4,230 research outputs found

    Decentralized Detection in Clustered Sensor Networks

    Full text link

    Distributed Detection in Sensor Networks with Limited Range Sensors

    Full text link
    We consider a multi-object detection problem over a sensor network (SNET) with limited range sensors. This problem complements the widely considered decentralized detection problem where all sensors observe the same object. While the necessity for global collaboration is clear in the decentralized detection problem, the benefits of collaboration with limited range sensors is unclear and has not been widely explored. In this paper we develop a distributed detection approach based on recent development of the false discovery rate (FDR). We first extend the FDR procedure and develop a transformation that exploits complete or partial knowledge of either the observed distributions at each sensor or the ensemble (mixture) distribution across all sensors. We then show that this transformation applies to multi-dimensional observations, thus extending FDR to multi-dimensional settings. We also extend FDR theory to cases where distributions under both null and positive hypotheses are uncertain. We then propose a robust distributed algorithm to perform detection. We further demonstrate scalability to large SNETs by showing that the upper bound on the communication complexity scales linearly with the number of sensors that are in the vicinity of objects and is independent of the total number of sensors. Finally, we deal with situations where the sensing model may be uncertain and establish robustness of our techniques to such uncertainties.Comment: Submitted to IEEE Transactions on Signal Processin

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Decentralized Clustering and Linking by Networked Agents

    Full text link
    We consider the problem of decentralized clustering and estimation over multi-task networks, where agents infer and track different models of interest. The agents do not know beforehand which model is generating their own data. They also do not know which agents in their neighborhood belong to the same cluster. We propose a decentralized clustering algorithm aimed at identifying and forming clusters of agents of similar objectives, and at guiding cooperation to enhance the inference performance. One key feature of the proposed technique is the integration of the learning and clustering tasks into a single strategy. We analyze the performance of the procedure and show that the error probabilities of types I and II decay exponentially to zero with the step-size parameter. While links between agents following different objectives are ignored in the clustering process, we nevertheless show how to exploit these links to relay critical information across the network for enhanced performance. Simulation results illustrate the performance of the proposed method in comparison to other useful techniques

    Distributed Detection over Gaussian Multiple Access Channels with Constant Modulus Signaling

    Full text link
    A distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward and detect-and-forward schemes. The effect of fading is shown to be detrimental to the detection performance through a reduction in the deflection coefficient depending on the fading statistics. Simulations corroborate that the deflection coefficient and error exponent can be effectively used to optimize the error probability for a wide variety of sensing noise distributions.Comment: 30 pages, 12 figure
    • …
    corecore