2,590 research outputs found

    Decay of the Maxwell field on the Schwarzschild manifold

    Get PDF
    We study solutions of the decoupled Maxwell equations in the exterior region of a Schwarzschild black hole. In stationary regions, where the Schwarzschild coordinate rr ranges over 2M<r1<r<r22M < r_1 < r < r_2, we obtain a decay rate of t1t^{-1} for all components of the Maxwell field. We use vector field methods and do not require a spherical harmonic decomposition. In outgoing regions, where the Regge-Wheeler tortoise coordinate is large, r>ϵtr_*>\epsilon t, we obtain decay for the null components with rates of ϕ+α<Cr5/2|\phi_+| \sim |\alpha| < C r^{-5/2}, ϕ0ρ+σ<Cr2tr1/2|\phi_0| \sim |\rho| + |\sigma| < C r^{-2} |t-r_*|^{-1/2}, and ϕ1α<Cr1tr1|\phi_{-1}| \sim |\underline{\alpha}| < C r^{-1} |t-r_*|^{-1}. Along the event horizon and in ingoing regions, where r<0r_*<0, and when t+r1t+r_*1, all components (normalized with respect to an ingoing null basis) decay at a rate of C \uout^{-1} with \uout=t+r_* in the exterior region.Comment: 37 pages, 5 figure

    The global nonlinear stability of Minkowski space. Einstein equations, f(R)-modified gravity, and Klein-Gordon fields

    Full text link
    We study the initial value problem for two fundamental theories of gravity, that is, Einstein's field equations of general relativity and the (fourth-order) field equations of f(R) modified gravity. For both of these physical theories, we investigate the global dynamics of a self-gravitating massive matter field when an initial data set is prescribed on an asymptotically flat and spacelike hypersurface, provided these data are sufficiently close to data in Minkowski spacetime. Under such conditions, we thus establish the global nonlinear stability of Minkowski spacetime in presence of massive matter. In addition, we provide a rigorous mathematical validation of the f(R) theory based on analyzing a singular limit problem, when the function f(R) arising in the generalized Hilbert-Einstein functional approaches the scalar curvature function R of the standard Hilbert-Einstein functional. In this limit we prove that f(R) Cauchy developments converge to Einstein's Cauchy developments in the regime close to Minkowski space. Our proofs rely on a new strategy, introduced here and referred to as the Euclidian-Hyperboloidal Foliation Method (EHFM). This is a major extension of the Hyperboloidal Foliation Method (HFM) which we used earlier for the Einstein-massive field system but for a restricted class of initial data. Here, the data are solely assumed to satisfy an asymptotic flatness condition and be small in a weighted energy norm. These results for matter spacetimes provide a significant extension to the existing stability theory for vacuum spacetimes, developed by Christodoulou and Klainerman and revisited by Lindblad and Rodnianski.Comment: 127 pages. Selected chapters from a boo

    Global existence and modified scattering for the solutions to the Vlasov-Maxwell system with a small distribution function

    Full text link
    The purpose of this paper is twofold. In the first part, we provide a new proof of the global existence of the solutions to the Vlasov-Maxwell system with a small initial distribution function. Our approach relies on vector field methods, together with the Glassey-Strauss decomposition of the electromagnetic field, and does not require any support restriction on the initial data or smallness assumption on the Maxwell field. Contrary to previous works on Vlasov systems in dimension 33, we do not modify the linear commutators and avoid then many technical difficulties. In the second part of this paper, we prove a modified scattering result for these solutions. More precisely, we obtain that the electromagnetic field has a radiation field along future null infinity and approaches, for large time, a smooth solution to the vacuum Maxwell equations. As for the Vlasov-Poisson system, in constrast, the distribution function converges to a new density function along modifications of the characteristics of the free relativistic transport equation. In order to define these logarithmic corrections, we identify an effective asymptotic Lorentz force. By considering logarithmical modifications of the linear commutators, defined in terms of derivatives of the asymptotic Lorentz force, we finally prove higher order regularity results for the limit distribution function.Comment: In this second version of the article, the electromagnetic field is now allowed to be large. There are other improvements as well and typos have been correcte
    corecore