22 research outputs found

    Deblurring Shaken and Partially Saturated Images

    Get PDF
    International audienceWe address the problem of deblurring images degraded by camera shake blur and saturated or over-exposed pix- els. Saturated pixels are a problem for existing non-blind deblurring algorithms because they violate the assumption that the image formation process is linear, and often cause significant artifacts in deblurred outputs. We propose a for- ward model that includes sensor saturation, and use it to derive a deblurring algorithm properly treating saturated pixels. By using this forward model and reasoning about the causes of artifacts in the deblurred results, we obtain significantly better results than existing deblurring algorithms. Further we propose an efficient approximation of the forward model leading to a significant speed-up

    Deblurring Shaken and Partially Saturated Images

    Get PDF
    International audienceWe address the problem of deblurring images degraded by camera shake blur and saturated (over-exposed) pixels. Saturated pixels violate the common assumption that the image-formation process is linear, and often cause ringing in deblurred outputs. We provide an analysis of ringing in general, and show that in order to prevent ringing, it is insufficient to simply discard saturated pixels. We show that even when saturated pixels are removed, ringing is caused by attempting to estimate the values of latent pixels that are brighter than the sensor's maximum output. Estimating these latent pixels is likely to cause large errors, and these errors propagate across the rest of the image in the form of ringing. We propose a new deblurring algorithm that locates these error-prone bright pixels in the latent sharp image, and by decoupling them from the remainder of the latent image, greatly reduces ringing. In addition, we propose an approximate forward model for saturated images, which allows us to estimate these error-prone pixels separately without causing artefacts. Results are shown for non-blind deblurring of real photographs containing saturated regions, demonstrating improved deblurred image quality compared to previous work

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Discriminative Indexing for Probabilistic Image Patch Priors

    Get PDF
    Abstract. Newly emerged probabilistic image patch priors, such as Expected Patch Log-Likelihood (EPLL), have shown excellent performance on image restoration tasks, especially deconvolution, due to its rich expressiveness. However, its applicability is limited by the heavy computation involved in the associated optimization process. Inspired by the recent advances on using regression trees to index priors defined on a Conditional Random Field, we propose a novel discriminative indexing approach on patch-based priors to expedite the optimization process. Specifically, we propose an efficient tree indexing structure for EPLL, and overcome its training tractability challenges in high-dimensional spaces by utilizing special structures of the prior. Experimental results show that our approach accelerates state-of-the-art EPLL-based deconvolution methods by up to 40 times, with very little quality compromise.
    corecore