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Abstract: We have calculated the next-to-leading-order electroweak and QCD corrections

to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of

various types of Two-Higgs-Doublet Models (Types I and II, “lepton-specific” and “flipped”

models). The input parameters are defined in four different renormalization schemes,

where parameters that are not directly accessible by experiments are defined in the MS

scheme. Numerical results are presented for the corrections to partial decay widths for

various benchmark scenarios previously motivated in the literature, where we investigate

the dependence on the MS renormalization scale and on the choice of the renormalization

scheme in detail. We find that it is crucial to be precise with these issues in parameter

analyses, since parameter conversions between different schemes can involve sizeable or

large corrections, especially in scenarios that are close to experimental exclusion limits or

theoretical bounds. It even turns out that some renormalization schemes are not applicable

in specific regions of parameter space. Our investigation of differential distributions shows

that corrections beyond the Standard Model are mostly constant offsets induced by the

mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of

h → 4f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover,

the decay widths do not significantly depend on the specific type of those models. The

calculations are implemented in the public Monte Carlo generator Prophecy4f and ready

for application.
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1 Introduction

The CERN Large Hadron Collider (LHC) was built to explore the validity of the Stan-

dard Model (SM) of particle physics at energy scales ranging from the electroweak scale

∼100 GeV up to energies of some TeV and to search for new phenomena and new particles

in this energy domain. The discovery of a Higgs particle at LHC Run 1 in 2012 [1, 2]

was a first big achievement in this enterprise. Since first studies of the properties of this

Higgs particle (spin, CP parity, couplings to the heaviest SM particles) show good agree-

ment between measurements and SM predictions, the SM is in better shape than ever to

describe all known particle phenomena up to very few exceptions. Assuming the absence

of spectacular new-physics signals in LHC data, this means that any deviation from the

SM hides in small and subtle effects. To extract those differences from data, both experi-

mental analyses and theoretical predictions have to be performed with the highest possible

precision. On the other hand, assuming that a new signal materializes at the 5σ level, the

properties of the newly discovered particle have to be investigated with precision, in order

to tell different models apart that can accommodate the new phenomenon.

Most of the promising candidates for models beyond the SM modify or extend the

scalar sector of electroweak (EW) symmetry breaking, which introduces the Higgs boson

in the SM. Lacking clear evidence of the realization of a specific model extension, it is well

motivated to prepare experimentally testable predictions within generic SM extensions

which are building blocks in larger models. Two-Higgs-Doublet Models (THDMs) [3, 4],

where a second Higgs doublet is added to the SM field content, provide an interesting class

of such generic models. While the gauge structure of the SM is kept, THDMs contain five

physical Higgs bosons in contrast to the one of the SM. Three out of the five are neutral

and two are charged. In the CP-conserving case, considered in this paper, one of the

neutral Higgs bosons is CP-odd and two are CP-even. An important issue in identifying or

constraining a THDM, thus, consists in telling the SM Higgs boson from an SM-like CP-

even Higgs boson of THDMs. To this end, several phenomenological studies in THDMs

have been carried out recently by various groups [5–21].

In this paper we investigate the decay observables of the SM-like neutral, light, CP-even

Higgs boson h decaying into four fermions, h → WW/ZZ → 4f , in the THDM, including

next-to-leading-order (NLO) corrections of the EW and strong interactions. The fermions

in the final state of these processes can either be quarks or leptons, and especially the latter

can be resolved very well in the detector. These four-body decays were already crucial in

the Higgs-boson discovery, but also play a major role in precision studies of the Higgs

boson, in particular, to determine the couplings to the EW gauge bosons W and Z. They

also provide a window to physics beyond the SM [22–29], as, due to its high precision, small
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deviations from the SM can be measured, and differential distributions can be investigated

and tested against the SM. State-of-the-art predictions for the four-fermion decays of the

SM Higgs boson were regularly updated in the reports of the LHC Higgs Cross section

Worksing Group [30–33]. The Monte Carlo program Prophecy4f [34–36] performs the

calculation of the full NLO EW and QCD corrections for all h →WW/ZZ→ 4f channels in

the complex-mass scheme [37–39] to describe the intermediate W- and Z-boson resonances.

It provides differential distributions as well as unweighted events for leptonic final states.

The corrections to h→ ZZ→ 4 leptons were also calculated and matched to a QED parton

shower in ref. [40]. In the following, we describe results obtained with an updated version

of Prophecy4f, extended to the computation in the THDM in such a way that the usage

of the program and its applicability as event generator basically remain the same.

It is our goal to analyze the Higgs decay in the context of the most relevant THDM

scenarios. To compute phenomenologically relevant results, we need to take into account

current constraints which also restrict the large parameter space. The constraints come

from direct LHC searches for heavy Higgs bosons and from theoretical aspects like vacuum

stability, perturbative unitarity, or perturbativity of the couplings, which are required for

a meaningful perturbative evaluation. The recent report of the LHC Higgs Cross section

Working Group [33] summarizes a selection of relevant benchmark scenarios proposed in

other papers among which we study the most relevant. The results are compared with

the SM prediction, and deviations are quantified. In addition to the usual investigation

of residual scale uncertainties, we compare the results of different renormalization schemes

recently presented and discussed in the literature [41–44]. Specifically, we employ the four

different schemes described in ref. [43] and vary the renormalization scale to investigate the

perturbative stability of the predictions in the benchmark scenarios. Similar to what has

already been found in the Minimal Supersymmetric SM [45], the different renormalization

schemes may suffer from problems like gauge dependence, singularities in relations between

parameters, or unnaturally large corrections. The comparison of the results obtained with

different renormalization schemes allows us to determine regions where they behave well

and yield reliable results. Electroweak corrections to other Higgs-boson decay channels in

the THDM were investigated in refs. [41, 46]. Generic tools to calculate Higgs decay widths

in the THDM, such as Hdecay [47] and THDMC [48] are currently restricted to QCD

corrections (see, e.g., refs. [32, 49] for more details).

This paper is structured as follows: in section 2 we briefly describe the program

Prophecy4f, on which our implementation is based, and give some details on our NLO

calculation of corrections to the h→4f decays in the THDM, including a survey of Feynman

diagrams, the salient features of the calculation, and a short outline of the implementa-

tion into Prophecy4f. In section 3, we describe the setup of our numerical analysis

and the chosen THDM scenarios. The numerical results are presented and discussed in

detail in section 4. We conclude in section 5 and provide some supplementary results in

the appendix.
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Final states leptonic semi-leptonic hadronic

neutral current

νeν̄eνµν̄µ (3) νeν̄euū (6) uūcc̄ (1)

e−e+µ−µ+ (3) νeν̄edd̄ (9) dd̄ss̄ (3)

νeν̄eµ
−µ+ (6) e−e+uū (6) uūss̄ (4)

e−e+dd̄ (9)

neutral current with interference
e−e+e−e+ (3) uūuū (2)

νeν̄eνeν̄e (3) dd̄dd̄ (3)

charged current νee
+µ−ν̄µ (6) νee

+dū (12) ud̄sc̄ (2)

charged and neutral current νee
+e−ν̄e (3) ud̄dū (2)

Table 1. The possible final states for the decay h → WW/ZZ → 4f . They can be distinguished

by the intermediate gauge boson and the number of lepton pairs. Final states that differ only

by generation indices, but have the same diagrams have identical matrix elements and are only

stated once. The multiplicity of a final state obtained by changing the generation indices is given

in parentheses.

2 Predicting h → WW/ZZ → 4f in the THDM with the Monte Carlo

program Prophecy4f

2.1 Preliminaries and functionality of Prophecy4f

The Monte Carlo program Prophecy4f [34–36] provides a “PROPer description of the

Higgs dECaY into 4 Fermions” by calculating the decay observables of the process

h → WW/ZZ → 4f at NLO EW+QCD accuracy in the SM. The original Prophecy4f

code contains the matrix elements of all 19 possible 4f final states, which are listed in ta-

ble 1, in a generic way. It takes into account the full off-shell effects of the interme-

diate W and Z bosons and treats the W- and Z-boson resonances in the complex-mass

scheme [37–39], which maintains gauge invariance and NLO precision both in resonant

and non-resonant phase-space regions. For the evaluation of the one-loop integrals in the

virtual corrections we have replaced the original internal integral library by the publicly

available Fortran library Collier [50]. Ultraviolet (UV) divergences are treated in dimen-

sional regularization, while the (soft and collinear) infrared (IR) divergences of the loop

integrals and in the real photon or gluon emission are regularized by small photon, gluon,

and external fermion masses. The final-state fermions, including the bottom quarks, are

considered in the massless limit, i.e. small fermion masses are only kept as regulators in

the singular logarithms.1 However, in diagrams with a closed fermion loop the full mass

dependence of those fermions is kept which allows to extend the calculation to include a

heavy fourth fermion generation, as done in ref. [52]. The cancellation of the IR divergences

can be performed via phase-space slicing [53] or dipole subtraction [54–56].

The integration over the phase space is done using an adaptive multi-channel Monte

Carlo integrator, where the integrand is evaluated at pseudo-random phase-space points,

1Mass effects are mostly negligible for the decays via W or Z bosons. For leptonic final states those

effects were discussed at leading order in ref. [51].
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and the density of the points is adapted iteratively to the integrand to provide a better con-

vergence. The Monte Carlo generator can also be used to generate samples of unweighted

events for leptonic final states, which is particularly interesting for experimental analy-

ses. Prophecy4f automatically provides distributions for leptonic and semi-leptonic final

states. Distributions for fully hadronic final states are not predefined, since this should be

done in the hadronic production environment.

The h→4f decay width is the sum of all partial widths of the 19 independent final

states listed in table 1. All other final states differ only by generation indices and yield

the same result, since the external fermion masses are neglected. One can weight these

independent final states with their multiplicity (given in parentheses in table 1) instead

of computing partial widths for all existing final states. However, it is also of interest to

separate the contributions from ZZ or WW intermediate states and WW/ZZ interferences

in the partial width, as, e.g., described in refs. [30, 31],

Γh→4f = Γh→WW→4f + Γh→ZZ→4f + ΓWW/ZZ−int. (2.1)

The decomposition is trivial for 4f states to which only WW or ZZ intermediate states

contribute; only one of the first two terms contributes in this case. Both WW and ZZ

intermediate states can only contribute if all four final-state fermions are in the same

generation (in the absence of quark mixing, which does not play a role in these processes).

In such cases the WW and ZZ parts can be extracted by replacing the 4f state by ff̄ ′F ′F̄
and ff̄F F̄ states with the same flavours as in the original ff̄ ′f ′f̄ state, but taking f and

F from different generations. The interference term is then obtained by subtracting the

WW and ZZ parts from the full squared matrix element. Exemplarily for the νee
+e−ν̄e

final state this reads

Γh→WW→νee+e−ν̄e = Γh→νee+µ−ν̄µ , (2.2)

Γh→ZZ→νee+e−ν̄e = Γh→νeν̄eµ−µ+ , (2.3)

ΓWW/ZZ−int,νee+e−ν̄e = Γh→νee+e−ν̄e − Γh→νee+µ−ν̄µ − Γh→νeν̄eµ−µ+ . (2.4)

With this procedure the contribution of all final states to the WW, ZZ partial widths, and

the WW/ZZ interference contribution can be computed [30, 31],

Γh→WW→4f = 9Γh→νee+µ−ν̄µ + 12Γh→νee+ud̄ + 4Γh→ud̄sc̄, (2.5)

Γh→ZZ→4f = 3Γh→νeν̄eνµν̄µ + 3Γh→e−e+µ−µ+ + 9Γh→νeν̄eµ−µ+ + 3Γh→e−e+e−e+

+ 3Γh→νeν̄eνeν̄e + 6Γh→νeν̄euū + 9Γh→νeν̄edd̄ + 6Γh→e−e+uū + 9Γh→e−e+dd̄

+ Γh→uūcc̄ + 3Γh→dd̄ss̄ + 6Γh→uūss̄ + 2Γh→uūuū + 3Γh→dd̄dd̄, (2.6)

ΓWW/ZZ−int = 3Γh→νee+e−ν̄e − 3Γh→νeν̄eµ−µ+ − 3Γh→νee+µ−ν̄µ

+ 2Γh→ud̄dū − 2Γh→uūss̄ − 2Γh→ud̄sc̄. (2.7)

2.2 Details of the NLO calculation and implementation into Prophecy4f

We extend Prophecy4f to the calculation of the corresponding decays of the light CP-

even Higgs boson h in THDMs. In our calculation, we assume a CP-conserving Higgs

– 4 –
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potential

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + Φ†2Φ1)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
1

2
λ5

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
(2.8)

with the two Higgs doublets Φ1 and Φ2, the quartic couplings λ1, . . . , λ5, and the mass

parameters m2
11, m2

22, and m2
12. The complex fields Φ1 and Φ2 together comprise eight real

degrees of freedom, which are rotated to a field basis that corresponds to mass eigenstates:

the two neutral CP-even Higgs bosons h and H result from a rotation of the neutral CP-even

components of Φ1,2 about the mixing angle α, while the neutral CP-odd Higgs boson A0

and the neutral Goldstone boson result from a rotation of the CP-odd components of Φ1,2

about the mixing angle β, which is related to the ratio of vacuum expectation values v1,2

of Φ1,2 according to tan β = v2/v1 at LO. The same rotation about β relates the charged

Higgs bosons H± and the charged Goldstone bosons to the charged components of Φ1,2.

Our precise definitions can be found in section 2.1 of ref. [43].

The potential V is symmetric under Φ1 → −Φ1, apart from the soft breaking term

proportional to m2
12. Specifically, we consider THDMs of Type I and II, as well as models

of “lepton-specific” and “flipped” types. These different models differ in the couplings

of the two Higgs doublets to down- and electron-type fermions, while the up-type quarks

always couple to Φ2: in the Type I model all fermions couple to Φ2; in Type II models,

the electron- as well as the down-type fermions couple to Φ1; the “lepton-specific” type

is characterized by the quarks coupling to Φ2 while the electron-type fermions couple to

Φ1; in the “flipped” model, only the down-type quarks couple to Φ1 and all others to Φ2.

The Higgs couplings to fermions in the different THDM types are, e.g., explicitly listed in

table 2 of ref. [43].

For the calculation of the decay h → WW/ZZ → 4f , we identify the decaying Higgs

boson h with the discovered Higgs boson of mass 125 GeV. The calculation is similar to

the one in the SM described in detail in refs. [34, 36]. As the particle content of the SM

is extended in the THDM, all diagrams of the SM appear also in the THDM calculation.

However, coupling factors of interactions involving scalar particles are modified in the

THDM and have to be adapted. In addition, new diagrams including heavy Higgs bosons

appear and need to be taken into account. In the following, we discuss the leading-order

(LO) matrix elements and the EW and QCD NLO corrections.

2.2.1 Lowest order

At LO, the decay of the Higgs boson proceeds via a pair of (off-shell) gauge bosons V = W,Z

which subsequently decay into fermions, as shown in figure 1. The diagrams involving a

coupling of scalars to external fermions vanish and can be omitted due to the neglect of

the external fermion masses. The only change in the THDM w.r.t. the SM is that the

hV V coupling acquires an additional factor of sin (β − α), so that the LO matrix element

– 5 –
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V

V

h

f̄4

f3

f̄2

f1

(a)

Z

Z

h

f̄4

f3

f̄2

f1

(b)

Figure 1. Tree-level diagrams of the decay h→ 4f with V = W,Z. The diagram on the r.h.s. exists

only if the fermion pairs are all quarks or all leptons of the same generation. The only couplings

that change in the transition from the SM to the THDM are the hWW and hZZ couplings which

involve an additional factor of sin (β − α).

becomes

MV V
THDM,LO = sin (β − α)MV V

SM,LO, (2.9)

where α is the mixing angle between the two neutral CP-even Higgs bosons h and H,2 and

β is the mixing angle in both the neutral CP-odd as well as in the charged scalar sector

which is related to the ratio of the vacuum expectation values of the two scalar doublets.

We consistently follow the conventions of ref. [43] for all quantities of the THDM.

2.2.2 Electroweak corrections

In the EW corrections, heavy Higgs bosons appear in loop diagrams, viz. in self-energy

and vertex corrections. Generic diagrams are shown in figure 2. Four- and five-point

diagrams do not contain heavy Higgs bosons, as this would require an hff̄ coupling which

is proportional to the mass mf of an external fermion f . The one-loop diagrams that do not

include these heavy particles are in direct correspondence to the SM diagrams described

in detail in ref. [34]. However, the coupling factors of the internal (massive) fermions and

the vector bosons to the light Higgs field need to be adapted in the THDM.

The counterterm contribution can be split into two parts. The first one, MCT
SM, is anal-

ogous to the counterterm contribution in the SM, although all renormalization constants

appearing in this part are defined within the THDM using the renormalization conditions

described in ref. [43] and in general receive contributions from the exchange of heavy Higgs

bosons. The second part is composed of the renormalization constants of the mixing angles

α, β, entering via the factor sin (β − α) inMV V
SM,LO, and the field renormalization constant

of the mixing of the neutral CP-even fields. The full counterterm can be written as

MCT
THDM = cβ−α

(
δβ − δα+

1

2
δZHh

)
MLO

SM + sβ−αMCT
SM, (2.10)

2In order to avoid a conflict in our notation, we define αem = e2/(4π) as electromagnetic coupling

constant and consistently keep the symbol α for the rotation angle.
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V

V

V

(a)

V

V

V

(b)

V

V

V

(c)

V

V

(d)

V

V

(e)

V

V

(f)

V

V

(g)

V

V

(h)

V

V

(i)

Figure 2. Exemplary generic one-loop diagrams of the hV V vertex correction with additional

Higgs bosons, i.e. the heavy neutral CP-even, the neutral CP-odd, and the charged Higgs bosons,

H,A0,H
±, respectively. The internal dashed lines represent any light or heavy Higgs boson; the

gauge boson V can be a W boson, a Z boson, or a photon depending on the charge flow and

final state.

where we introduced the abbreviations sx ≡ sinx, cx ≡ cosx, tx ≡ tanx. Following ref. [43],

we employ four different renormalization schemes in order to define the mixing angles at

NLO, i.e. to fix the renormalization constants δα, δβ:

• MS(α) scheme:

In this scheme α and β are independent parameters and fixed in the MS scheme.

Tadpole parameters are renormalized in such a way that renormalized tadpole pa-

rameters vanish. As discussed in detail in refs. [41, 42], this treatment introduces

gauge dependences in the relation between bare parameters and, thus, the relation

between renormalized parameters and predicted observables inherit some gauge de-

pendence. Since we work in the ’t Hooft-Feynman gauge, all predictions (not only the

ones presented in this work) should be made in the same gauge to obtain a meaningful

confrontation of theory with data.

• MS(λ3) scheme:

This scheme coincides with the MS(α) scheme up to the point that α is traded

for the (dimensionless) Higgs self-coupling parameter λ3 as independent parameter.

– 7 –
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The coupling λ3 is fixed by an MS condition, and α can be calculated from λ3 and

the other free parameters by tree-level relations. Renormalized tadpoles are again

forced to vanish, however, in this scheme the relations between free parameters and

predicted observables are gauge independent within the class of Rξ gauges at NLO,

because λ3, being a fundamental coupling in the original Higgs potential, does not

introduce gauge dependences and the MS renormalization of β is known to be gauge

independent in Rξ gauges at NLO [41, 42].

• FJ(α) scheme:

In this scheme, which is also described in refs. [41, 42] in slightly different technical

realizations, again α and β are independent parameters, but gauge dependences are

avoided by treating tadpole contributions differently, following a method proposed

by Fleischer and Jegerlehner (FJ) [57] a long time ago already in the SM.3 The basic

idea is that bare tadpoles are defined to be zero, which preserves gauge independence

in the relations between bare parameters of the theory. As a consequence, explicit

tadpole loop contributions have to be taken into account in all loop calculations.

This somewhat unpleasant feature can be avoided by introducing a new set of renor-

malization constants upon splitting off constant contributions from those fields that

develop vacuum expectation values by field transformation in the functional integral

(see refs. [41, 42]). Equivalently, the whole procedure of the MS(α) scheme, i.e. the

full counterterm Lagrangian including tadpole counterterms, can be kept, but the

renormalization constants δα, δβ, which contain only pure UV divergences in the

MS(α) scheme, now receive some finite contributions from the different renormaliza-

tion prescription of the tadpoles. This procedure is described in ref. [43] in detail.

• FJ(λ3) scheme:

In this scheme β and λ3 are independent parameters, as in the MS(λ3) scheme, but

tadpoles are treated following the gauge-independent FJ prescription.

More details on the different schemes and explicit results for the renormalization constants

can be found in ref. [43]. In all four schemes the parameters α, β, and the Higgs-quartic-

coupling parameter λ5 are defined directly in the MS scheme or are indirectly connected to

MS parameters, i.e. all α, β, and λ5 depend on a renormalization scale µr. In ref. [43] the

µr dependence of α, β, and λ5 was taken into account by numerically solving the renormal-

ization group equations in the four different renormalization schemes. Using these results on

the running of α, β, and λ5, we will investigate the scale dependence of the NLO-corrected

h→4f decay widths. In particular, we check whether the implicit µr dependence of α and

β, which already enters the LO amplitude, is compensated by the explicit µr dependence

contained in the loop corrections.

The diagrams of the real emission can be obtained from the LO diagrams by adding

photon radiation. The photon couplings in the THDM and in the SM are identical, i.e.

the real emission matrix element MR,EW
THDM of the THDM results from the matrix element

3A similar scheme, called βh scheme, was suggested in ref. [58].
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V

V

(a)

V

V

(b)

f

(c)

V

V

(d)

V

V

(e)

Figure 3. Exemplary diagrams for the one-loop virtual QCD corrections. In the semi-leptonic

case, only the first diagram type exists. Only the interference of the last four diagrams with the

crossed LO diagram of figure 1(b) has a non-vanishing colour structure, demanding the quarks to

be identical.

MR,EW
SM of the SM by multiplication with the coupling factor sin (β − α),

MR,EW
THDM = sβ−αMR,EW

SM . (2.11)

The calculation of the SM amplitude MR,EW
SM is described in detail in ref. [34]. The IR-

singular structure is not altered in the transition from the SM to the THDM, so that the

subtraction and slicing procedures can be applied straightforwardly in the same way as it

was done in the SM calculation [34].

2.2.3 QCD corrections

As the THDM does not change the strongly interacting part of the theory, the computation

of the QCD corrections is much simpler than for the EW corrections. Some diagrams of

the virtual QCD corrections are shown in figure 3. In the diagrams (a), (b), (d), (e) the

only coupling that changes w.r.t. the SM is the hV V coupling with an additional factor

of sβ−α. In the diagrams represented by figure 3(c), hqq̄ couplings appear instead of the

hV V , where q is any quark. The hqq̄ couplings depend on the type of THDM and are

given in table 2. The QCD counterterm contribution is identical to the one appearing in

the SM calculation up to the overall coupling factor sβ−α in the matrix elements.

The diagrams for the real QCD corrections can be obtained from figure 1 by adding

gluon emission off quarks and antiquarks. Similar to the EW case, the THDM does not

affect the additional gluon emission, so that

MR,QCD
THDM = sβ−αMR,QCD

SM . (2.12)
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Type I Type II Lepton-specific Flipped

ξlh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ

ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ

ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ

Table 2. The coupling strengths ξfh of the light, CP-even Higgs boson h to the fermions f relative

to the SM values for different types of THDM models.

The quark loop diagrams do not contain IR singularities, so that the singular structure of

the one-loop matrix element matches the one of the corresponding SM amplitude multiplied

by sβ−α. As the LO amplitude contains the same factor, the SM subtraction and slicing

algorithms can be applied without modification.

2.2.4 Complex-mass scheme

To treat the vector-boson resonances in a proper way, we employ the complex-mass scheme

which is explained in detail in refs. [37–39]. This prescription consists of an analytic

continuation of the masses of unstable particles into the complex plane which preserves

gauge invariance as well as all algebraic relations between amplitudes or Green functions

that do not involve complex conjugation (such as Ward and Slavnov-Taylor identities).

The complex mass µV of V is directly connected to the real pole mass MV and the decay

width ΓV ,

µ2
V = M2

V − iMV ΓV , (2.13)

with V = W,Z. For our process at NLO, it is sufficient to treat only the W and Z boson

in the complex-mass scheme even though the other scalar particles are not stable. We

assume that in the THDM, the light Higgs boson has properties similar to the SM Higgs

boson, i.e. its width is very small, O(Γh/Mh) < O(10−4). Effects of this order can be

neglected, as they are smaller than the contributions from NLO and have the same size

as the uncertainties due to the separation of h production and decay. The other unstable

Higgs bosons of the THDM enter only in loop diagrams, and the corrections from the

complex masses are negligible as ΓS � MS where ΓS and MS are the decay width and

real pole mass of the considered Higgs boson. A fully consistent replacement of the real

masses by its complex counterparts includes also a complex definition of the weak mixing

angle θW,

cos2 θW = c2
W = 1− s2

W =
µ2

W

µ2
Z

=
M2

W − iMWΓW

M2
Z − iMZΓZ

. (2.14)

The generalization of this prescription to the one-loop level leads to complex renormaliza-

tion constants [38], for instance to the complex mass renormalization constants

δµ2
W = ΣWW

T (M2
W) + (µ2

W −M2
W)Σ′WW

T (M2
W) +

iαem

π
MWΓW,

δµ2
Z = ΣZZ

T (M2
Z) + (µ2

Z −M2
Z)Σ′ZZ

T (M2
Z), (2.15)
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where ΣV V
T (p2) denotes the transverse parts of the V -boson self-energy with momentum

transfer p and Σ′V VT its derivative w.r.t. p2. As a consequence the renormalization constants

of the weak mixing angle are

δsW
sW

= −c
2
W

s2
W

δcW
cW

= − c2
W

2s2
W

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)
. (2.16)

The field renormalization constants of the vector bosons are given in eq. (4.30) of ref. [38].

In particular, they enter the calculation of the electric charge renormalization constant.

The field renormalization constants of the stable fermions and the scalars are also affected

by treating W and Z bosons in the complex-mass scheme as we do not take the real parts of

the self-energies. Due to the appearing complex parameters, the self-energies and also the

renormalization constants become complex. However, the field renormalization constants

of internal fields drop out and those of external fields factorize from the LO, so that the

imaginary parts drop out after squaring the matrix element at NLO.

2.2.5 Implementation and checks

The implementation of our calculation is performed in two independent ways: in the first

method, we use a FeynArts [59] model file generated with the help of FeynRules [60, 61]

as described in ref. [43] and adapt it to the specific demands of the Prophecy4f calcu-

lation, so that masses of fermions belonging to closed loops are treated with the full mass

dependence and the complex vector-boson masses are implemented. The amplitudes are

generated using FeynArts [59], processed applying FormCalc [62, 63], and implemented

into the Prophecy4f code. Additionally, the coupling factors in the Prophecy4f code

of the HV V and Hff̄ couplings are adapted to the THDM so that the LO, real photonic

corrections, and the QCD corrections can be obtained by simple rescaling. In a second,

independent calculation the amplitudes are generated via a FeynArts 1 [64] model file, in

which the counterterms are inserted by hand. The amplitudes were algebraically reduced

with the same inhouse Mathematica routines as already used in the SM NLO calculation

on which the original Prophecy4f calculation was based (for details see refs. [34, 36]).

These two implementations allow us to check the results and ensure their correctness.

Apart from performing two independent loop calculations, we have verified our

one-loop matrix elements by numerically comparing our results to the ones obtained

in refs. [42, 44] for the related Wh/Zh production channels (including W/Z decays) us-

ing crossing symmetry.

3 Input parameters and scenarios for the THDM

For the SM-like input parameters we take the values recommended by the LHC Higgs Cross

section Working Group [33] which essentially follow the Particle Data Group [65]:

Gµ = 0.11663787 · 10−4 GeV−2, αs = 0.118,

MOS
Z = 91.1876 GeV, MOS

W = 80.385 GeV, Mh = 125 GeV,

ΓOS
Z = 2.4952 GeV, ΓOS

W = 2.085 GeV,

me = 510.998928 keV, mµ = 105.6583715 MeV, mτ = 1.77682 GeV,
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mu = 100 MeV, mc = 1.51 GeV, mt = 172.5 GeV,

md = 100 MeV, ms = 100 MeV, mb = 4.92 GeV. (3.1)

The final-state fermions are considered massless. Although we use regulator masses in soft

and/or collinear divergent terms appearing in photon exchange or emission contributions,

those regulator masses completely drop out in the full NLO corrections. The fermion

mass values given above are employed in the evaluation of the corrections induced by

closed fermion loops.4 The CKM matrix is consistently taken as the unit matrix, since all

quark-mixing effects drop out in flavour sums of the external fermions, since we work with

massless light quarks without mixing to the third quark generation. We employ the Gµ
scheme where the electromagnetic coupling is derived from the Fermi constant Gµ,

αGµ =

√
2GµM

2
W

π

(
1− M2

W

M2
Z

)
, (3.2)

which absorbs the running of the electromagnetic coupling αem from the Thomson limit

to the electroweak scale and accounts for universal corrections to the ρ-parameter. The

strong coupling constant αs is always taken with the fixed value given in eq. (3.1), which

corresponds to a QCD renormlization scale at the Z-boson mass MZ. We do not consider

any QCD scale variation, since αs appears only in the QCD corrections (see section 2.2.3),

so that any QCD running effects are beyond NLO.

Prophecy4f performs its calculation in the complex-mass scheme and automatically

converts the experimentally measured on-shell gauge boson masses MOS
V to pole masses

Mpole
V of the propagators according to

Mpole
V = MOS

V /
√

1 + (ΓOS
V /MOS

V )2, Γpole
V = ΓOS

V /
√

1 + (ΓOS
V /MOS

V )2. (3.3)

From these measured input values, the program recalculates the widths of the vector bosons

in O(αem) in the SM using real mass parameters everywhere. This recalculation ensures

that the branching ratios of the vector bosons are correctly normalized and add up to

one for the SM. In the THDM, the heavy Higgs bosons enter the width in the mass

counterterms, however, as we are close to the alignment limit (cβ−α → 0) the effects are

negligible. For an easier reproducibility of our results, we keep the SM values, which are

also compatible with the measured W/Z widths.

As central renormalization scale µ0 we use the average mass of all scalar degrees of

freedom,

µ0 =
1

5
(Mh +MH +MA0 + 2MH+). (3.4)

This scale choice might seem surprising at first glance, since the light Higgs-boson mass is

the centre-of-mass energy of our process. However, the loop diagrams including heavy scalar

4 The benefit in this procecure is not only to account for (small) mass corrections for bottom quarks,

charm quarks, or τ leptons, the values would also be needed in the calculation of the EW corrections in

the α(0) scheme (also an option in Prophecy4f), where all charged fermion masses are required (and are

usually adjusted to reproduce the measured photonic vacuum polarization below the EW scale).
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particles S = H,A0,H
± with mass MS introduce potentially large terms of ln (M2

S/µ
2) in

the amplitudes as long as the mixing angle β − α stays away from the alignment limit.

Therefore we adapt the choice of the scale to the arithmetic mean of the Higgs-boson

masses, and the scale variations performed in section 4 confirm this choice. The input

values of the additional parameters of the THDM depend on the investigated scenario and

are given in the following. The scale-dependent input parameters cβ−α, tβ , λ5 are defined

at the central scale µ0 by default.

To provide collinear-safe differential observables, a photon recombination is performed

in the real corrections. This procedure invokes the addition of the photon momentum to

the one of the fermion in the histogram if the invariant mass of a photon and a charged

fermion is smaller than 5 GeV. When this is possible with more than one fermion, the

photon is added to the fermion that yields the smallest invariant mass. We apply the

photon recombination in all our calculations; further details about its impact are discussed

in ref. [34].

The recent report [33] of the LHC Higgs Cross section Working Group summarizes a

selection of benchmark scenarios proposed in other papers. We study the most relevant

for our process. In particular, the scenarios proposed as BP1A in ref. [13] are relevant

for our work. For these benchmark scenarios experimental constraints from direct LHC

searches, shown in figure 4, as well as theoretical constraints from vacuum stability and

perturbative unitarity, illustrated in figure 5, are taken into account. Additionally, we

employ perturbativity constraints to improve this scenario. Large coupling factors can

lead to a breakdown of perturbation theory, so that we demand sufficiently small coupling

factors. To this end, we compute the size of each coupling factor λ(S1S2S3S4) of all the

four-point Higgs-boson vertices at tree level, where Si = h,H,A,G,H±, G± for i = 1, . . . , 4,

and use the largest coupling factor, λ/(4π) = max |λ(S1S2S3S4)|/(4π), as a measure. We

use Mathematica and our FeynArts model files exploiting the hybrid basis (cf. ref. [13]).

The parameters Z4, Z5, and Z7 of the hybrid basis are related to our input parameters via

M2
A0

= c2
β−αM

2
h +M2

Hs
2
β−α − v2Z5, (3.5)

M2
H+ = M2

A0
− 1

2
v2(Z4 − Z5), (3.6)

λ5 = Z5 +
1

2
t2β

[s2(β−α)

2v2
(M2

h −M2
H)− Z7

]
(3.7)

with v2 = 1/(
√

2Gµ).

As the masses and mixing angles appear in the couplings, the perturbativity criterion

gradually constrains the parameter space. Since the convergence of the perturbation series

becomes worse with increasing coupling factors a clear discrimination of perturbative and

non-perturbative parameter points is impossible. However, values of λ/(4π) larger than 1

indicate that higher-order corrections do not systematically become smaller and pertur-

bativity is not given anymore which rules out such parameter points. Values between 0.5

and 1 usually still yield large higher-order corrections and need to be taken with care.

The result of the perturbativity analysis is given in figure 6 for MH = 300 GeV (left) and

MH = 600 GeV (right). Excluded areas are shown in gray, while blue (0.5 < λ/(4π) < 1)
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MH = 300 GeV

MH = 600 GeV

Figure 4. Direct constraints from LHC Higgs searches on the parameter space for the THDM

Type I with MH = 300 GeV (left) and MH = 600 GeV (right). In both cases Mh = 125 GeV,

Z4 = Z5 = −2 and Z7 = 0 are given in the hybrid basis (cf. ref. [13]). The colours indicate

compatibility with the observed Higgs signal at 1 σ (green), 2 σ (yellow), and 3 σ (blue). Exclusion

bounds at 95% C.L. from the non-observation of the additional Higgs states are overlaid in gray.

The graphics and description are taken from ref. [13].

MH = 300 GeV MH = 600 GeV

Figure 5. Example THDM parameter regions respecting perturbative unitarity and stability con-

straints (green) for the scenario of figure 4. The graphics are taken from ref. [13].

MH = 300 GeV

MH = 600 GeV

Figure 6. The perturbativity measure for the scenario of figure 4. Gray areas are ruled out, while

the blue and yellow areas show the maximal Higgs self-coupling strengths λ/(4π) between 0.5 and

1, and 0.3 and 0.5, respectively. Parameter sets with values smaller than 0.3 do not occur.
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MH = 1 TeV

Figure 7. The perturbativity measure for MH = 1 TeV with the remaining parameters as in the

scenario of figure 4. Large areas are excluded by coupling factors λ/(4π) > 1 (gray) whereas values

between 0.5 and 1 (0.3 and 0.5) are coloured blue (yellow).

and yellow (0.3 < λ/(4π) < 0.5) indicate different sizes of the coupling factors. Parameter

points where all couplings are smaller than 0.3 do not appear. The excluded trench at

tanβ = 1 is a singularity of the hybrid basis used in ref. [13], since t2β in eq. (3.7) and,

hence, the coupling factors diverge at this point. Overlaying these results with the previ-

ous experimental and theoretical constraints shows a significant reduction of the allowed

parameter region. Nevertheless, we need to modify the scenarios proposed by ref. [13] only

slightly to obtain the low- and high-mass scenarios as well as the benchmark plane scenario

described later. We do not consider heavy Higgs masses in the TeV range, because the

allowed parameter space is dramatically reduced in this region, which can be seen in fig-

ure 7. Only parameters close to the alignment limit and with tβ ≈ 2 and tβ ≈ 0.5 remain

allowed for |cβ−α| ∼ 0.1.

1. Low-mass scenario: the low-mass scenario, which we already introduced in ref. [43],

consists of a heavy neutral CP-even Higgs boson H of mass MH = 300 GeV. The

input values are based on a benchmark scenario of ref. [13] and consist of a THDM

of Type I with

Mh = 125 GeV, MH =300 GeV, MA0 = MH+ = 460 GeV,

λ5 = −1.9, tanβ = 2. (3.8)

Specifically, scenario A contains a scan in cβ−α, as this is the only parameter of

the THDM appearing at LO. The range of the scan is limited by constraints from

experiments and perturbative unitarity. These constraints indicate that values of

|cβ−α| exceeding 0.1 are phenomenologically disfavoured [13]. However, we perform

our analysis with less stringent bounds to get a more complete picture. We take

two distinguished points of the scan region named Aa and Ab with cβ−α = ±0.1 to

perform scale variations:

A: cos (β − α) = −0.2 . . . 0.2, (3.9a)

Aa: cos (β − α) = +0.1, (3.9b)

Ab: cos (β − α) = −0.1. (3.9c)
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2. High-mass scenario: the high-mass scenario is again based on a Type I THDM,

however, with heavier Higgs bosons,

Mh = 125 GeV, MH = 600 GeV, MA0 = MH+ = 690 GeV. (3.10)

Constraints from stability and perturbative unitarity (figure 5) reveal that positive

and negative values of cβ−α are only allowed in different regions of tan β. Therefore

we define two parameter scans (B1, B2) which are applicable for positive (B1) and

negative (B2) values of cβ−α, and B1a, B2b are two distinguished points of the

scan region:

B1: cos (β − α) = −0 . . . 0.15, λ5 = −1.9, tanβ = 4.5, (3.11a)

B1a: cos (β − α) = +0.1, (3.11b)

B2: cos (β − α) = −0.15 . . . 0, λ5 = −2.4, tanβ = 1.5, (3.11c)

B2b: cos (β − α) = −0.1. (3.11d)

3. Different THDM types: in this scenario, we compare different types of THDMs.

Yukawa couplings appear in our process only in closed fermion loops in Higgs-boson

two-point functions and in hV V and hgg vertex corrections, so that the top-quark

contribution is dominant. The couplings to up-type quarks is identical in all types of

THDM, so that we expect negligible effects from changing the type. The comparison

is performed for scenarios Aa and B1a.

4. Benchmark plane: for this scenario, we analyze a large area of the MH− tanβ plane:

MH = 300 . . . 750 GeV, tanβ = 1 . . . 50. (3.12)

The fixed parameters are based on the Type I non-alignment scenario of ref. [13], and

are given in the hybrid basis (cf. ref. [13]) by

cos (β − α) = 0.1, Mh = 125 GeV, Z4 = Z5 = −2, Z7 = 0. (3.13)

5. Baryogenesis: the BP3B scenario of ref. [33] was initially proposed in ref. [66]. With

a second Higgs doublet, a first-order electroweak phase transition is possible, which

could explain the baryon asymmetry in the universe. The main signature for this

model is the decay of a pseudoscalar Higgs boson. Nevertheless, the non-alignment

of the benchmark points BP3B renders these scenarios also interesting for our study.

The parameterization in the original form uses m12 for the Higgs self-coupling pa-

rameter from which we compute λ5 using

m2
12 = cβsβ(M2

A0
+ λ5v

2). (3.14)

The input parameters are

Mh = 125 GeV, MH = 200 GeV, MA0 = MH+ = 420 GeV,

λ5 = −2.58, tanβ = 3,
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and the two proposed scenarios differ by

BP3B1: cos (β − α) = 0.3, Type I (3.15a)

BP3B2: cos (β − α) = 0.5. Type II (3.15b)

6. Fermiophobic heavy Higgs: by choosing a Type I THDM as well as a vanishing mixing

angle α, the heavy Higgs boson H decouples from the fermions. Such a scenario was

proposed in ref. [10] with a direct detection of the heavy Higgs bosons as the leading

signature. However, the alignment limit (cβ−α = 0) cannot be reached in this model

as this would require large values of tan β which are ruled out by stability constraints.

This gives rise to possibly sizable effects on the light Higgs-boson decay. Different

tanβ values can be chosen, and with larger values the alignment limit is approached:

BP6a: tanβ = 40, (3.16a)

BP6b: tanβ = 20, (3.16b)

BP6c: tanβ = 10. (3.16c)

We transform the input parameter m12 to our convention using eq. (3.14) and use

the same fixed λ5 for all tan β, and

Mh = 125 GeV, MH = 200 GeV, MA0 = MH+ = 500 GeV,

λ5 = −3.46 sα = 0. (3.17)

4 Numerical results

In this section we present our numerical results for the decay h → 4f of the light CP-even

Higgs boson h in the THDM for the different scenarios described in the previous section,

beginning with the low-mass scenario. There, we investigate at first the conversion of the

renormalized input parameters between different renormalization schemes and the running

of the couplings. Afterwards we discuss the scale dependence of the h→4f width and

show the dependence on cβ−α. First results of this study have already been published

in ref. [43]. Finally, we study the partial widths and differential distributions in order to

identify deviations from the SM expectations. The same procedure is performed for the

high-mass scenario (split into two regions with positive or negative cβ−α), while we do not

perform such a detailed analysis for the other scenarios.

4.1 Low-mass scenario

4.1.1 Conversion of the input parameters

The numerical values of an input parameter defined via different renormalization conditions

in two renormalization schemes do in general not coincide in one and the same physics

scenario, but have to be properly converted from one scheme to the other. This means

that the mixing angles α and β have to be converted in the transitions between the four

renormalization schemes described in section 2.2.2, as already discussed in ref. [43]. For a
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generic parameter p, the renormalized values p(1) and p(2) in two different renormalization

schemes 1 and 2 are connected via

p0 = p(1) + δp(1)(p(1)) = p(2) + δp(2)(p(2)), (4.1)

where p0 is the corresponding bare parameter and δp(1,2) are the NLO renormalization

constants of O(αem). In case of more parameters, this is a set of coupled equations. For

the conversion of p(2) to p(1), we can either use the linearized solution

p(1) = p(2) + δp(2)(p(2))− δp(1)(p(2)), (4.2)

where δp(1)(p(1)) is approximated by δp(1)(p(2)), or solve the set of implicit equations (4.1)

numerically. The full solution of the implicit set of equations (4.1) has the advantage

that converting parameters from one scheme to another and back is an identity, while

this is only approximately the case in the linearized approach. The error of the linearized

approximation is beyond our desired NLO accuracy as long as the perturbation series

behaves well and higher-order terms are small. The comparison of the results obtained with

the two methods allows for a consistency check of the computation. For the conversion of

α and β, we employ the MS(α) scheme as one of the two schemes, so that we only have to

deal with one set of finite counterterm contributions at a time.

In scenario A, we extend the range of cβ−α values to −0.4 to 0.4, so that we get a

larger picture even though the regions with large |cβ−α| are ruled out by phenomenology.

The results are shown in figure 8 with a conversion from (l.h.s.) and to the MS(α) scheme

(r.h.s.), while the MS(λ3) (green), FJ(α) (pink), and FJ(λ3) (turquoise) schemes are em-

ployed as the second scheme. All other conversions can be seen as a combination of the

presented ones. On the left-hand side, the gray dashed lines are the result obtained using

the linearized approximation.5 In both plots, we highlight the phenomenologically relevant

region in the centre.

All curves show only small changes in the parameter values, and the numerical solu-

tion agrees well with the linearized conversion in the phenomenologically relevant region,

affirming that the finite higher-order contributions of the counterterms are small, and per-

turbation theory is applicable. However, we would like to mention that a parameter set in

the alignment limit (cβ−α → 0) is not preserved in the conversion to other renormalization

schemes. The alignment limit, thus, depends on the choice of the renormalization scheme.

Outside the phenomenologically relevant region, the curves for the transformation involving

the schemes with λ3 as an independent parameter have a small region where large effects

occur. This is an artifact as these schemes become singular at c2α = 0. In the vicinity

of the singularity (corresponding here to cβ−α ≈ −0.32), the MS renormalization of λ3

introduces large finite contributions to the conversion equation resulting in a breakdown of

perturbation theory.6 This occurs in the MS(λ3) and the FJ(λ3) renormalization schemes

5On the right-hand side, the conversion is exact, since the finite part of the cβ−α counterterm vanishes

in the MS(α) scheme.
6In this parameter-space region, one could choose λ1 or λ2 instead of λ3 as input parameter in order to

avoid this singularity.
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cβ−α|MS(α)

MS(λ3)
FJ(α)
FJ(λ3)

−0.4

−0.2
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0.4

−0.4 −0.2 0 0.2 0.4

µr = 361 GeV

cβ−α|i

Scenario A

(a)

cβ−α|i

MS(λ3)
FJ(α)
FJ(λ3)

−0.4

−0.2

0

0.2

0.4

−0.4 −0.2 0 0.2 0.4

µr = 361 GeV

cβ−α|MS(α)

Scenario A

(b)

Figure 8. Panel (a): conversion of the value of cβ−α from MS(α) to the MS(λ3) (green), FJ(α)

(pink), and FJ(λ3) schemes (turquoise) for scenario A. Panel (b) shows the conversion to the MS(α)

scheme using the same colour coding. The solid lines are obtained by solving the implicit equations

numerically, the dashed lines correspond to the linearized approximation. The phenomenologically

relevant region is highlighted in the centre.

which limits their use. For scenario A, the phenomenologically relevant region is, however,

not affected by this artifact.

4.1.2 The running of cβ−α

Parameters renormalized in MS depend on a renormalization scale µr, where the depen-

dence is governed by the renormalization group equations (RGEs) of the THDM (see,

e.g., refs. [67–71]). For each renormalization scheme we solve the RGEs using a classical

Runge-Kutta algorithm. We isolate the effects of the running from the conversion by con-

sidering each renormalization scheme separately, but do not convert the input values in

this investigation. The scale dependence of cβ−α from µr = 100 GeV to 900 GeV is plotted

in figure 9, for the scenarios Aa (l.h.s) and Ab (r.h.s) and input values given at the central

scale µ0. It shows that the choice of the renormalization scheme has a large impact on

the scale dependence. While the MS(α) scheme introduces only a slow running, the other

schemes show a much stronger scale dependence so that excluded and unphysical values of

input parameters are reached quickly. A similar observation has also been made in super-

symmetric models for the parameter tan β (the ratio of the vacuum expectation values of

the Higgs doublets in SUSY models) in ref. [45]: the gauge-dependent MS schemes with

vanishing renormalized tadpoles have a small scale dependence while replacing the pa-

rameters by gauge-independent ones introduces additional terms in the β-functions, which

arrange for a stronger scale dependence of such schemes. We find similar results comparing

the gauge-dependent MS schemes with the gauge-independent FJ schemes in figure 9. It is

remarkable that the sign of the slope differs for the different renormalization schemes. This
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Figure 9. The running of cβ−α for scenarios Aa (a) and Ab (b) in the MS(α) (blue), MS(λ3)

(green), FJ(α) (pink), and FJ(λ3) (turquoise) schemes.

is another consequence of the additional terms in the β-functions and shows that the choice

of the renormalization scheme has large effects. As some curves hit the cβ−α = 0 axis and

therefore run into the alignment limit, we explicitly see that this limit depends both on the

renormalization scheme and on the renormalization scale in a given scheme. In figure 9(b)

one can also see that the curves for the MS(λ3) and the FJ(λ3) scheme terminate around

250 GeV. At this scale, the running of λ3 yields unphysical values for the parameters of

the theory. This is unique to the λ3 running as only there an equation needs to be solved

in the relation to cβ−α. For the other cases we prevent the angles from running out of their

domain of definition by solving the running for the tangent of the angles.

4.1.3 Scale variation of the width

Owing to the appearance of heavy Higgs bosons in the loop diagrams multiple scales occur

in the calculation of the NLO EW corrections in the THDM. Therefore, a naive choice

of the central renormalization scale of µ0 = Mh might not be appropriate. To choose and

to justify our central scale of eq. (3.4), and to estimate the theoretical uncertainties, we

compute the total width according to eq. (2.1) while the scale is varied by roughly a factor of

two around µ0. As a definition of the input parameters in each of the four renormalization

schemes represents a physical scenario on its own, we have four input prescriptions (MS(λ3),

MS(α), FJ(α), FJ(λ3)), and for each of them we compute the result in all renormalization

schemes. After converting the input to the desired renormalization scheme, we evolve the

MS parameters from the scale µ0 to µr by solving the RGEs, and finally compute the h→4f

width. The results are shown in figures 10 and 11 at LO (dashed) and NLO EW (solid)

for the scenarios Aa and Ab for each of the input prescriptions. The QCD corrections are

not part of the EW scale variation and therefore omitted in these results.

The benchmark scenario Aa shows almost textbook-like behaviour, and the results are

similar for all input prescriptions so that we discuss all of them simultaneously. First of
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Figure 10. The h→4f width at LO (dashed) and NLO EW (solid) for scenario Aa in dependence

of the renormalization scale. The panels (a), (b), (c), and (d) correspond to input values defined

in the MS(λ3), MS(α), FJ(α), and FJ(λ3) schemes, respectively. The result is computed in all

four different renormalization schemes after converting the input at NLO (also for the LO curves)

and displayed using the colour code of figure 9. The dashed vertical line indicates the central

renormalization scale µr = µ0.

all, the LO computation shows a strong scale dependence for all renormalization schemes,

resulting in sizable differences between the curves. However, each of the NLO curves show

a wide extremum with a large plateau, reducing the scale dependence drastically, as it

is expected for NLO calculations. The central scale µ0 = (Mh + MH + MA0 + 2MH+)/5

lies perfectly in the middle of the plateau regions justifying this scale choice. In contrast,
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Figure 11. As in figure 10, but for scenario Ab.

the naive scale choice µr = Mh is not within the plateau region,7 leads to unnaturally

large corrections, and should not be chosen. For all renormalization schemes, the plateaus

coincide, and the agreement between the renormalization schemes is improved. This is

expected since results obtained with different renormalization schemes should be equal

up to higher-order terms, if the input parameters are properly converted. The relative

7For each renormalization scheme (without parameter conversion), we also tested the choice of the

running input parameters at the scale µr = Mh. Some of those results and further explanations can be

found in ref. [43]. No plateau region was found for µr = Mh. In addition, we found that the conversion of

the parameters became unreliable for this scale choice.
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MS(λ3) MS(α) FJ(α) FJ(λ3)

Scenario Aa:
∆LO

RS [%] 0.67(0) 0.59(0) 1.25(0) 0.73(0)

∆NLO
RS [%] 0.08(0) 0.06 (0) 0.27(0) 0.09(0)

Scenario Ab:
∆LO

RS [%] 0.84(0) 1.00(0) 1.31(0) 0.63(0)

∆NLO
RS [%] 0.34(0) 0.39(0) 0.49(1) 0.28(0)

Table 3. The variation ∆RS of the h→4f width in scenarios Aa and Ab at the central scale µ0 using

different renormalization schemes (with NLO parameter conversions). The columns correspond to

the schemes in which the input parameters are defined. The technical uncertainty in brackets is

calculated by exploiting the integration errors for the central values corresponding to the maximal

and the minimal width.

renormalization scheme dependence at the central scale,

∆RS = 2
Γh→4f

max (µ0)− Γh→4f
min (µ0)

Γh→4f
max (µ0) + Γh→4f

min (µ0)
, (4.3)

expresses the dependence of the result on the renormalization scheme. It can be computed

for a specific input prescription from the difference of the smallest and largest width of

the four renormalization schemes, Γh→4f
min (µ0) and Γh→4f

max (µ0), normalized to their average.

In table 3, ∆RS is given at LO and NLO for each of the input variants and confirms the

reduction of the scheme dependence in the NLO calculation. In addition, the choice of the

MS(α) scheme as an input scheme leads to the smallest dependence on the renormalization

schemes in scenario Aa. This fits well to the observation perceived when the running was

analyzed that the MS(α) scheme shows the smallest dependence on the renormalization

scale, attesting a good absorption of further corrections into the NLO prediction.

The situation for benchmark scenario Ab is more subtle. For negative values of cβ−α
the truncation of the schemes involving λ3 at µr = 250−300 GeV as well as the breakdown

of the running of the FJ(α) scheme, which both were observed in the running in figure 9(b),

are also manifest in the computation of the h→4f width. Therefore the results vary much

more, and the extrema with the plateau regions are not as distinct as for the previous

scenario, and even missing for some of the truncated curves. Nevertheless, the situation

improves at NLO, and the relative renormalization scheme dependence reduces, as shown

in table 3. Also the central scale choice of µ0 seems to be appropriate in contrast to a naive

choice of Mh.

In conclusion, the estimate of the theoretical uncertainties by varying the scale by a

factor of two from the central value for an arbitrary renormalization scheme is generally

not appropriate. A proper strategy would be to identify the renormalization schemes that

yield reliable results, and to use only those to quantify the theoretical uncertainties from

the scale variation. In addition, the renormalization scheme dependence of those schemes

should be investigated. The maximal spread observed in the comparison of the results

obtained in this way could serve as estimate for missing higher-order corrections connected

with the extended Higgs sector; this THDM-specific uncertainty should be added to the

uncertainties attributed to the corresponding SM predictions for the h → 4f decays [30, 31].
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However, this procedure must be performed for each benchmark scenario separately, which

is beyond the scope of this work for a larger list of benchmark scenarios. We further observe

that predictions in the two MS schemes, in particular in the MS(α) scheme, though being

gauge dependent, show the smallest residual scale uncertainty, an observation that will be

made in the other considered scenarios as well.

4.1.4 cβ−α dependence

The dependence of the h→4f width on cβ−α is one of the central results of our analysis,

as the decay observables of the Higgs boson into four fermions in the THDM are most

sensitive to this THDM parameter. The h→4f width in dependence of cβ−α in scenario A

is shown in figures 12(a)–(d) for the four different input prescriptions. The LO width with

NLO conversion (dashed) and the full NLO EW+QCD total width (solid) are computed in

the different renormalization schemes after the NLO input conversion, using the constant

default scale µ0 of eq. (3.4). The SM values with a SM Higgs-boson mass of Mh are

illustrated in red. The results are similar for all input prescriptions so that we discuss

them simultaneously. At LO they show the suppression w.r.t. to the SM with the factor

s2
β−α. The differences at LO between the renormalization schemes are due to the conversion

of the input. A pure LO computation is identical for all renormalization schemes, since

there is no conversion in a pure LO prediction. This pure LO prediction is represented in

each plot by the LO curve for which no conversion to another scheme is performed. The

suppression w.r.t. to the SM computation does not change at NLO, while the shape becomes

slightly asymmetric, and the NLO results show a significantly better agreement between

the renormalization schemes. This is also confirmed by the relative renormalization scheme

dependence shown in figure 13.

The relative corrections to the h→4f width, defined by

δNLO = δQCD + δEW =
ΓNLO

ΓLO
− 1, (4.4)

are displayed in figure 14 for input parameters defined in the MS(λ3) scheme. For input

parameters defined in the other schemes we obtain similar results, which are not shown. The

different plots show the full EW+QCD (δNLO), the QCD (δQCD), and the EW corrections

(δEW), where the first is just the sum of the two individual contributions. The relative

QCD corrections lie practically on top of each other, so that only one line is visible even

though the calculation was made in all renormalization schemes. The QCD corrections are

almost identical to the SM case, which is not surprising as the interference of the diagram

involving a closed quark loop (figure 3(c)) is the only contribution in which the THDM

amplitudes are not simple rescalings of their SM counterpart by the factor sβ−α. Those

diagrams contribute only little to the h→4f width, so that the relative QCD corrections

become similar to the SM. The EW corrections with the heavy Higgs bosons in the loop

show a small asymmetry w.r.t. to the sign of cβ−α and are between 0 and 3%, even exceeding

the relative corrections in the SM in the regions of large cβ−α. Note also that the EW

corrections in the THDM do not fully coincide with the one in the SM in the alignment
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Figure 12. The h→4f width at LO and full NLO EW+QCD (solid) for scenario A in dependence

of cβ−α. The panels (a), (b), (c), and (d) correspond to input values defined in the MS(λ3),

MS(α), FJ(α), and FJ(λ3) schemes, respectively. Parameters are consistently converted between

the renormalization schemes (both for NLO and LO predictions) by numerically solving the non-

linear matching equations (4.1). Results in the different target schemes are displayed with the

colour code of figure 9, and the SM (with a SM Higgs-boson mass of Mh) is shown for comparison

in red. Note, that the solid green, blue, and turquoise lines are very close and partly on top of

each other.
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Figure 13. The relative dependence of the h→4f width on the renormalization schemes as defined

in eq. (4.3) for the LO (dashed) and NLO EW+QCD (solid) calculation. The different colours corre-

spond to calculations with input values defined in the different renormalization schemes, converted

to the other schemes at NLO (converted parameters have also been used for the LO curves).

limit. The offset of ∼ −0.5% is mostly due to heavy Higgs bosons in the loops, which is

most clearly seen in the MS(λ3) scheme, where no parameter conversion is involved.

Deviations of the THDM results from the SM can be investigated when the SM Higgs-

boson mass is identified with the mass of the light Higgs boson h of the THDM. The

relative deviation of the full width from the SM is then

∆SM =
ΓTHDM − ΓSM

ΓSM
, (4.5)

which is shown in figure 15 at LO (dashed) and NLO (solid) for parameters defined in

the MS(λ3) scheme (other input definitions yield similar results). The SM exceeds the

THDM widths at LO and NLO. At LO the shape of c2
β−α can be seen, with modifications

due to input conversion. This shape is slightly distorted at NLO by the asymmetry of

the EW corrections with a small offset in the alignment limit as explained above. The

NLO computations show larger negative deviations, which could, in principle, be used to

improve current exclusion bounds or increase their significance. Nevertheless, in the whole

scan region the deviation from the SM is within 6% and for the parameter region with

|cβ−α| < 0.1 even less than 2%, which will be challenging for experiments to measure.

We also investigate the origin of the relative EW corrections. To this end, in figure 16

we plot different contributions to the full correction in the MS(λ3) renormalization scheme

(the breakup in the other schemes is qualitatively similar). The contribution called “SM-
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Figure 14. The relative NLO EW+QCD, QCD, and EW corrections to the h→4f width in

scenario A. The input values are defined in the MS(λ3) scheme and converted to the other schemes at

NLO (also for the LO curves). Defining the input values in the other schemes leads to qualitatively

similar results, see also figure 12. The results computed with different renormalization schemes

are displayed with the colour code of figure 12. Note that the results including only the QCD

corrections lie on top of each other.
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Figure 15. The relative difference of the h→4f decay width in the THDM w.r.t. the SM prediction

at LO (dashed) and NLO EW+QCD (solid). The input scheme is MS(λ3), and the corrections are

computed in all four renormalization schemes after converting the input at NLO (also for the LO

curves), which are displayed using the colour code of figure 9.
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Figure 16. The full relative NLO corrections to h→4f (green) split into different subcontributions.

The SM-like contribution consists of all diagrams that have a SM equivalent, the THDM-virt

contribution includes all one-loop and counterterm contributions that involve heavy Higgs bosons

(sum of the two parts shown in black), and Hh-mixing contribution is displayed in yellow. For

comparison, the relative NLO corrections in the SM are shown in red.

like+THDM-virt” comprises all diagrams that have a SM correspondence as well as the

real corrections of eq. (2.11), and the diagrams of figure 2 with at least one heavy Higgs

boson in the loop and the contributions of heavy Higgs bosons to the counterterms. The

part called “Hh-mix” is defined by the contributions of the Hh-mixing field renormalization

constant δZHh and the renormalization constant δα in eq. (2.10). Note that this splitting

is neither gauge-independent, nor UV-finite.8 However, the major contribution to the Hh-

mix part is furnished by Higgs-boson loops, which do not depend on the gauge, so that

some qualitative conclusions may be drawn. The SM-like+THDM-virt diagrams display

a small off-set from the SM result and only a small cβ−α dependence, showing that the

modification of the coupling factors in the THDM is small, but grows when the alignment

limit is left. In the alignment limit, the off-set originates only from the heavy Higgs boson

contribution, since only these diagrams introduce differences w.r.t. the SM. For values

of |cβ−α| > 0.05 the major deviation from the SM and the shape of the EW corrections

are mainly due to the Hh Higgs mixing. These terms factorize from the LO contribution

and thus lead to a uniform (i.e. phase-space independent) and universal (i.e. final-state

independent) correction factor to the LO prediction.

4.1.5 Partial widths for individual four-fermion states

The partial h→4f widths (as defined in section 2) at NLO are shown in the MS(λ3) scheme

for benchmark scenarios Aa and Ab in tables 4 and 5, respectively.

8The standard UV divergence ∆ = 2/(4 −D) − γE + ln(4π) in dimensional regularization is set to zero,

and the reference mass scale µ is identified with µ0 here.
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Final state Γh→4f
NLO [MeV] δEW [%] δQCD [%] ∆NLO

SM [%] ∆LO
SM [%]

inclusive h→4f 0.96730(7) 2.71(0) 4.96(1) −1.05(1) −1.00(1)

ZZ 0.106126(6) 0.34(0) 4.88(0) −1.13(1) −1.00(0)

WW 0.86630(8) 3.00(0) 5.01(1) −1.04(1) −1.00(1)

WW/ZZ int. −0.00513(5) 1.3(2) 12.0(8) −1(1) −1(1)

νee
+µ−ν̄µ 0.010201(1) 3.03(0) 0.00 −1.04(1) −1.00(1)

νee
+ud̄ 0.031719(4) 3.02(0) 3.76(1) −1.04(2) −1.00(1)

ud̄sc̄ 0.09847(2) 2.97(0) 7.52(1) −1.04(2) −1.00(1)

νee
+e−ν̄e 0.010197(1) 3.12(0) 0.00 −1.04(1) −1.00(1)

ud̄dū 0.10048(2) 2.85(0) 7.35(2) −1.06(3) −1.00(1)

νeν̄eνµν̄µ 0.000949(0) 3.01(0) 0.00 −1.14(1) −1.00(1)

e−e+µ−µ+ 0.000239(0) 1.30(1) 0.00 −1.13(2) −1.00(1)

νeν̄eµ
−µ+ 0.000477(0) 2.45(1) 0.00 −1.13(2) −1.00(1)

νeν̄eνeν̄e 0.000569(0) 2.90(0) 0.00 −1.14(2) −1.00(1)

e−e+e−e+ 0.000132(0) 1.12(1) 0.00 −1.12(2) −1.00(1)

νeν̄euū 0.001679(0) 0.60(1) 3.76(1) −1.12(2) −1.00(1)

νeν̄edd̄ 0.002177(1) 1.69(0) 3.76(1) −1.12(2) −1.00(1)

e−e+uū 0.000845(0) 0.11(1) 3.76(1) −1.12(2) −1.00(1)

e−e+dd̄ 0.001088(0) 0.47(1) 3.76(1) −1.12(2) −1.00(1)

uūcc̄ 0.002971(0) −1.80(1) 7.51(1) −1.11(2) −1.00(1)

dd̄dd̄ 0.002556(1) −0.38(0) 4.38(2) −1.21(3) −1.00(1)

dd̄ss̄ 0.004956(1) −0.36(0) 7.51(1) −1.12(2) −1.00(1)

uūss̄ 0.003852(1) −0.66(1) 7.51(1) −1.11(2) −1.00(1)

uūuū 0.001506(0) −1.92(1) 4.06(3) −1.24(4) −1.00(1)

Table 4. Partial widths for benchmark scenario Aa in the MS(λ3) renormalization scheme.

For other schemes, the numbers differ slightly, but show the same qualitative pattern, so

that we do not show them here. In the tables, we do not only state the full NLO QCD+EW

partial widths, but also the relative EW and QCD corrections. The qualitative picture is

similar for the two benchmark scenarios. The WW contribution originating from charged-

current final states yields the largest contribution, while the ZZ contribution is minor and

the interference term yields a small negative contribution. The relative integration error

in the interference term is numerically enhanced, since this contribution results from large

cancellations when calculated via eq. (2.7). The EW corrections to the WW-mediated

final states are uniformly about 2−3%, which determine the EW corrections to the partial

h→4f width. The EW corrections to the neutral-current final states strongly depend on the

fermion flavour and range between ±3%. The QCD corrections are essentially the strong

corrections to W/Z → qq̄ and therefore amount to αs/π for each pair of quarks in the

final state. The uūuū and dd̄dd̄ final states, where interference contributions between two

different ZZ channels exist, are somewhat exceptional with QCD corrections of only about

4%. The deviations ∆SM from the SM expectation are shown at NLO and LO in the last

two columns. The LO deviation is due to the suppression factor sβ−α of the hV V coupling
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Final state Γh→4f
NLO [MeV] δEW [%] δQCD [%] ∆NLO

SM [%] ∆LO
SM [%]

inclusive h→4f 0.95980(7) 1.87(0) 4.97(1) −1.82(1) −1.00(1)

ZZ 0.105464(5) −0.34(0) 4.90(0) −1.75(1) −1.00(0)

WW 0.85938(8) 2.14(0) 5.01(1) −1.83(1) −1.00(1)

WW/ZZ int. −0.00504(5) 0.5(1) 10.7(8) −2(1) −1(1)

νee
+µ−ν̄µ 0.010116(1) 2.17(1) 0.00 −1.87(1) −1.00(1)

νee
+ud̄ 0.031463(4) 2.16(0) 3.76(1) −1.84(2) −1.00(1)

ud̄sc̄ 0.09770(2) 2.11(0) 7.52(1) −1.81(2) −1.00(1)

νee
+e−ν̄e 0.010112(1) 2.27(1) 0.00 −1.87(1) −1.00(1)

ud̄dū 0.09972(2) 1.99(0) 7.38(2) −1.80(2) −1.00(1)

νeν̄eνµν̄µ 0.000943(0) 2.34(0) 0.00 −1.78(1) −1.00(1)

e−e+µ−µ+ 0.000237(0) 0.62(1) 0.00 −1.79(2) −1.00(1)

νeν̄eµ
−µ+ 0.000474(0) 1.78(1) 0.00 −1.78(2) −1.00(1)

νeν̄eνeν̄e 0.000565(0) 2.23(0) 0.00 −1.79(2) −1.00(1)

e−e+e−e+ 0.000131(0) 0.45(1) 0.00 −1.78(2) −1.00(1)

νeν̄euū 0.001668(0) −0.08(1) 3.76(1) −1.76(2) −1.00(1)

νeν̄edd̄ 0.002163(0) 1.02(0) 3.76(1) −1.76(2) −1.00(1)

e−e+uū 0.000840(0) −0.57(1) 3.76(1) −1.77(2) −1.00(1)

e−e+dd̄ 0.001081(0) −0.21(1) 3.76(1) −1.76(2) −1.00(1)

uūcc̄ 0.002952(0) −2.48(1) 7.51(1) −1.75(2) −1.00(1)

dd̄dd̄ 0.002545(1) −1.06(0) 4.57(2) −1.67(3) −1.00(1)

dd̄ss̄ 0.004925(1) −1.04(0) 7.51(1) −1.74(2) −1.00(1)

uūss̄ 0.003828(1) −1.35(1) 7.51(1) −1.74(2) −1.00(1)

uūuū 0.001500(0) −2.60(1) 4.31(2) −1.65(3) −1.00(1)

Table 5. Partial widths for benchmark scenario Ab in the MS(λ3) renormalization scheme.

w.r.t. the SM and therefore identical with s2
β−α − 1 = −c2

β−α = −10−2 for all final states,

since cβ−α = ±0.1. It should be noted that the indicated errors are integration errors,

and the presented LO results are thus also a consistency check. At NLO the deviation is

slightly larger, though still within only 1.3% (2%) for the Aa (Ab) benchmark scenario.

The deviations from the SM are quite uniform, i.e. insensitive to the final state, so that

they are described by the partial h→4f width well within a few per mille.

4.1.6 Differential distributions

The program Prophecy4f provides invariant-mass and angular differential distributions

for the h→4f decays. The differential decay widths may serve as a window to observe

beyond-the-SM (BSM) effects as the shape of distributions might be distorted significantly

by new coupling structures. This might occur even if the partial widths do not change

significantly. Therefore, the differential distributions of leptonic and semi-leptonic final

states (see section 2) are important observables. In the following, we study them for both

charged- and neutral-current processes, e.g. the fully leptonic final states e−e+µ−µ+ (nc),

νee
+µ−ν̄µ (cc), and the semi-leptonic final states e−e+qq̄ (nc), νee

+dū (cc). Most likely,
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Figure 17. Invariant-mass (a) and angular distributions (b) of the leptonic neutral-current decay

h → µ−µ+e−e+ for the SM and the THDM benchmark scenarios Aa and Ab. The relative NLO

corrections to the distributions are plotted in the lower panels. In the upper row left, all curves

nearly coincide, while in the lower row, the SM prediction is close to the THDM prediction of

scenario Aa.

differential distributions for fully hadronic final states are not experimentally accessible.

A detailed discussion of the SM distributions at NLO, including issues of final-state radi-

ation (such as photon recombination), can be found for the fully leptonic final states in

refs. [34, 35, 40] and for semi-leptonic final states in ref. [36]. In our study we emphasize

the differences between the SM and the THDM results, while the features of photonic

(and gluonic) corrections in the THDM and the SM are identical. The distributions dis-

cussed in the following are calculated using the MS(λ3) renormalization scheme; the other

renormalization schemes yield similar results.

Leptonic final states: we begin with the leptonic final state e−e+µ−µ+ which is a

decay mediated by Z bosons. The invariant mass Mfaf̄b
of a fermion-anti-fermion pair is

defined by

M2
faf̄b

= (ka + kb)
2 (4.6)

with the momentum ka of the fermion fa and kb of the anti-fermion f̄b, where the photon

momentum is already added to the fermion momentum in case of recombination. The

NLO invariant-mass distributions of the muon pair are displayed in the first panel of
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Figure 18. As in figure 17, but for the leptonic charged-current decay h→ νµµ
+e−ν̄e.

figure 17(a) for the SM and the THDM in scenarios Aa and Ab and show the Z-boson

resonance. The relative corrections normalized to the LO are illustrated in the second

panel and exhibit the well-known effects of final-state radiation near the Z resonance:

photons radiated off a final-state lepton lower the invariant mass of the lepton pair and

lead to positive corrections — the “radiative tail” — for invariant masses below the Z-boson

peak and negative corrections above. These corrections would contain a logarithm of the

form α ln(mµ/Mh) from collinear photon emission off muons if no photon recombination

was applied. However, photon recombination mitigates this large effect by shifting events

back to larger invariant masses for collinear emission and leads to the necessary level of

inclusiveness required by the Kinoshita-Lee-Nauenberg theorem [72, 73] to remove the

collinear singularity. In case of photon recombination, the µ−µ+ and e−e+ invariant-mass

distributions are, thus, identical. Yet, non-collinear photons, which are not recombined,

still lead to a sizable net effect which is observed in the relative corrections. The shapes

of the invariant-mass distributions in SM and THDM are practically identical, i.e. the

impact of new Lorentz structures in the NLO THDM diagrams is negligible. The relative

difference between the SM and the THDM distributions is just given by the difference

observed already in the integrated h→e−e+µ−µ+ decay width, i.e. −1.15% for scenario Aa

and −1.81% for Ab. We recall that those differences were traced back to the impact of

Hh-mixing effects in section 4.1.4, which are independent from the decay kinematics, and

thus conclude that those mixing effects are the dominant higher-order effects visible in the

distributions as well.
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The differential decay width with respect to the angle φ between the µ−µ+ and e−e+

decay planes is defined by

cosφ =
((k1 + k2)× k1) · ((k1 + k2)× k3)

|(k1 + k2)× k1||(k1 + k2)× k3|
, (4.7)

with the sign convention

sgn(sinφ) = sgn{(k1 + k2) · [((k1 + k2)× k1)× ((k1 + k2)× k3)]} (4.8)

where k1, k2, and k3 are the momenta of the muon, the anti-muon and the electron,

respectively. The corresponding distribution is shown in the upper panel of figure 17(b).

One observes a cos (2φ) pattern in the shape of the distribution, which can be used to

set bounds on non-standard couplings of the Higgs boson to the EW gauge bosons (see

refs. [22–29]). Note that the oscillation pattern in the distribution of a pseudo-scalar Higgs

boson would have a different sign. We again observe that the SM shape is not distorted by

THDM effects and that the difference between SM and THDM prediction just resembles

the difference in the integrated widths.

We have also considered the invariant-mass and angular distributions of the e−e+e−e+

final state (not shown), for which interference terms between different ZZ channels appear.

There, the assignment of the lepton pairs to intermediate Z bosons is not unique; usually

the electron and positron with an invariant mass closest to the Z-boson mass is combined

to a pair. Again we find that the relative difference ∆SM between THDM and the SM is

practically constant over the phase space and given by its values for the integrated width.

For the W-boson-mediated νee
+µ−ν̄µ final state, the respective distributions are shown

in figure 18. The invariant-mass distribution of Mνµµ is not experimentally accessible, but

shown for theoretical interest. The plot shows the W resonance around Mνµµ ≈ MW

with the radiative corrections caused by photon radiation as discussed above. As already

observed in the neutral-current final state, there is no significant shape distortion in the

THDM w.r.t. the SM prediction. As the neutrinos cannot be detected, neither the Higgs

nor the W boson can be fully reconstructed. However, projecting all lepton momenta into

a fixed plane mimics the experimental situation at the LHC in the centre-of-mass frame

of the Higgs boson in the plane transverse to the proton beams, where the sum of the

neutrino momenta is measurable as missing momentum. We, thus, analyze the transverse

angle φµe,T between the two charged leptons [34], defined by

cosφµe,T =
kµ,T · ke,T

|kµ,T||ke,T|
, sgn(sinφT) = sgn{ez · (kµ,T × ke,T)}, (4.9)

where ki,T are the parts of the full lepton momenta ki orthogonal to the fixed unit vector ez
representing the beam direction of the Higgs-boson production process. The distribution

in φµe,T is shown in the first panel of figure 18(b). As expected, no shape distortion is

seen w.r.t. the SM prediction, only the constant relative deviation which is identical to the

deviation in the partial width of −1.04% (Aa) and −1.87% (Ab). Other fully leptonic final

states show similar patterns, so that their distributions are not separately shown here.
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Figure 19. Invariant-mass (a) and angular distributions (b) of the charged-current semi-leptonic

decay h→ dd̄e−e+ for the SM and the THDM benchmark scenarios Aa and Ab. The relative NLO

EW+QCD corrections to the distributions are plotted in the lower panels. In the upper row, all

curves nearly coincide, while in the lower row, the SM prediction is close to the THDM prediction

of scenario Aa.

Semi-leptonic final states: the invariant-mass distribution of the hadronic system of

the neutral-current final state dd̄e−e+ is displayed in figure 19 (l.h.s.), together with the

corresponding NLO EW+QCD corrections. In case of gluon radiation, the invariant mass is

built from the whole hadronic qq̄g system to obtain an IR-safe observable. The distribution

and the corrections show similar characteristics to the ones of the corresponding leptonic

final state: photon radiation leads to a radiative tail, but SM and THDM distributions do

not show any visible shape difference. Note that the effect of the photon radiation is less

pronounced compared to the leptonic final state, as the quark charge factors are smaller

than for leptons. There is no radiative tail from gluon radiation, because all gluons are

recombined with the quark pair, so that only a flat QCD correction remains [36].

In order to analyze angular distributions, we identify the quarks and antiquarks with

jets for events without gluon radiation. In case of gluon radiation, we always combine

the two QCD partons with the smallest invariant mass to a single jet, so that we again

obtain an event with two jets. As the jets cannot be distinguished, any observable must

be invariant under the permutation of the two jets. For this reason, the angle φ between

the two Z-boson decay planes can only be reconstructed up to the sign of cos φ, so that we
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Figure 20. As for figure 19, but for the charged-current semi-leptonic decay h → νee
+dū.

define [36]

| cosφ| =
∣∣∣∣∣

((
kjet1 + kjet2

)
× ke−

) (
kjet1 × kjet2

)

|
(
kjet1 + kjet2

)
× ke− ||kjet1 × kjet2 |

∣∣∣∣∣ . (4.10)

The corresponding distribution, which is depicted on the r.h.s. of figure 19, looks rather

different from the leptonic case, since | cosφ| instead of φ is used in the binning. Again,

the major finding is the fact that the shape of the distribution does not change in the

transition from the SM to the THDM. Only the flat offsets of −1.12% (Aa) and −1.76%

(Ab) already encountered in the partial width are visible.

The invariant-mass distribution of the hadronic system of the semi-leptonic W-boson-

mediated final state νee
+dū is pictured in figure 20 (l.h.s) and shows the same characteristics

as the one of the neutral-current final state considered above: a moderate radiative tail

from photon radiation, flat QCD corrections (not explicitly shown), and no shape difference

between SM and THDM predictions. The distribution in the angle between the electron

and the hadronically decaying W boson, φeW, in the rest frame of the Higgs boson is shown

in figure 20 (r.h.s). The electron is predominantly produced in the direction opposite to

the W boson, and the EW corrections slightly distort the shape of the distribution. The

difference between SM and THDM is described well by the deviation observed for the

partial width of −1.05% for the Aa and −1.85% for the Ab scenario.

To summarize, the effects of the THDM on the shapes of distributions are negligible,

only offsets in the normalization are observed. Thus, distributions for the Higgs decay into
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four massless fermions are not helpful in the search for deviations from the SM induced by

effects of the THDM.

4.2 High-mass scenario B1

The high-mass scenario is divided into two branches which are valid for positive or negative

cβ−α and have different tan β. In this section we cover scenario B1 with positive values

of cβ−α, scenario B2 with negative values is discussed in the subsequent section. The

perturbativity measure increases with rising MH, as can be seen in figure 6, restricting the

range in cβ−α and potentially affecting the stability of the results in the high-mass scenario

in a negative way. Instead of relaxing the situation by moving closer to the alignment

limit, where no problems with too large corrections are expected owing to decoupling, we

delibarately keep this parameter point in order to investigate the robustness of the different

renormalization schemes by checking the scale uncertainty in the various schemes and by

studying the scheme dependence. Appendix A.1 supplements the discussion of this section

by results with cβ−α = 0.05, which are closer to the alignment limit and show better

perturbative stability. The following discussion of the numerical results is structured in

the same way as for the previous scenario, beginning with the conversion of the input

parameters between different renormalization schemes.

4.2.1 Conversion of the input parameters

We compute the conversion between the input values in different renormalization schemes

for cβ−α = −0.1 to 0.3 and use MS(α) either as input or as target scheme. Using input

parameters defined in the FJ(α) scheme leads to particularly large changes in the cβ−α,

indicating that the NLO terms are large and that the perturbative expansion converges

poorly, but also for the FJ(λ3) scheme sizable shifts are observed. Owing to these large

effects, the linearization of the conversion equations suffers from large uncertainties, and

a proper numerical solution is desirable and shown in figure 21(a). Actually, the two

conversions of figure 21 should be inverse to each other, and we perform this consistency

check in (a) by plotting the curves of (b) mirrored at the diagonal with orange dotted

lines. The conversions of the two parameters (α, β) from one scheme to another in fact is

invertible if the implicit equations are solved. In figure 21(b), this invertibility is not fully

respected, since we consider only a projection of the conversion to the cβ−α line, suppressing

the changes in β in the plot, i.e. we always take the input values from eq. (3.11) in the

start scenario of the conversion.

4.2.2 The running of cβ−α

The running of cβ−α in scenario B1a is investigated in figure 22 analogously to the low-

mass scenario for each renormalization scheme independently, without any conversion.

The scale dependence of cβ−α(µr) with cβ−α(µ0) = 0.1 is computed from µr = 300 GeV to

1500 GeV using a Runge-Kutta method. We indicated regions where perturbativity is not

valid with dotted lines using a slightly different perturbativity measure than in figures 6

and 7. Perturbativity is considered to be intact unless the largest of the quartic coupling

parameters λk of the Higgs potential with k = 1, . . . , 5 becomes too large, λmax
k /(4π) > 1.
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Figure 21. Panel (a): conversion of the value of cβ−α from MS(α) to the other schemes for scenario

B1 with the colour coding of figure 8. Panel (b) shows the conversion to the MS(α) scheme. The

solid lines are obtained by solving the implicit equations numerically, the dashed orange lines in

(a) correspond to the solution of (b) mirrored at the diagonal. The highlighted region shows the

phenomenologically most relevant cβ−α region.
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Figure 22. The running of cβ−α for benchmark scenario B1a in the MS(α) (blue), MS(λ3) (green),

FJ(α) (pink), and FJ(λ3) (turquoise) schemes. The breakdown of perturbativity (λmax
k /(4π) > 1)

is indicated by changing the NLO curve to dotted lines.
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Compared to the previously used perturbativity measure, we found that with this measure

a slightly larger part of the parameter space fulfills the perturbativity criterion.

In comparison to the low-mass scenario (figure 9(a)) the scale dependence in the FJ(λ3)

scheme increases. For scales above the central scale we obtain large values of cβ−α for which

predictions become unreliable. But also the FJ(α) scheme shows a remarkable behaviour

as the alignment limit is approached for low as well as for high scales.

4.2.3 Scale variation of the width

We now turn to the calculation of the h→4f width where we perform a scale variation

similarly to the previous section in order to investigate the perturbative stability of the

results and the validity of the central scale choice for scenario B1a. The scale is varied

from µr = 300 GeV to 1000 GeV, and the results are shown in figure 23 with one plot for

each input prescription. First, the input values are converted to the target scheme, and

afterwards the scale is varied. In regions where perturbativity is not valid (λmax
k /(4π) > 1)

the NLO result is plotted with dotted lines. The results do not show such a clear and well

behaved picture as for the low-mass scenario:

• The MS(λ3), figure 23(a), and the MS(α) input prescriptions, figure 23(b), yield

similar results. In both cases, these schemes as target schemes show very good

agreement, an extremum and a distinct plateau region in which the central scale fits

perfectly. They only begin to deviate when perturbativity breaks down. The other

renormalization schemes do not behave as nicely, which can already be expected from

the extremely large conversion effects seen in figure 21 at the central scale: the result

of the FJ(α) scheme has a significant offset and drops dramatically for lower scales,

until perturbativity breaks down at about 400 GeV. The FJ(λ3) scheme disagrees

with the other schemes at the central scale, suffers from the strong running and

diverges at high scales as expected, while it shows relatively good (but not stable)

agreement with the other schemes for lower scales.

• For input values defined in the FJ(α) scheme (figure 23(c)), the conversion transports

the large NLO corrections to all other schemes, so that perturbativity is not given

at all, and all curves disagree. The MS(λ3) scheme gives values below 0.8 MeV in

the numerically stable regions, which are not shown in the plot. Together with the

behaviour of the FJ(α) scheme in the other plots, we conclude that the perturbative

predictions using the FJ(α) scheme are not trustworthy for this benchmark scenario.

• The FJ(λ3) input prescription (figure 23(d)) seems to yield the best agreement be-

tween the schemes, however, the conversion to other renormalization schemes results

in particularly small values for cβ−α and therefore corresponds in the other renor-

malization schemes to a scenario closer to the alignment limit. Such scenarios have

smaller couplings and are perturbatively more stable, so that a better agreement is

not surprising. For the h→4f width in a high-mass scenario B1 with cβ−α = 0.05

shown in appendix A.1 we observe a reduction of the scale dependence, the devel-
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Figure 23. The h→4f width at LO (dashed) and NLO EW (solid) for scenario B1a in dependence

of the renormalization scale. The panels (a), (b), (c), and (d) correspond to input values defined

in the MS(λ3), MS(α), FJ(α), and FJ(λ3) schemes, respectively. The result is computed in all four

different renormalization schemes after converting the input at NLO (also for the LO curves) and

displayed using the colour code of figure 9. The breakdown of perturbativity (λmax
k /(4π) > 1) is

indicated by changing the NLO curve to dotted lines. The dashed vertical line indicates the central

renormalization scale µr = µ0.

opment of plateau regions for all schemes, and an overlap of the results from the

different schemes.

In the computation of the relative renormalization scheme dependence at the central

scale ∆RS only reliable renormalization schemes should be used. Therefore only the widths

computed in the MS(α) and MS(λ3) schemes enter this calculation for which the result
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MS(λ3) MS(α) FJ(α) FJ(λ3)

Scenario B1a
∆LO

RS [%] 0.03(0) 0.04(0) — —

∆NLO
RS [%] 0.02(0) 0.02(0) — —

Table 6. The variation ∆RS of the h→4f width in scenario B1a at the central scale µ0 using

the reliable renormalization schemes MS(λ3) and MS(α) (with NLO parameter conversions). The

columns correspond to the schemes in which the input parameters are defined. Using parameters

defined in the FJ(α) and FJ(λ3) schemes, the results are unreliable and a computation of ∆RS is

not meaningful. The zeroes in brackets show that the integration errors are negligible.

is shown in table 6. Omitting the FJ schemes, our estimate of the scheme dependence

is, thus, just the difference of the two MS schemes, which is very small both at LO and

NLO. Nevertheless a tendency towards a reduction of the scheme dependence is seen in

the transition from LO to NLO. For the input values defined in one of the FJ schemes,

this analysis cannot be performed as the results are unreliable.

4.2.4 cβ−α dependence

The h→4f width of the Higgs decay as a function of positive cβ−α is shown for all com-

binations of input prescriptions and renormalization schemes in figure 24 at the scale µ0.

The results from all schemes agree very well in the alignment limits, where cβ−α → 0. For

|cβ−α| > 0.05, differences in the results obtained with different schemes after conversion

from a common parameter input scheme start to become significant. The patterns ob-

served in the investigation of the scale dependence recur. The dashed lines represent the

LO result with an NLO input conversion, while at pure LO, i.e. without conversion, all

renormalization schemes deliver identical results. The respective curve is the one where

no conversion is necessary. The well-known s2
β−α pattern can be observed at LO while the

conversion into the FJ(λ3) scheme introduces large corrections leading to a breakdown (see

figure 21(a)), so that this scheme is only applicable for very low values of cβ−α. The NLO

results away from the alignment limit are more complicated:

• The MS(α) and the MS(λ3) input prescriptions (figures 24(a),(b)) have similar char-

acteristics which is due to the small shifts of the parameters in the conversion. The

width in the MS(α) and the MS(λ3) renormalization schemes agree very well, and

the agreement improves from LO to NLO, as desired. The FJ(α) scheme (as target

scheme) shows differences which can be explained by large higher-order terms shift-

ing the input values towards the alignment limit (see figure 21(b)). Owing to the

large corrections at NLO, sizeable corrections beyond NLO are expected in the FJ

schemes as well. In the FJ schemes, which at least produce reliable results near the

alignment limit, the inclusion of dominant corrections beyond NLO should extend the

applicability of these schemes also to higher values in cβ−α. However, it is unlikely

that the point of our nominal value in scenario B1, cβ−α = 0.1, can be reached, since

the conversion effects get extremely large there.
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Figure 24. The h→4f width at LO (dashed) and NLO EW+QCD (solid) for scenario B1 in

dependence of cβ−α. The panels (a), (b), (c), and (d) correspond to input values defined in the

MS(λ3), MS(α), FJ(α), and FJ(λ3) schemes, and they are converted to the other schemes at NLO

(also for the LO curves). The result is displayed in all four schemes and for the SM using the colour

code of figure 12. The breakdown of perturbativity (λmax
k /(4π) > 1) is visualized by using dotted

lines for the NLO curve.

• Using input values defined in the FJ(α) scheme, figure 24(c), expresses this problem

more clearly. The large corrections spread to the other renormalization schemes

and affect perturbativity in a negative way. But also within the FJ(α) scheme the

corrections are large and differ from the s2
β−α shape seen for other input variants.

This confirms the conclusion of the previous section that predictions obtained using

the FJ(α) are not reliable for this scenario.
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Figure 25. The relative NLO corrections of the full EW+QCD, the QCD, and the EW calculation

in scenario B1. The input is defined in the MS(λ3) scheme, and the corrections are computed in

all four schemes which are displayed using the colour code of figure 12. For comparison the SM

corrections with a SM Higgs-boson mass of Mh are shown as well. Note that the results including

only the QCD corrections lie on top of each other, and that the green line lies below the blue line

for small cβ−α and between the pink and the blue line for large cβ−α in case of the results including

EW and EW+QCD corrections.

• The good agreement of the renormalization schemes in the FJ(λ3) input prescription

(figure 24(d)) is based on the shift of the input values towards the alignment limit in

the conversion. This shrinks the range effectively to 0 < cβ−α . 0.05 for the other

target schemes after the conversion and pushes the results together.

For the input defined in the MS(λ3) scheme, the relative corrections separated in EW,

QCD, and EW+QCD are shown in figure 25. Taking the input in the MS(α) scheme

instead, the results look similar (not shown). The QCD corrections are similar for all

schemes, because only the closed quark-loop diagrams in the hV V vertex corrections do not

factorize from the SM LO amplitude with the coupling factor sin(β−α), but the impact of

those diagrams is small. In contrast to the low-mass scenario, the EW corrections decrease

with increasing cβ−α, so that the deviations from the SM shown in figure 26 are larger

than in the low-mass case, although they remain below 2% for cβ−α < 0.1. The relative

renormalization scheme dependence can only be applied using the MS(α) and MS(λ3)

schemes, as the results obtained using the two schemes involving FJ prescriptions are only

reliable for very small cβ−α. From figures 23(a),(b), one can see that the differences between

the MS(α) and MS(λ3) schemes decrease from LO to NLO, and the scheme dependence

is reduced.
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Figure 26. The h→4f width at LO with NLO conversion (dashed) and NLO EW+QCD (solid) in

scenario B1, normalized to the respective SM values where the SM Higgs-boson mass is Mh. The

input is defined in the MS(λ3) scheme, and the results in the four schemes are displayed using the

colour code of figure 12.

4.2.5 Partial widths for individual four-fermion states

The partial NLO widths, the relative corrections δEW/QCD, and the deviations from the SM,

∆
LO/NLO
SM , are shown in table 7 for benchmark scenario B1a using the MS(λ3) renormal-

ization scheme. The MS(α) scheme yields similar results which differ only at the permille

level, whereas the other schemes are not reliable at this benchmark scenario. The widths

are slightly smaller than in the low-mass scenario (see section 4.1.5) in spite of the identical

values of cβ−α. The negative deviation from the SM rises to almost 2%, however, no final

state accounts for distinctively large THDM effects that could be exploited in experiments.

In addition, the differential distributions of scenario B1a, as defined in section 2, do

not change the shape w.r.t. to the SM significantly. They are shown in appendix A.2,

together with the SM ones and the ones from scenario B2b. As observed in the low-mass

scenario, for each four-fermion final state the difference between the h→4f widths in the

THDM and the SM resembles a constant shift in all distributions as well.

4.3 High-mass scenario B2

To complete the discussion of the high-mass scenario, we turn to negative values of cβ−α for

which the parameter space is strongly reduced by perturbativity, stability, and unitarity

constraints, leaving only a small branch around tan β = 1.5 and leading to scenario B2.

Being in the vicinity of excluded parameter sets potentially affects the conversion, the scale

dependence, and the reliability of the full results. Hence, similar to scenario B1, scenario B2
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Final state Γh→4f
NLO [MeV] δEW [%] δQCD [%] ∆NLO

SM [%] ∆LO
SM [%]

inclusive h→4f 0.95976(9) 1.88(0) 4.96(1) −1.82(1) −1.00(1)

ZZ 0.105308(7) −0.48(0) 4.88(1) −1.89(1) −1.00(1)

WW 0.8596(1) 2.16(0) 5.02(1) −1.81(2) −1.00(1)

WW/ZZ int. −0.00514(7) 0.3(2) 13(1) −1(2) −1(1)

νee
+µ−ν̄µ 0.010118(1) 2.19(0) 0.00 −1.85(2) −1.00(2)

νee
+ud̄ 0.031471(5) 2.18(0) 3.77(1) −1.82(2) −1.00(2)

ud̄sc̄ 0.09772(2) 2.14(0) 7.52(2) −1.79(3) −1.00(2)

νee
+e−ν̄e 0.010113(1) 2.29(0) 0.00 −1.85(2) −1.00(2)

ud̄dū 0.09969(2) 2.02(0) 7.34(2) −1.81(4) −1.00(2)

νeν̄eνµν̄µ 0.000941(0) 2.19(0) 0.00 −1.92(2) −1.00(2)

e−e+µ−µ+ 0.000237(0) 0.49(1) 0.00 −1.94(2) −1.00(1)

νeν̄eµ
−µ+ 0.000474(0) 1.63(1) 0.00 −1.91(2) −1.00(1)

νeν̄eνeν̄e 0.000564(0) 2.09(0) 0.00 −1.93(3) −1.00(2)

e−e+e−e+ 0.000131(0) 0.31(1) 0.00 −1.92(2) −1.00(1)

νeν̄euū 0.001666(0) −0.22(1) 3.75(1) −1.89(2) −1.00(1)

νeν̄edd̄ 0.002160(0) 0.88(1) 3.75(1) −1.89(2) −1.00(2)

e−e+uū 0.000839(0) −0.70(1) 3.76(1) −1.89(2) −1.00(1)

e−e+dd̄ 0.001080(0) −0.35(1) 3.76(1) −1.89(2) −1.00(1)

uūcc̄ 0.002948(1) −2.61(1) 7.51(2) −1.86(3) −1.00(1)

dd̄dd̄ 0.002537(1) −1.20(0) 4.42(3) −1.93(4) −1.00(2)

dd̄ss̄ 0.004918(1) −1.17(1) 7.50(2) −1.86(3) −1.00(2)

uūss̄ 0.003823(1) −1.48(1) 7.51(2) −1.86(3) −1.00(1)

uūuū 0.001495(1) −2.73(1) 4.12(3) −1.95(5) −1.00(1)

Table 7. Partial widths for benchmark scenario B1a within the MS(λ3) scheme.

is well suited to actually address possible problems in that respect. We discuss the results

in the same manner as scenario B1 for positive cβ−α above and present results for the less

delicate case with cβ−α = −0.05 in appendix A.1.

4.3.1 Conversion of the input parameters

The conversion of the input parameter cβ−α between different renormalization schemes is

shown in figure 27 for an enlarged range with MS(α) either as input or target scheme.

The conversion into the MS(α) scheme shows several ominous features (figure 27(b)). First

of all, divergences for the MS(λ3) and FJ(λ3) schemes occur at cβ−α ≈ −0.19. We have

seen such a divergence already in the low-mass scenario outside of the relevant region

(cf. section 4.1.1), which is caused by the singularity at c2α = 0. Since the ratio of the

vacuum expectation values is lower in this scenario, the divergence moves towards the

alignment limit and closer to the relevant region. It affects the conversion for cβ−α < −0.15

in the MS(λ3) and FJ(λ3) schemes, so that such values should be taken with care. If

experimental observations favour this region of parameter space, it becomes necessary to

redefine the renormalization scheme and choose a different Higgs self-coupling parameter
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Figure 27. Panel (a): conversion of the value of cβ−α from MS(α) to the other renormalization

schemes for scenario B2 with the colour coding of figure 8. Panel (b) shows the conversion to the

MS(α) scheme with the same colour coding. The solid lines are obtained by solving the implicit

equations numerically, the dashed orange lines correspond to the solution of (b) mirrored at the

diagonal. The linear approximation does not provide reasonable results. The highlighted region

shows the phenomenologically most relevant cβ−α region.

(e.g. λ1) or a combination (e.g. λ1 + λ2) as independent parameter renormalized in MS.

The singularity then appears in other parameter regions and allows for predictions with

cβ−α . −0.15. Not only the schemes involving λ3 are problematic, but also the conversion

from the FJ(α) scheme, as large shifts indicate problems with the perturbative expansion,

analogous to scenario B1.

Figure 27(a) shows the results for the “inverse” conversion from the MS(α) scheme,

together with the inverse of (b) obtained graphically by mirroring the curves at the diagonal

(dashed orange). Note that the linearized approximation for the conversion would involve

large uncertainties here. Although the comparison of these curves projects the reduction

of the conversion to one dimension (spanned by cβ−α), which is thus not exact, it gives a

quick overview over the convergence of the numerical solution. As expected, the singularity

in the relation between λ3 and α reduces the domain of definition for the conversion in

figure 27(a) to cβ−α|MS(α) > −0.1 for the MS(λ3) scheme and cβ−α|MS(α) > −0.05 for the

FJ(λ3) scheme. Values outside this domain cannot be converted into these schemes, and

solid predictions cannot be made there.

4.3.2 The running of cβ−α

The running of cβ−α(µr) with cβ−α(µ0) = −0.1 is computed from µr = 300 GeV to

1500 GeV with a Runge-Kutta method for scenario B2b. The result is shown in figure 28

for each renormalization scheme without any conversion. The curves look similar to the

ones of the low-mass scenario pictured in figure 9(b) (although the range of µr is differ-
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Figure 28. The running of cβ−α for scenario B2b for the different schemes in the colour code of

figure 9. Note that the turquoise line follows the pink line for µr close to µ0 and the green line for

larger µr.

ent) and we observe the same effects: the truncation of the MS(λ3) and FJ(λ3) schemes,

but also the strong scale dependence of the FJ(α) scheme and the good stability of the

MS(α) scheme.

4.3.3 Scale variation of the width

For the h→4f width we again perform a scale variation in order to estimate theoretical

uncertainties and to motivate the central scale choice. The method is as described in sec-

tion 4.1.3, and the results are shown in figure 29. The FJ(λ3) renormalization scheme is

not included as target scheme here, since it is not possible to convert input values to it for

cβ−α = −0.1 (see figure 27(a)), however, it can be used when the input values are defined

in it. The observations correspond in the most cases to the ones of scenario B1:

• The first two plots using parameters defined in the MS(λ3) (figure 29(a)) and MS(α)

(figure 29(b)) schemes show, as in the previous scenarios, similar characteristics.

The result obtained with the MS(α) renormalization scheme shows almost no scale

dependence, and its value agrees with the extremum of the MS(λ3) renormalization

scheme which lies at the central scale. However, through the truncation of the running

a broad plateau region cannot be observed for the latter scheme with input in MS(α).

The width in the FJ(α) scheme is consistent with the results of the MS(λ3) and MS(α)

schemes at the central scale, but shows an offset at the plateau and decreases for scales

below µ0, as expected from the running of cβ−α.

• The results using the FJ(α) input prescription (figure 29(c)) are not conclusive, since

large corrections from the conversion spread to all other schemes. In the numerically
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Figure 29. The h→4f width at LO (dashed) and NLO EW (solid) for scenario B2b in dependence

of the renormalization scale. The panels (a), (b), (c), and (d) correspond to input values defined

in the MS(λ3), MS(α), FJ(α), and FJ(λ3) schemes, respectively. For each of them, the result is

computed in all four different renormalization schemes after converting the input at NLO (also for

the LO curves) and displayed using the colour code of figure 9. The FJ(λ3) scheme is not defined

as target schemes due to the singular relation between α and λ3. The dashed vertical line indicates

the central renormalization scale µr = µ0.
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MS(λ3) MS(α) FJ(α) FJ(λ3)

Scenario B2b
∆LO

RS [%] 0.81(0) 1.40(0) — 0.99(0)

∆NLO
RS [%] 0.31(0) 0.46(0) — 0.25(0)

Table 8. The variation ∆RS of the h→4f width in scenario B2b at the central scale µ0 using

the renormalization schemes MS(α), MS(λ3), and FJ(α) (with NLO parameter conversions). The

columns correspond to the schemes in which the input parameters are defined. Using parameters

defined in the FJ(α) scheme, the results are unreliable, and a computation of ∆RS is not meaningful.

The zeroes in brackets show that the integration errors are negligible.

accessible region, the MS(λ3) scheme gives values much smaller than 0.8 MeV, which

are not shown in the plot.

• The scale variation of the FJ(λ3) input prescription (figure 29(d)) corresponds again

to an aligned scenario in the other renormalization schemes. Closer to the align-

ment, the renormalization scheme dependence decreases, which can also be seen from

the separate scale variation of a more aligned scenario with cβ−α = −0.05 given in

appendix A.1.

Generically, we obtain a somewhat better improvement compared to benchmark sce-

nario B1a, which probably originates from smaller perturbativity measures (see figure 6).

The central scale of eq. (3.4) is a justifiable choice and suggests that this scale is a good

candidate for the THDM Higgs decay into four fermions in general, although the scale

choice should be better checked for consistency in any new scenario. The renormaliza-

tion schemes MS(α) and MS(λ3) yield trustworthy and comparable results, even though

one should respect the domain of definition of the latter. Results based on an input in the

FJ(α) scheme do not seem reliable; the FJ(λ3) scheme cannot even be applied for this input

procedure. The renormalization scheme dependence at the central scale reduces from LO

to NLO as shown in table 8. For the input renormalization schemes MS(λ3) and MS(α), we

did not take the FJ(λ3) scheme into account when evaluating the renormalization scheme

dependence while for the input scheme FJ(λ3), all four renormalization schemes have been

considered. This corresponds to the results shown in figure 29.

4.3.4 cβ−α dependence

The dependence of the h→4f width on cβ−α is shown for the different input prescriptions in

the four panels of figure 30, for all renormalization schemes. Close to the alignment limit,

−0.05 . cβ−α < 0, the results from different renormalization schemes agree nicely. Away

from this limit, however, the results deviate significantly, demanding some discussion:

• The curves obtained using the MS(λ3) and the FJ(λ3) input prescriptions, figure 30(a)

and figure 30(d), show the largest deviation from the s2
β−α dependence of the LO

width because of the large corrections inherited from the parameter conversions to

the other schemes, which were observed in figure 27(b). Defining the input in the

FJ(λ3) scheme, the NLO width even slightly increases with smaller cβ−α values.
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Figure 30. The h→4f width at LO (dashed) and NLO EW+QCD (solid) for scenario B2 in

dependence of cβ−α. The panels (a), (b), (c), and (d) correspond to input values defined in the

MS(λ3), MS(α), FJ(α), and FJ(λ3) schemes, respectively. The input values are converted to the

desired target scheme (colour code of figure 9) in which the calculation is performed. The SM

prediction is shown for comparison in red.

Owing to the large conversion effects, especially the predictions in the FJ(λ3) scheme

involve large uncertainties. Starting from the alignment region, where the FJ(λ3)

scheme delivers good results, its applicability could be certainly somewhat extended

to smaller values of cβ−α by systematically including the dominant effects beyond

NLO. However, it is unlikely that the nominal value of scenario B2, cβ−α = −0.1,

could be reached.
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Figure 31. The relative NLO EW+QCD, QCD, and EW corrections to the h→4f width in

scenario B2. The input is defined in the MS(α) scheme and the corrections are computed in all four

schemes which are displayed together with the SM corrections using the colour code of figure 12.

Note that the results including only the QCD corrections lie on top of each other.

• Using input values defined in the MS(α) scheme yields the smooth curves of fig-

ure 30(b) which have the expected s2
β−α shape. The relative renormalization scheme

dependence reduces from LO to NLO, while the breakdown of the MS(λ3) and FJ(λ3)

schemes is manifest, since values of cβ−α smaller than ∼ −0.1 or ∼ −0.05 in the

MS(α) scheme cannot be converted into the MS(λ3) or FJ(λ3) schemes, respectively

(cf. figure 27(a)).

• The FJ(α) input prescription shows largest deviations from the SM as large NLO

contributions spread to the other schemes through the conversion, shifting the values

away from the alignment limit and increasing the deviations from the SM prediction.

However, all results obtained in the different renormalization schemes agree signifi-

cantly better with each other after the inclusion of NLO corrections, which is even true in

the problematic regions, suggesting that the perturbative expansion works for this scenario

in the vicinity of our central scale µ0 in spite of partially large NLO terms. As the MS(λ3)

scheme has a limited region of applicability, we show in figure 31 the relative corrections

using the MS(α) scheme, which is reliable over the whole scan range. The QCD corrections

are similar to the SM and renormalization scheme independent, while the EW corrections

show the breakdown of the MS(λ3) and FJ(λ3) schemes. The difference between the FJ(α)

and the MS(α) schemes is slightly larger than in the low-mass case, however, the sizes of

the corrections are almost equal. This results in similar deviations from the SM as can be

seen by comparing figure 32 with figure 15 (it should, however, be noted that a different
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Figure 32. The h→4f width at LO (dashed) and NLO EW+QCD (solid) in the THDM sce-

nario B2, normalized to the respective SM values. The input is defined in the MS(α) scheme,

and the corrections are computed in all four schemes which are displayed using the colour code of

figure 12.

input scheme has been used), so that it is difficult to distinguish these scenarios using the

Higgs decay into four fermions.

4.3.5 Partial widths for individual four-fermion states

We give the partial widths in table 9 for scenario B2b in the MS(α) scheme, as this scheme

provides reliable results for cβ−α = −0.1. All the partial widths are similar to the ones

of the low-mass scenario Ab (table 5) in size (note, however, different input schemes have

been used). This observation applies to the EW and QCD corrections and to the differences

to the SM predictions as well. Again, there is no final state particularly sensitive to the

THDM contributions. The differential distributions analogous to section 4.1.6 are shown

together with the distributions of the high-mass benchmark scenario B1 in appendix A.2

and yield no significant shape distortion w.r.t. the SM, but only constant shifts that match

the deviation of the respective partial widths.

4.4 Different THDM types

In this section, we compare the h→4f decay widths of the Type I, Type II, lepton specific,

and flipped THDMs for the two scenarios Aa and B1a using the MS(λ3) renormalization

scheme. We do not expect large differences in the results, because the considered THDM

versions differ only in the Yukawa couplings of Higgs bosons to the leptons and to down-type

quarks, which are not enhanced by large fermion masses. The by far largest contributions
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Final state Γh→4f
NLO [MeV] δEW [%] δQCD [%] ∆NLO

SM [%] ∆LO
SM [%]

inclusive h→4f 0.96086(9) 1.99(0) 4.97(1) −1.71(1) −1.00(1)

ZZ 0.105584(7) −0.22(0) 4.90(1) −1.63(1) −1.00(1)

WW 0.8604(1) 2.26(0) 5.02(1) −1.72(2) −1.00(1)

WW/ZZ int. −0.00509(7) 0.5(2) 11(1) −2(2) −1(1)

νee
+µ−ν̄µ 0.010128(1) 2.29(0) 0.00 −1.76(2) −1.00(2)

νee
+ud̄ 0.031499(5) 2.28(0) 3.77(1) −1.73(2) −1.00(2)

ud̄sc̄ 0.09781(2) 2.23(0) 7.52(2) −1.70(3) −1.00(2)

νee
+e−ν̄e 0.010123(1) 2.39(0) 0.00 −1.75(2) −1.00(2)

ud̄dū 0.09981(2) 2.12(0) 7.37(2) −1.69(4) −1.00(2)

νeν̄eνµν̄µ 0.000944(0) 2.46(0) 0.00 −1.67(2) −1.00(2)

e−e+µ−µ+ 0.000237(0) 0.74(1) 0.00 −1.69(2) −1.00(1)

νeν̄eµ
−µ+ 0.000475(0) 1.89(1) 0.00 −1.66(2) −1.00(1)

νeν̄eνeν̄e 0.000566(0) 2.35(0) 0.00 −1.68(3) −1.00(2)

e−e+e−e+ 0.000131(0) 0.57(1) 0.00 −1.66(2) −1.00(1)

νeν̄euū 0.001670(0) 0.04(1) 3.75(1) −1.65(2) −1.00(1)

νeν̄edd̄ 0.002165(0) 1.13(0) 3.75(1) −1.65(2) −1.00(2)

e−e+uū 0.000841(0) −0.45(1) 3.76(1) −1.65(2) −1.00(1)

e−e+dd̄ 0.001082(0) −0.09(1) 3.76(1) −1.65(2) −1.00(1)

uūcc̄ 0.002955(1) −2.36(1) 7.51(2) −1.63(3) −1.00(1)

dd̄dd̄ 0.002548(1) −0.94(0) 4.59(3) −1.52(4) −1.00(2)

dd̄ss̄ 0.004930(1) −0.92(0) 7.50(2) −1.63(3) −1.00(2)

uūss̄ 0.003832(1) −1.23(1) 7.51(2) −1.62(3) −1.00(1)

uūuū 0.001502(0) −2.48(1) 4.35(3) −1.49(5) −1.00(1)

Table 9. Partial widths for benchmark scenario B2b in the MS(α) renormalization scheme.

involving Yukawa couplings, however, result from diagrams with top-quark-Higgs couplings,

which are identical in all four THDM versions for the h→4f processes with massless external

fermions. The results are shown in table 10 with the numerical errors in parentheses,

confirming our expectation. The differences originating from the different THDM types

in the NLO corrections are below a permille and not even significant over the integration

error (although we employ large statistics with 190 million phase-space points). The h→4f

decay observables are, thus, rather insensitive to the different types of THDMs, so that our

predictions are universally valid for all types.

4.5 Benchmark plane

For the benchmark plane scenario defined in section 3 we analyze only the relative deviation

∆SM of the h→4f width with respect to the SM in the MS(λ3) scheme. At LO, this is −0.01

as cβ−α = 0.1 is kept constant. The NLO corrections differentiate this picture as they are
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Scenario Aa

Model Γh→4f
NLO [MeV] δEW[%] δQCD[%]

Type I 0.96730(7) 2.711(1) 4.962(5)

Type II 0.96729(7) 2.711(1) 4.962(5)

Lepton-specific 0.96730(7) 2.711(1) 4.962(5)

Flipped 0.96729(7) 2.711(1) 4.962(5)

Scenario B1a

Model Γh→4f
NLO [MeV] δEW[%] δQCD[%]

Type I 0.95981(7) 1.878(3) 4.961(5)

Type II 0.95980(7) 1.879(3) 4.959(5)

Lepton-specific 0.95981(7) 1.878(3) 4.961(5)

Flipped 0.95980(7) 1.879(3) 4.959(5)

Table 10. The h→4f widths for the different types of THDM for scenarios Aa and B1a using the

MS(λ3) renormalization scheme. The numerical errors are given in parentheses.

Figure 33. The relative deviation ∆SM of the h→4f width w.r.t. the SM at NLO for the benchmark

plane scenario in the MS(λ3) scheme. Gray areas are excluded by non-perturbativity while the size

of the deviations is indicated by the colour. We interpolate linearly between computed points to

obtain a smooth picture.

dependent on both the heavy-Higgs-boson masses and tan β. We show the result for a

wide range in the (MH, tanβ) plane in figure 33 where the colour of the parameter point

indicates the deviation ∆NLO
SM and gray areas are excluded by perturbativity constraints

(λmax
k /(4π) > 1). We interpolate between the computed parameter points to obtain a
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Γh→4f
NLO [MeV] δEW[%] δQCD[%] ∆LO

SM[%] ∆NLO
SM [%]

BP3B1 0.86042(8) −0.76(0) 4.96(1) −9.00(1) −11.98(1)

BP3B2 0.70240(7) −1.73(0) 4.94(1) −25.00(1) −28.15(1)

Table 11. The h→4f widths in the MS(λ3) scheme, including the EW and QCD corrections in the

benchmark scenarios BP3B1,B2 (with the numerical errors in parentheses). The last two columns

show the deviation from the SM prediction at LO and NLO.

smooth result, however, the original grid can be seen at the border between the computed

area and the area excluded by non-perturbativity. The major deviation is between 0 and

−5% and grows in magnitude with increasing tan β. For very large values of this parameter

and close to the perturbative exclusion, values up to −8% occur. Very interesting is also

the region with a small tan β, as very small enhancements with respect to the SM can

be found around MH = 300 GeV (displayed in green). However, this region has a strong

mass dependence because for large masses the negative corrections become −5%. We note

that this effect is also visible using the MS(α) scheme and therefore not an artifact of the

singularity of the MS(λ3) scheme.

4.6 Baryogenesis

In this section we discuss the results for the benchmark sets BP3 [33, 66], as defined

in section 3, which were proposed as a possible solution to the problem of baryogenesis.

The results shown in table 11 are computed in the MS(λ3) scheme without considering the

other schemes. In spite of the large distance to the alignment limit, the small heavy-Higgs-

boson masses render both scenarios perturbatively stable with perturbativity measures of

about 0.4. Already at tree level we observe a large negative deviation from the SM caused

by the large values for cβ−α suppressing the hV V coupling. These effects are enhanced at

NLO for which we observe an increase of the negative deviation by 3 percentage points. This

could, in principle, be used in experiments measuring the Higgs decay into four fermions

to put stronger bounds on these scenarios.

4.7 Fermiophobic heavy Higgs

The results for the fermiophobic heavy Higgs scenario [10, 33], as defined in section 3,

are shown in table 12 for the MS(λ3) scheme. The three scenarios have a perturbativity

measure of λmax
k = 0.6 and differ by their value of tan β. Note that all those scenarios

are close to the alignment limit, so that the SM width is almost reached at LO. The NLO

corrections increase the deviation from the SM by about 1% for all scenarios.

5 Conclusions

We have investigated the decay processes h → WW/ZZ → 4f in the THDM, where we

identify the light neutral CP-even Higgs boson h with the discovered Higgs boson of mass

Mh = 125 GeV. This signature contributed to the discovery of the Higgs boson and is
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Γh→4f
NLO [MeV] δEW[%] δQCD[%] ∆LO

SM[%] ∆NLO
SM [%]

BP6a 0.96456(9) 1.40(0) 4.97(1) −0.06(1) −1.33(1)

BP6b 0.96304(9) 1.43(0) 4.97(1) −0.25(1) −1.49(1)

BP6c 0.95701(9) 1.56(0) 4.97(1) −0.99(1) −2.10(1)

Table 12. The h→4f widths in the MS(λ3) scheme including the EW and QCD corrections of

the benchmark scenarios BP6a−c (with the numerical errors in parentheses). The last two columns

show the deviation from the SM prediction at LO and NLO.

important in the experimental investigation of the properties of the Higgs boson, such as

the measurement of its couplings to other particles. The corresponding decay observables

allow for precision tests of the SM and, thus, contribute to the search for any deviations

from SM predictions. The calculation of strong and electroweak corrections in specific SM

extensions, such as the one presented in this paper in the THDM, is an important theory

input to successful data analyses.

In our phenomenological discussion of numerical results, we have considered several

THDM benchmark scenarios proposed by the LHC Higgs Cross section Working Group.

For the investigated scenarios, we generally observe that the THDM predictions for the

h→4f width are bounded from above by the SM prediction and that the deviations from

the SM typically increase at NLO, which might be used to improve exclusion limits in

the THDM parameter space, if a sufficient accuracy is reached. The individual partial

widths show similar deviations from the SM for all final states, but the shapes of differential

distributions are not distorted by THDM contributions, so that the latter are not helpful to

identify traces of the THDM. Moreover, we find that the h→4f widths do not discriminate

between different types of THDMs (Types I and II, lepton-specific and flipped).

We employ different renormalization schemes to define the THDM (i.e. the precise

physical meaning of its input parameters) at NLO. Specifically, we apply four different

schemes which have in common that we use as many as possible input quantities that are

directly accessible by experiment, such as the (on-shell) masses of all five Higgs bosons

of the THDM. For the remaining three free parameters, which are Higgs mixing angles

and Higgs self-couplings, we adopt MS prescriptions in four different variants. In detail,

the MS(α) scheme defines the two mixing angles α and β of the CP-even and CP-odd

Higgs bosons, respectively, as well as the quartic Higgs self-coupling parameter λ5 in the

MS scheme, and FJ(α) is a modified variant of this scheme with a different treatment of

tadpole contributions in such a way that no gauge dependence between input parameters

and predicted observables is introduced. Similarly, we define the two schemes MS(λ3) and

FJ(λ3) in which we replace the angle α by another self-coupling parameter λ3 as input. For

a consistent comparison of results obtained in the different renormalization schemes, the

MS-renormalized parameters have to be properly converted between the schemes. Depend-

ing on the scenario, we observe sizeable conversion effects on those parameters which can

grow very large in scenarios close to the experimental exclusion limits or in parameter re-

gions where perturbative stability deteriorates. These corrections, in particular, imply that
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the so-called alignment limit, in which one of the CP-even Higgs bosons of the THDM is

SM-like, corresponds to different Higgs mixing angles in different renormalization schemes

(even to different angles of a given renormalization scheme if the renormalization scale

is changed). This shows that a proper definition of parameters at NLO is mandatory in

future predictions and parameter fits in the THDM when precision is at stake.

While we observe a reduction of both the renormalization scheme and renormalization

scale dependence of the h→4f width in the transition from LO to NLO as long as all

Higgs-boson masses are moderate and the distance to the alignment limit is not too large,

some renormalization schemes prove unreliable, i.e. prone to large corrections beyond NLO,

for scenarios with heavy Higgs bosons or away from the alignment limit. Generically, the

comparison of the different schemes reveals that the gauge-dependent MS(α) scheme shows

a minimal scale dependence which reflects good perturbative stability. The MS(λ3) scheme

deviates only slightly from the former, yields reliable results and in addition is gauge in-

dependent at one loop in Rξ gauges. However, a singular region in the THDM parameter

space exists in which the scheme is not defined. If this region is experimentally favoured, it

is necessary to redefine the scheme by replacing λ3 by another scalar self-interaction λk 6=3,

so that the singularity is avoided. The gauge-independent FJ schemes partially suffer from

large corrections and can only be applied for parameter points with sufficiently small cou-

pling factors. Since the different schemes do not yield reliable results for all scenarios,

self-consistency checks should be performed for every scenario when higher-order correc-

tions are computed. In cases where NLO fails to be predictive, NLO calculations should be

stabilized upon including the leading (renormalization-scheme-specific) corrections beyond

NLO, a task that is, however, beyond the scope of this paper.

In more detail, in the low-mass scenario with a heavy CP-even Higgs boson of 300 GeV

we obtain textbook-like results for the scale dependence, i.e. an improvement of the scale

uncertainty and a reduction of differences between all four renormalization schemes at NLO,

which indicates that perturbation theory works well. With the exception of extreme

THDM values (such as very low MH and extremely large or small tan β) the deviation

of the h→4f width from the SM prediction is, depending on the parameter set, typically

between 0% and −6%, to which the NLO corrections contribute about 1−2%. In high-mass

scenarios with heavy Higgs bosons with masses of about 600 GeV, the coupling factors are

larger, resulting in less predictive results and larger differences between the renormalization

schemes. Close to the alignment limit, the results of all four schemes are self-consistent

and nicely agree, but away from it differences occur. While the MS(α) and the MS(λ3)

(in its domain of definition) schemes still yield trustworthy results, the FJ(α) and the

FJ(λ3) schemes suffer from large corrections, and their results should be taken with care.

The deviations from the SM are similar to the low-mass case, and the NLO corrections

similarly contribute 1−2% to the deviations. The other investigated scenarios support the

described picture as they yield similar results.

In summary, we find that the parameter space of the THDM is too rich for global

statements on the reliability and precision of NLO predictions for the decays h → 4f . Near

the alignment limit and for not too large mass splittings in the Higgs sector, corrections in

the THDM are moderate, and all our schemes deliver perturbatively stable results in good
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mutual agreement. Away from that region, plain MS schemes (with vanishing renormalized

tadpoles) seem to be more robust, though gauge dependent, but trustworthy predictions

can only be obtained by a careful analysis of both the renormalization scheme and the

renormalization scale dependences. Numerical pathologies that might show up in some

renormalization scheme usually can already be anticipated from the size of the corrections

that are observed in the conversion of the input parameters in a given scenario, i.e. before

numerically expensive evaluations of complicated observables.

The calculated NLO corrections to all h → WW/ZZ → 4f decays are integrated in a

new version of the Monte Carlo program Prophecy4f, extending its applicability to the

THDM. The new code can be obtained from the authors upon request and will be available

from the public webpage9 soon.
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A Further results for the high-mass scenario

In this appendix, we show additional results on the scale variation and differential distri-

butions in the high-mass scenario for further illustration. All the figures are similar to ones

discussed already in section 4 and further support our major conclusions.

A.1 Scale variation

As pointed out in section 4.3.3, the reduction of the scale and renormalization scheme

dependence in the transition from LO to NLO works better for scenarios closer to the

alignment limit. To show this, we perform a scale variation using the benchmark scenarios

B1 and B2 with cβ−α = ±0.05 in figures 34 and 35. These results should be compared

to the ones shown in figures 23 and 29 for scenarios B1a and B2b; the reduced scale and

scheme dependence is clearly visible. Moreover, the conversion into the FJ(λ3) is possible

when the alignment limit is approached, so that this scheme is included in the comparison

of figure 34.

9https://prophecy4f.hepforge.org/
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Figure 34. As in figure 23, but for scenario B1 with cβ−α = 0.05.
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Figure 35. As in figure 29, but for scenario B2 with cβ−α = −0.05.

A.2 Differential distributions

For none of the considered benchmark scenarios, we have observed any distortion in the

shapes of differential distributions for h→4f decays in the transition from the SM to the

THDM. For the low-mass scenarios Aa and Ab this was illustrated in section 4.1.6 for some

selected leptonic and semileptonic final states. Here we show the respective distributions

for the scenarios B1a and B2b in figures 36–39.
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Figure 36. Invariant-mass (a) and angular distributions (b) of the leptonic neutral-current decay

h→ µ−µ+e−e+ for the SM and the THDM scenarios B1a and B2b. The relative NLO corrections

to the distributions are plotted in the lower panels.
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Figure 37. Invariant-mass (a) and angular distributions (b) of the leptonic charged-current decay

h → νµµ
+e−ν̄e for the SM and the THDM scenarios B1a and B2b. The relative NLO corrections

to the distributions are plotted in the lower panels.
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Figure 38. Invariant-mass (a) and angular distributions (b) of the charged-current semi-leptonic

decay h→ dd̄e−e+ for the SM and the THDM scenarios B1a and B2b. The relative NLO corrections

to the distributions are plotted in the lower panels.
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Figure 39. Invariant-mass (a) and angular distributions (b) of the charged-current semi-leptonic

decay h→ νee
+dū for the SM and the THDM scenarios B1a and B2b. The relative NLO corrections

to the distributions are plotted in the lower panels.
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