithmic order. The result finds applications in communication networks, financial investment, and industrial engineering.Comment: 7 pages, 2 figures, in Proc. of Information Theory and Applications Workshop (ITA), January, 201

    Learning in A Changing World: Restless Multi-Armed Bandit with Unknown Dynamics

    Full text link
    We consider the restless multi-armed bandit (RMAB) problem with unknown dynamics in which a player chooses M out of N arms to play at each time. The reward state of each arm transits according to an unknown Markovian rule when it is played and evolves according to an arbitrary unknown random process when it is passive. The performance of an arm selection policy is measured by regret, defined as the reward loss with respect to the case where the player knows which M arms are the most rewarding and always plays the M best arms. We construct a policy with an interleaving exploration and exploitation epoch structure that achieves a regret with logarithmic order when arbitrary (but nontrivial) bounds on certain system parameters are known. When no knowledge about the system is available, we show that the proposed policy achieves a regret arbitrarily close to the logarithmic order. We further extend the problem to a decentralized setting where multiple distributed players share the arms without information exchange. Under both an exogenous restless model and an endogenous restless model, we show that a decentralized extension of the proposed policy preserves the logarithmic regret order as in the centralized setting. The results apply to adaptive learning in various dynamic systems and communication networks, as well as financial investment.Comment: 33 pages, 5 figures, submitted to IEEE Transactions on Information Theory, 201

    Deterministic Sequencing of Exploration and Exploitation for Multi-Armed Bandit Problems

    Full text link
    In the Multi-Armed Bandit (MAB) problem, there is a given set of arms with unknown reward models. At each time, a player selects one arm to play, aiming to maximize the total expected reward over a horizon of length T. An approach based on a Deterministic Sequencing of Exploration and Exploitation (DSEE) is developed for constructing sequential arm selection policies. It is shown that for all light-tailed reward distributions, DSEE achieves the optimal logarithmic order of the regret, where regret is defined as the total expected reward loss against the ideal case with known reward models. For heavy-tailed reward distributions, DSEE achieves O(T^1/p) regret when the moments of the reward distributions exist up to the pth order for 1<p<=2 and O(T^1/(1+p/2)) for p>2. With the knowledge of an upperbound on a finite moment of the heavy-tailed reward distributions, DSEE offers the optimal logarithmic regret order. The proposed DSEE approach complements existing work on MAB by providing corresponding results for general reward distributions. Furthermore, with a clearly defined tunable parameter-the cardinality of the exploration sequence, the DSEE approach is easily extendable to variations of MAB, including MAB with various objectives, decentralized MAB with multiple players and incomplete reward observations under collisions, MAB with unknown Markov dynamics, and combinatorial MAB with dependent arms that often arise in network optimization problems such as the shortest path, the minimum spanning, and the dominating set problems under unknown random weights.Comment: 22 pages, 2 figure

    Decentralized Learning for Multi-player Multi-armed Bandits

    Full text link
    We consider the problem of distributed online learning with multiple players in multi-armed bandits (MAB) models. Each player can pick among multiple arms. When a player picks an arm, it gets a reward. We consider both i.i.d. reward model and Markovian reward model. In the i.i.d. model each arm is modelled as an i.i.d. process with an unknown distribution with an unknown mean. In the Markovian model, each arm is modelled as a finite, irreducible, aperiodic and reversible Markov chain with an unknown probability transition matrix and stationary distribution. The arms give different rewards to different players. If two players pick the same arm, there is a "collision", and neither of them get any reward. There is no dedicated control channel for coordination or communication among the players. Any other communication between the users is costly and will add to the regret. We propose an online index-based distributed learning policy called dUCB4{\tt dUCB_4} algorithm that trades off \textit{exploration v. exploitation} in the right way, and achieves expected regret that grows at most as near-O(log2T)O(\log^2 T). The motivation comes from opportunistic spectrum access by multiple secondary users in cognitive radio networks wherein they must pick among various wireless channels that look different to different users. This is the first distributed learning algorithm for multi-player MABs to the best of our knowledge.Comment: 33 pages, 3 figures. Submitted to IEEE Transactions on Information Theor

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Extended UCB Policy for Multi-Armed Bandit with Light-Tailed Reward Distributions

    Full text link
    We consider the multi-armed bandit problems in which a player aims to accrue reward by sequentially playing a given set of arms with unknown reward statistics. In the classic work, policies were proposed to achieve the optimal logarithmic regret order for some special classes of light-tailed reward distributions, e.g., Auer et al.'s UCB1 index policy for reward distributions with finite support. In this paper, we extend Auer et al.'s UCB1 index policy to achieve the optimal logarithmic regret order for all light-tailed (or equivalently, locally sub-Gaussian) reward distributions defined by the (local) existence of the moment-generating function.Comment: 9 pages, 1 figur
    corecore