4,586 research outputs found

    Decentralised Functional Signatures

    Get PDF
    With the rapid development of the Internet of Things (IoT) a lot of critical information is shared however without having guarantees about the origin and integrity of the information. Digital signatures can provide important integrity guarantees to prevent illegal users from getting access to private and sensitive data in various IoT applications. Functional signatures, introduced by Boyle, Goldwasser and Ivan (PKC 2014) as signatures with a finegrained access control, allow an authority to generate signing keys corresponding to various functions such that a user with a signing key for a function f, can sign the image of the function f on a message mi.e., can sign f(m). Okamoto and Takashima (PKC 2013) firstly proposed the notion of a decentralized multi-authority functional signature (DMA-FS) scheme, which supports non-monotone access structures combined with inner-product relations. In this paper, we generalise the definition of DMA-FS proposed by Okamoto et al. (PKC13) for even more general policy functions, which support any polynomial-size boolean predicates other than the inner product relation and allow modifications of the original message. In our multi-authority functional signature (MAFS), there are multiple authorities and each one is able to certify a specific function and issue a corresponding functional signing key for each individual with some property, rendering them very useful in application settings such smart homes, smart cities, smart health care etc. We also provide a general transformation from a standard signature scheme to a MAFS scheme. Moreover, we present a way to build a function private MAFS from a FS without function privacy together with SNARKs

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Architecture for privacy-preserving brokerage of analytics using Multi Party Computation, Self Sovereign Identity and Blockchain

    Get PDF
    In our increasingly digitized world, the value of data is clear and proved, and many solutions and businesses have been developed to harness it. In particular, personal data (such as health-related data) is highly valuable, but it is also sensitive and could harm the owners if misused. In this context, data marketplaces could enhance the circulation of data and enable new businesses and solutions. However, in the case of personal data, marketplaces would necessarily have to comply with existing regulations, and they would also need to make users privacy protection a priority. In particular, privacy protection has been only partially accomplished by existing datamarkets, as they themselves can gather information about the individuals connected with the datasets they handle. In this thesis is presented an architecture proposal for KRAKEN, a new datamarket that provides privacy guarantees at every step in the data exchange and analytics pipeline. This is accomplished through the use of multi-party computation, blockchain and self-sovereign identity technologies. In addition to that, the thesis presents also a privacy analysis of the entire system. The analysis indicated that KRAKEN is safe from possible data disclosures to the buyers. On the other hand, some potential threats regarding the disclosure of data to the datamarket itself were identified, although posing a low-priority risk, given their rare chance of occurrence. Moreover the author of this thesis elaborated remarks on the decentralisation of the architecture and possible improvements to increase the security. These improvements are accompanied by the solutions identified in the paper that proposes the adoption of a trust measure for the MPC nodes. The work on the paper and the thesis contributed to the personal growth of the author, specifically improving his knowledge of cryptography by learning new schemes such as group signatures, zero knowledge proof of knowledge and multi-party computation. He improved his skills in writing academic papers and in working in a team of researchers leading a research area

    Metric and topo-geometric properties of urban street networks: some convergences, divergences, and new results

    Get PDF
    The theory of cities, which has grown out of the use of space syntax techniques in urban studies, proposes a curious mathematical duality: that urban space is locally metric but globally topo-geometric. Evidence for local metricity comes from such generic phenomena as grid intensification to reduce mean trip lengths in live centres, the fall of movement from attractors with metric distance, and the commonly observed decay of shopping with metric distance from an intersection. Evidence for global topo-geometry come from the fact that we need to utilise both the geometry and connectedness of the larger scale space network to arrive at configurational measures which optimally approximate movement patterns in the urban network. It might be conjectured that there is some threshold above which human being use some geometrical and topological representation of the urban grid rather than the sense of bodily distance to making movement decisions, but this is unknown. The discarding of metric properties in the large scale urban grid has, however, been controversial. Here we cast a new light on this duality. We show first some phenomena in which metric and topo-geometric measures of urban space converge and diverge, and in doing so clarify the relation between the metric and topo-geometric properties of urban spatial networks. We then show how metric measures can be used to create a new urban phenomenon: the partitioning of the background network of urban space into a network of semi-discrete patches by applying metric universal distance measures at different metric radii, suggesting a natural spatial area-isation of the city at all scales. On this basis we suggest a key clarification of the generic structure of cities: that metric universal distance captures exactly the formally and functionally local patchwork properties of the network, most notably the spatial differentiation of areas, while the top-geometric measures identifying the structure which overcomes locality and links the urban patchwork into a whole at different scales

    Metric and topo-geometric properties of urban street networks: some convergences, divergences and new results

    Get PDF
    The theory of cities, which has grown out of the use of space syntax techniques in urban studies, proposes a curious mathematical duality: that urban space is locally metric but globally topo-geometric. Evidence for local metricity comes from such generic phenomena as grid intensification to reduce mean trip lengths in live centres, the fall of movement from attractors with metric distance, and the commonly observed decay of shopping with metric distance from an intersection. Evidence for global topo-geometry come from the fact that we need to utilise both the geometry and connectedness of the larger scale space network to arrive at configurational measures which optimally approximate movement patterns in the urban network. It might be conjectured that there is some threshold above which human being use some geometrical and topological representation of the urban grid rather than the sense of bodily distance to making movement decisions, but this is unknown. The discarding of metric properties in the large scale urban grid has, however, been controversial. Here we cast a new light on this duality. We show first some phenomena in which metric and topo-geometric measures of urban space converge and diverge, and in doing so clarify the relation between the metric and topo-geometric properties of urban spatial networks. We then show how metric measures can be used to create a new urban phenomenon: the partitioning of the background network of urban space into a network of semi-discrete patches by applying metric universal distance measures at different metric radii, suggesting a natural spatial area-isation of the city at all scales. On this basis we suggest a key clarification of the generic structure of cities: that metric universal distance captures exactly the formally and functionally local patchwork properties of the network, most notably the spatial differentiation of areas, while the top-geometric measures identifying the structure which overcomes locality and links the urban patchwork into a whole at different scales

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    Editorial: Security and privacy in Internet of Things

    Get PDF
    J. M. de Fuentes, L. Gonzalez-Manzano and P. Peris-Lopez have been partially supported by MINECO grants TIN2013-46469-R and TIN2016-79095-C2-2-R, and CAM grant S2013/ICE-3095
    • …
    corecore