3 research outputs found

    Swarm Intelligence Autotune For Differential Drive Wheeled Mobile Robot

    Get PDF
    Differential Drive Wheeled Mobile Robot (DDWMR) is a nonholonomic robot with constrained movement. Such constraint makes robot position control more difficult. A closed-loop control system such as PID can control robot position. However, DDWMR is a Multiple-Input-Multiple-Output system. There will be many feedback gains to be tuned, and the wrong value will make the system unstable. Therefore this research proposes an offline autotune method to choose optimal feedback gain that minimizes a fitness function. The fitness function uses Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE). These works propose to autotune feedback gain for DDWMR Jetbot, which implements a PI control system with six feedback gains. The methods used to tune the feedback gain are Particle Swarm Optimization (PSO) and Bird Swarm Algorithm (BSA). There are four different scenarios to do the autotune. The autotune result performance shows that those two methods can find an optimal gain to make the robot follow four different continuous trajectories without much trajectory deformation. PSO and BSA can do an autotune PI gain with six variables to minimize the Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE)

    Nonlinear control of multiple mobile manipulator robots transporting a rigid object in coordination

    Get PDF
    This doctoral thesis proposes and validates experimentally nonlinear control strategies for a group of mobile manipulator robots transporting a rigid object in coordination. This developed approach ensures trajectory tracking in Cartesian space in the presence of parameter uncertainty and undesirable disturbances. The objective of the creation of robots in the early sixties was to relieve man of certain hard jobs such as: handling a heavy object, and repetitive tasks which are often tiring or even sometimes infeasible manually. Following this situation, several types of manipulator robots were created. Naturally, the need for robots having both locomotion and manipulation capabilities has led to the creation of the mobile manipulators. Typical examples of mobile manipulators, more or less automated, are the cranes mounted on trucks , the satellite arms, the deep-sea exploration submarines, or extra-planetary exploration vehicles. Some operations requiring the handling of a heavy object are difficult to achieve by a single mobile manipulator. These operations require a coordination of several mobile manipulators to move or transport a heavy object in common. However, this complicates the robotic system as its control design complexity increases greatly. The problem of controlling the mechanical system forming a closed kinematic chain mechanism lies in the fact that it imposes a set of kinematic constraints on the coordination of the position and velocity of the mobile manipulator. Therefore, there is a reduction in the degrees of freedom for the entire system. Further, the internal forces of the object produced by all mobile manipulators should be controlled. This thesis work was focused on developing a consistent control technique for a group of mobile manipulator robots executing a task in coordination. Different nonlinear controllers were simulated and experimentally applied to multiple mobile manipulator system transporting a rigid object in coordination. To achieve all objectives of this thesis, as a first step, an experimental platform was developed and mounted in the laboratory of GREPCI-ETS to implement and validate the different designed control laws. In the second step, several adaptive coordinated motion/force tracking control laws were applied, ensuring that the desired trajectory can excellently tracked under uncertainties parameters and disturbances
    corecore