3,382 research outputs found

    Sample Approximation-Based Deflation Approaches for Chance SINR Constrained Joint Power and Admission Control

    Full text link
    Consider the joint power and admission control (JPAC) problem for a multi-user single-input single-output (SISO) interference channel. Most existing works on JPAC assume the perfect instantaneous channel state information (CSI). In this paper, we consider the JPAC problem with the imperfect CSI, that is, we assume that only the channel distribution information (CDI) is available. We formulate the JPAC problem into a chance (probabilistic) constrained program, where each link's SINR outage probability is enforced to be less than or equal to a specified tolerance. To circumvent the computational difficulty of the chance SINR constraints, we propose to use the sample (scenario) approximation scheme to convert them into finitely many simple linear constraints. Furthermore, we reformulate the sample approximation of the chance SINR constrained JPAC problem as a composite group sparse minimization problem and then approximate it by a second-order cone program (SOCP). The solution of the SOCP approximation can be used to check the simultaneous supportability of all links in the network and to guide an iterative link removal procedure (the deflation approach). We exploit the special structure of the SOCP approximation and custom-design an efficient algorithm for solving it. Finally, we illustrate the effectiveness and efficiency of the proposed sample approximation-based deflation approaches by simulations.Comment: The paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Link group management for carrier-grade wireless mesh networks

    Get PDF
    Proceedings of: 2010 Future Network & Mobile Summit, 16-18 June 2010, Florence, ItalyTheir distributed nature makes mesh networks easy to deploy and robust against node and link failures. However, distributing functionality adds high signalling overhead and delays. Forming resource clusters in wireless mesh networks is a wellknown concept to alleviate these issues. This article describes a link group system for carrier-grade wireless mesh networks that provides absolute QoS guarantees. In order to support heterogeneous wireless mesh networks, the system interface of this link group system is implemented as a technology independent interface. Performance evaluations show a good fairness without requiring per-flow queuing, a good overall system performance, and small packet delays in multi-hop setups, which makes these link groups an important component of carrier-grade wireless mesh networksEuropean Community's Seventh Framework ProgramPublicad

    Experimental Autonomous Car Model with safety sensor in Wireless Network

    Get PDF
    Autonomous vehicles are vehicles equipped with autonomous control systems that allow certain aspects of the control functions important for safe traffic to be controlled by the vehicle itself. At the same time, these cars are able to move from point A to point B separately in a defined environment and decide independently and adapt to unknown situations and a changing environment. These actions are autonomous cars capable of performing with minimal or no interference from the driver. This article is aimed at verifying the communication capabilities with data from safety sensors mounted on autonomous car between a control unit and car
    • …
    corecore