1,135 research outputs found

    Decentralized Estimation of Laplacian Eigenvalues in Multi-Agent Systems

    Full text link
    In this paper we present a decentralized algorithm to estimate the eigenvalues of the Laplacian matrix that encodes the network topology of a multi-agent system. We consider network topologies modeled by undirected graphs. The basic idea is to provide a local interaction rule among agents so that their state trajectory is a linear combination of sinusoids oscillating only at frequencies function of the eigenvalues of the Laplacian matrix. In this way, the problem of decentralized estimation of the eigenvalues is mapped into a standard signal processing problem in which the unknowns are the finite number of frequencies at which the signal oscillates

    Hearing the clusters in a graph: A distributed algorithm

    Full text link
    We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained from spectral clustering without the need for expensive eigenvalue/vector computations. We prove that, by propagating waves through the graph, a local fast Fourier transform yields the local component of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs, the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We demonstrate the benefit of using this decentralized clustering algorithm for community detection in social graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed multi-agent search strategies

    Tracking control for multi-agent consensus with an active leader and variable topology

    Full text link
    In this paper, we consider the coordination control of a group of autonomous mobile agents with multiple leaders. Different interconnection topologies are investigated. At first, a necessary and sufficient condition is proved in the case of fixed interconnection topology. Then a sufficient condition is proposed when the interconnection topology is switched. With a simple first-order dynamics model by using the neighborhood rule, both results show that the group behavior of the agents will converge to the polytope formed by the leaders.Comment: 6 page

    Decentralized Event-Triggered Consensus of Linear Multi-agent Systems under Directed Graphs

    Full text link
    An event-triggered control technique for consensus of multi-agent systems with general linear dynamics is presented. This paper extends previous work to consider agents that are connected using directed graphs. Additionally, the approach shown here provides asymptotic consensus with guaranteed positive inter-event time intervals. This event-triggered control method is also used in the case where communication delays are present. For the communication delay case we also show that the agents achieve consensus asymptotically and that, for every agent, the time intervals between consecutive transmissions is lower-bounded by a positive constant.Comment: 9 pages, 5 figures, A preliminary version of this manuscript has been submitted to the 2015 American Control Conferenc

    Distributed Estimation and Control of Algebraic Connectivity over Random Graphs

    Full text link
    In this paper we propose a distributed algorithm for the estimation and control of the connectivity of ad-hoc networks in the presence of a random topology. First, given a generic random graph, we introduce a novel stochastic power iteration method that allows each node to estimate and track the algebraic connectivity of the underlying expected graph. Using results from stochastic approximation theory, we prove that the proposed method converges almost surely (a.s.) to the desired value of connectivity even in the presence of imperfect communication scenarios. The estimation strategy is then used as a basic tool to adapt the power transmitted by each node of a wireless network, in order to maximize the network connectivity in the presence of realistic Medium Access Control (MAC) protocols or simply to drive the connectivity toward a desired target value. Numerical results corroborate our theoretical findings, thus illustrating the main features of the algorithm and its robustness to fluctuations of the network graph due to the presence of random link failures.Comment: To appear in IEEE Transactions on Signal Processin
    • …
    corecore