135,494 research outputs found

    Two-Pion Decay Widths of Excited Charm Mesons

    Get PDF
    The widths for ππ\pi\pi decay of the L=1 charm mesons are calculated by describing the pion coupling to light constituents quarks by the lowest order chiral interaction. The wavefunctions of the charm mesons are obtained as solutions to the covariant Blankenbecler-Sugar equation. These solutions correspond to an interaction Hamiltonian modeled as the sum of a linear scalar confining and a screened one-gluon exchange (OGE) interaction. This interaction induces a two-quark contribution to the amplitude for two-pion decay, which is found to interfere destructively with the single quark amplitude. For the currently known L=1 DD mesons, the total ππ\pi\pi decay widths are found to be 1\sim 1 MeV for the D1(2420)D_1(2420) and 3\sim 3 MeV for the D2(2460)D^*_2(2460) if the axial coupling of the constituent quark is taken to be gAq=1g_A^q=1. The as yet undiscovered spin singlet D1D_1^* state is predicted to have a larger width of 7 - 10 MeV for ππ\pi\pi decay.Comment: 20 pages, uses Feynmf Submitted to Nuclear Physics A, published versio

    Strong Two--Body Decays of Light Mesons

    Get PDF
    In this paper, we present results on strong two-body decay widths of light qqˉq\bar q mesons calculated in a covariant quark model. The model is based on the Bethe-Salpeter equation in its instantaneous approximation and has already been used for computing the complete meson mass spectrum and many electroweak decay observables. Our approach relies on the use of a phenomenological confinement potential with an appropriate spinorial Dirac structure and 't Hooft's instanton--induced interaction as a residual force for pseudoscalar and scalar mesons. The transition matrix element for the decay of one initial meson into two final mesons is evaluated in lowest order by considering conventional decays via quark loops as well as Zweig rule violating instanton--induced decays generated by the six--quark vertex of 't Hooft's interaction; the latter mechanism only contributes if all mesons in the decay have zero total angular momentum. We show that the interference of both decay mechanisms plays an important role in the description of the partial widths of scalar and pseudoscalar mesons.Comment: 35 pages, 7 figure

    Three-body decay of the d* dibaryon

    Full text link
    Under certain circumstances, a three-body decay width can be approximated by an integral involving a product of two off-shell two-body decay widths. This ``angle-average'' approximation is used to calculate the πNN\pi NN decay width of the d(Jπ=3+,T=0)d^*(J^\pi=3^+, T=0) dibaryon in a simple Δ2\Delta^2 model for the most important Feynman diagrams describing pion emissions with baryon-baryon recoil and meson retardation. The decay width is found to be about 0.006 (0.07, 0.5) MeV at the dd^* mass of 2065 (2100, 2150) MeV for input dynamics derived from the Full Bonn potential. The smallness of this width is qualitatively understood as the result of the three-body decay being ``third forbidden''. The concept of \ell forbiddenness and the threshold behavior of a three-body decay are further studied in connection with the πNN\pi NN decay of the dibaryon d(Jπ=0,T=0or2)d'(J^\pi=0^-, T=0 or 2) where the idea of unfavorness has to be introduced. The implications of these results are briefly discussed.Comment: 15 pages, RevTeX, two-column journal style, six figure

    Investigations of three, four, and five-particle exit channels of levels in light nuclei created using a 9C beam

    Get PDF
    The interactions of a E/A=70-MeV 9C beam with a Be target was used to populate levels in Be, B, and C isotopes which undergo decay into many-particle exit channels. The decay products were detected in the HiRA array and the level energies were identified from their invariant mass. Correlations between the decay products were examined to deduce the nature of the decays, specifically to what extent all the fragments were created in one prompt step or whether the disintegration proceeded in a sequential fashion through long-lived intermediate states. In the latter case, information on the spin of the level was also obtained. Of particular interest is the 5-body decay of the 8C ground state which was found to disintegrate in two steps of two-proton decay passing through the 6Beg.s. intermediate state. The isobaric analog of 8Cg.s. in 8B was also found to undergo two-proton decay to the isobaric analog of 6Beg.s. in 6Li. A 9.69-MeV state in 10C was found to undergo prompt 4-body decay to the 2p+2alpha exit channel. The two protons were found to have a strong enhancementin the diproton region and the relative energies of all four p-alpha pairs were consistent with the 5Lig.s. resonance

    Anatomy of three-body decay I. Schematic models

    Full text link
    Sequential three-body decay proceeds via spatially confined quasi-stationary two-body configurations. Direct three-body decay populates the three-body continuum without intermediate steps. The relative importance of these decay modes is discussed in a schematic model employing only Coulomb or centrifugal barrier potentials. Decisive dimensionless charge, mass and energy ratios are derived. Sequential decay is usually favored for charged particles. Small charge and small mass of high energy is preferably emitted first. Without Coulomb potential the sequential decay is favored except when both resonance energy and intermediate two-body energy are large.Comment: To be published in Nuclear Physics

    CP Violating Contribution to Delta Gamma in the B_s System from Mixing with a Hidden Pseudoscalar

    Full text link
    Recent evidence for a CP violating asymmetry in the semileptonic decays of B_s mesons cannot be accommodated within the Standard Model. Such an asymmetry can be explained by new physics contributions to Delta B=2 components of either the mass matrix or the decay matrix. We show that mixing with a hidden pseudoscalar meson with a mass around 5 GeV can result in a new CP violating contribution to the mixing and can resolve several anomalies in this system including the width difference, the average width and the charge asymmetry. We also discuss the effects of the hidden meson on other b physics observables, and present viable decay modes for the hidden meson. We make predictions for new decay channels of B hadrons, which can be tested at the Tevatron, the LHC and B-factories.Comment: 18 pages, 4 figures, 2 table

    Precision calculations for h->WW/ZZ->4 fermions in the Two-Higgs-Doublet Model with PROPHECY4F

    Get PDF
    We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h -> WW/ZZ -> 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, "lepton-specific" and "flipped" models). The input parameters are defined in four different renormalization schemes, where parameters that are not directly accessible by experiments are defined in the MSbar scheme. Numerical results are presented for the corrections to partial decay widths for various benchmark scenarios previously motivated in the literature, where we investigate the dependence on the MSbar renormalization scale and on the choice of the renormalization scheme in detail. We find that it is crucial to be precise with these issues in parameter analyses, since parameter conversions between different schemes can involve sizeable or large corrections, especially in scenarios that are close to experimental exclusion limits or theoretical bounds. It even turns out that some renormalization schemes are not applicable in specific regions of parameter space. Our investigation of differential distributions shows that corrections beyond the Standard Model are mostly constant offsets induced by the mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of h -> 4f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover, the decay widths do not significantly depend on the specific type of those models. The calculations are implemented in the public Monte Carlo generator PROPHECY4F and ready for application.Comment: 56 pages, 39 figure

    Production of (super)heavy quarkonia and new Higgs physics at hadron colliders

    Full text link
    Based on the two Higgs doublet model, we study the effect of Higgs-boson exchange on the (super)heavy quarkonium \bar QQ, which induces a strong attractive force between a (super)heavy quark Q and an antiquark \bar Q. An interesting application is the decay of (super)heavy quarkonia \bar QQ into a Higgs boson associated with gauge bosons. The criterion for making the \bar QQ bound state is studied. We also show that non-perturbative effects due to gluonic field fluctuations are rather small in such a heavy quark sector. Possible enhancement for productions and decays of \bar QQ bound states made from the fourth generation quark Q is discussed for \bar p p (at the Tevatron) and pp (at the LHC) collisions.Comment: 18 pages, REVTeX, 9 figures. V2: minor changes, references and acknowledgments adde
    corecore