
HAL Id: hal-01053886
https://hal.inria.fr/hal-01053886

Submitted on 3 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deblurring Shaken and Partially Saturated Images
Oliver Whyte, Josef Sivic, Andrew Zisserman

To cite this version:
Oliver Whyte, Josef Sivic, Andrew Zisserman. Deblurring Shaken and Partially Saturated Images.
IEEE Workshop on Color and Photometry in Computer Vision, 2011, Barcelona, Spain. �hal-01053886�

https://hal.inria.fr/hal-01053886
https://hal.archives-ouvertes.fr


Deblurring Shaken and Partially Saturated Images

Oliver Whyte1,4 Josef Sivic1,4 Andrew Zisserman2,3,4

1INRIA 2Ecole Normale Supérieure
3Dept. of Engineering Science

University of Oxford

Abstract

We address the problem of deblurring images degraded

by camera shake blur and saturated or over-exposed pix-

els. Saturated pixels are a problem for existing non-blind

deblurring algorithms because they violate the assumption

that the image formation process is linear, and often cause

significant artifacts in deblurred outputs. We propose a for-

ward model that includes sensor saturation, and use it to

derive a deblurring algorithm properly treating saturated

pixels. By using this forward model and reasoning about the

causes of artifacts in the deblurred results, we obtain signif-

icantly better results than existing deblurring algorithms.

Further we propose an efficient approximation of the for-

ward model leading to a significant speed-up.

1. Introduction

The task of deblurring “shaken” images has received

considerable attention recently [2, 4, 5, 6, 10, 18, 21, 22].

Significant progress has been made towards reliably esti-

mating the point spread function (PSF) for a given blurry

image, and towards inverting the blur process to recover a

high-quality sharp image. However, one feature of “shaken”

images that has received very little attention is the presence

of saturated pixels. These are caused when the radiance of

the scene exceeds the range of the camera’s sensor, leav-

ing bright highlights clipped at the maximum output value

(e.g. 255 for an 8-bit image). To anyone who has attempted

to take hand-held photographs at night, this effect should

be familiar as the conspicuous bright streaks left by elec-

tric lights, such as in Figure 1 (a). These bright pixels, with

their clipped values, violate the assumption made by many

algorithms that the image formation process is linear, and

as a result can cause obtrusive artifacts in the deblurred

images. This can be seen in the deblurred images in Fig-

ure 1 (b) & (c).

The process of deblurring an image typically involves
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(a) Blurry image
(b) Deblurred with the

Richardson-Lucy algorithm

(c) Deblurred with the method

of Krishnan & Fergus [11]

(d) Deblurred with the

proposed approach

(a) (b) (c) (d)

Figure 1. Deblurring in the presence of saturation. Existing

deblurring methods, such as those in (b) & (c), do not take account

of saturated pixels. This leads to large and unsightly artifacts in

the results, such as the “ringing” around the bright lights in the

zoomed section. Using the proposed method (d), the ringing is

greatly reduced and the quality of the deblurring improved.

two steps. First, the PSF is estimated, which specifies how

the image is blurred. This may be achieved using a “blind”

deblurring algorithm, which estimates the PSF from the

blurry image itself, or alternatively using additional hard-

ware attached to the camera, or with the help of a sharp

reference image of the same scene. Second, a “non-blind”

deblurring algorithm is used to estimate the sharp image,



given the PSF. In this work we estimate the PSF in all cases

using the algorithm of Cho & Lee [4], adapted to spatially-

varying blur (Section 2). We can then consider the problem

as non-blind deblurring (since the PSF is known) of images

that contain saturated pixels. By handling such pixels ex-

plicitly, we are able to produce significantly better results

than existing methods. Figure 1 (d) shows the output of the

proposed algorithm, which contains far fewer artifacts than

the two existing algorithms shown for comparison.

Our principal contribution is to propose a forward model

for camera shake blur that includes sensor saturation (Sec-

tion 3.2), and to use it to derive a modified version of

the Richardson-Lucy algorithm properly treating the satu-

rated pixels. We show that by explicitly modeling poorly-

estimated pixels in the deblurred image, we are able to

prevent “ringing” artifacts in the deblurred results (Sec-

tion 3.3), as shown in Figure 1. We also propose an efficient

piece-wise uniform approximation of spatially-varying blur

in the forward model leading to a significant speed-up (Sec-

tion 4.3) of both the PSF estimation and the non-blind de-

blurring steps.

Related Work. Saturation has not received wide attention

in the literature, although it has been cited as the cause of

artifacts in the deblurred outputs from deconvolution algo-

rithms. For example, Fergus et al. [5], Cho & Lee [4] and

Tai et al. [20] mention the fact that saturated pixels cause

problems, sometimes showing their effect on the deblurred

output, but leave the problem to be addressed in future

work. An exception is Harmeling et al. [8], who address

the issue in the setting of multi-frame blind deblurring by

thresholding the blurry image to detect saturated pixels, and

ignoring these in the deblurring process. When multiple

blurry images of the same scene are available, these pixels

can be safely discarded, since there will generally remain

unsaturated pixels covering the same area in other images.

Single-image blind PSF estimation for camera shake

has been widely studied [2, 4, 5, 12, 15, 18, 22], using

variational and maximum a posteriori (MAP) algorithms.

Levin et al. [14] review several approaches, as well as pro-

viding a ground-truth dataset for comparison on spatially-

invariant blur. While most work has focused on spatially-

invariant blur, several approaches have also been proposed

for spatially-varying blur [6, 7, 10, 20, 21].

Many algorithms exist for non-blind deblurring, perhaps

most famously the Richardson-Lucy algorithm [16, 17].

Recent work has revolved around the use of regularization,

derived from natural image statistics [1, 10, 11, 13, 20], to

suppress noise in the output while encouraging sharp edges

to appear.

2. The Blur Process

In this work we consider the following model of the im-

age formation process: that we are photographing a static

scene, and there exists some sharp latent image f (repre-

sented as a vector) of this scene that we would like to record.

However, while the shutter of the camera is open, the cam-

era moves, capturing a sequence of different views of the

scene as it does so. We will assume that each of these views

can be modeled by applying some transformation Tk to the

sharp image f . The recorded (blurry) image g is then the

sum of all these different views of the scene, each weighted

by its duration:

g =
∑

k

wkTkf , (1)

where the weight wk is proportional to the time spent at

view k, and
∑

k wk = 1. The sharp image f and blurry

image g are N -vectors, where N is the number of pixels,

and each Tk is a sparse N ×N matrix.

Often, the transformations Tk are assumed to be 2D

translations of the image, which allows Eq. (1) to be com-

puted using a 2D convolution. In this paper we use our

recently-proposed model of spatially-varying camera shake

blur [21], where the transformations Tk are homographies

corresponding to rotations of the camera about its optical

center. However, the non-blind deblurring algorithm pro-

posed in this work is equally applicable to other models,

spatially-variant or not.

In a non-blind deblurring setting, the weights wk, which

characterize the PSF, are assumed to be known, and Eq. (1)

can be written as the matrix-vector product

g = Af (2)

where A =
∑

k wkTk. Given the PSF, non-blind deblur-

ring algorithms typically maximize the likelihood of the ob-

served blurry image g over all possible latent sharp images

f , or maximize the posterior probability of the latent im-

age given some prior knowledge about its properties. One

popular example is the Richardson-Lucy (RL) [16, 17] algo-

rithm, which converges to the maximum likelihood estimate

of the latent image under a Poisson noise model [19], using

the following multiplicative update equation:

f t+1 = f t ◦A⊤

( g

Af t

)

, (3)

where ◦ represents element-wise multiplication, the frac-

tion represents element-wise division, and t represents the

iteration number.

Unfortunately, the image produced by a digital camera

does not generally follow the linear model in Eq. (1), and

so naı̈vely applying a non-blind deblurring algorithm such

as Richardson-Lucy may cause artifacts in the result, such



∑
k
wkTkf

Camera Shake

Sharp

Image f

Sensor Response

Recorded
Image g

Figure 2. Diagram of image formation process. See text for ex-

planation and definitions of terms.

as in Figure 1. The pixel values stored in an image file are

not directly proportional to the scene radiance for two main

reasons: (a) saturation in the sensor, and (b) the compres-

sion curve applied by the camera to the pixel values before

writing the image to a file. To handle the latter of these,

we either work directly with raw image files, which have

not had any compression applied, or follow the standard ap-

proach of pre-processing the blurry image, applying a fixed

curve which approximately inverts the camera’s (typically

unknown) compression curve. The curve is then re-applied

to the deblurred image before outputting the result. This

leaves saturation as the remaining source of non-linearities

in the image formation model, as shown in Figure 2.

3. Explicitly Handling Saturated Pixels

We model sensor saturation as follows: the sensor out-

puts pixel values which are proportional to the scene ra-

diance, up to some limit, beyond which the pixel value is

clipped at the maximum output level. This model is sup-

ported by the data in Figure 3, which shows the relationship

between pixel intensities in three different exposures of a

bright light source. The pixel values in the short exposure

(with no saturation) and the longer exposures (with satura-

tion) clearly exhibit this clipped linear relationship. As the

length of the exposure increases, more pixels saturate.

This suggests two possible ways of handling satura-

tion when performing non-blind deblurring: (a) discard the

clipped pixels, so that we only use data which follows the

linear model, or (b) modify the forward model to take into

account this non-linear relationship. We describe both of

these approaches in the following.

3.1. Discarding Saturated Pixels

It is possible to estimate which blurry pixels are saturated

by defining a threshold T , above which a blurry pixel is con-

sidered to be saturated, and therefore an outlier to the linear

model. If we discard these pixels, the problem of deblurring

with saturated pixels becomes deblurring with missing data.

It is possible to re-derive the Richardson-Lucy algorithm to

take account of missing data, by defining a binary mask of

unsaturated (inlier) pixels z, where each element zi = 1 if

gi < T , and 0 otherwise. The new Richardson-Lucy update

equation is then

f t+1 = f t ◦A⊤

(g ◦ z

Af t
+ 1− z

)

, (4)

❡

(a) 0.05 s (b) 0.2 s (c) 0.8 s

3 different exposures of a scene containing bright lights
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(d) Scatter plot of 0.2 s exposure

against 0.05 s exposure

(e) Scatter plot of 0.8 s exposure

against 0.05 s exposure

Figure 3. Saturated & unsaturated photos of the same scene.

(a–c) 3 different exposure times for the same scene, with bright

regions that saturate in the longer exposures. A small window has

been extracted which is unsaturated at the shortest exposure, and

increasingly saturated in the longer two. (d) Scatter plot of the in-

tensities in the small window in (b) against those in the window

in (a), normalized by exposure time. (e) Scatter plot of the inten-

sities in the window in (c) against the window in (a), normalized

by exposure time. The scatter plots in (d) and (e) clearly show the

clipped linear relationship expected.

where 1 is a vector of ones. For an unsaturated pixel gi,

the mask zi = 1, and the term in parentheses is the same as

for the standard RL update. For a saturated (outlier) pixel,

zi = 0, so the term in parentheses is equal to unity. Since

the update is multiplicative, this means that the saturated

observation gi has no influence on the latent image f .

The choice of threshold T can be problematic however;

a low threshold may discard large numbers of inlying pixels

from g, causing some parts of f to become decoupled from

the data. A high threshold, on the other hand, may treat

some saturated pixels as inliers, causing artifacts in the de-

blurred result. Figure 4 shows the result of deblurring using

Eq. (4) for different values of threshold T . As is visible in

the figure, no particular threshold produces a result free of

artifacts. At high values of T , the building is deblurred well,

but artifacts appear around the lights. At the lowest value of

T , the lights are deblurred reasonably well, but the face of

the building is mistakenly discarded and thus remains blurry

in the output.

Ideally, we would like to utilise all the data that we have

available, whilst taking account of the fact that some pixels

are more useful that others. We describe this approach in

the following sections.



(a) T = 0.7 (b) T = 0.5 (c) T = 0.3 (d) T = 0.1

Figure 4. Ignoring saturated pixels using a threshold. A simple

way to handle saturation is to threshold the blurry image at some

level T , and discard the blurry pixels above this threshold. Shown

are the results of running the Richardson-Lucy algorithm for dif-

ferent thresholds. As the threshold decreases, the artifacts around

the bright lights at the bottom of the image are reduced compared

to the standard RL result in Figure 1 (b). At the lowest thresh-

old (d) the fewest artifacts appear, but parts of the church are also

discarded, hence remain blurred.

3.2. A Forward Model for Saturation

Instead of attempting to segment the blurry image into

saturated and unsaturated regions, we may instead modify

our forward model to include the saturation process. This

avoids making a priori decisions about which data are in-

liers or outliers, and allows us to use all the data in the blurry

image. To this end, we introduce a response function R(·)
into Eq. (2) so that the forward model becomes

g = R (Af) , (5)

where the function R is applied element-wise. Re-deriving

the Richardson-Lucy algorithm using this model leads to

the new update equation:

f t+1 = f t ◦A⊤

(g ◦R′(Af t)

R(Af t)
+ 1−R′(Af t)

)

, (6)

where R′ is the derivative of R.

One choice for R would be simply to truncate the linear

model in Eq. (1) at 1 (the maximum pixel value), using the

function R(x) = min(x, 1). This choice is empirically jus-

tified, as can be seen in Figure 3. However, this function is

non-differentiable at x = 1, i.e. R′(1) is not defined. We

thus use a smooth approximation [3], where

R(x) = x−
1

a
log

(

1 + exp
(

a(x− 1)
)

)

. (7)

The parameter a controls the smoothness of the approxima-

tion, and in all our experiments we set a = 50. Figure 5

shows the shape of R and R′ compared to the simple trun-

cated linear model.

Given the shape of R, Eq. (6) can easily be interpreted:

in the linear portion R(x) ≃ x and R′(x) ≃ 1, so that

0 1 2

0

0.5

1

0 1 2

0

0.5

1

(a) Ideal saturation function
(b) Smooth, differentiable

saturation function

Figure 5. Modeling the saturated sensor response. (a) Ideal

clipped linear response function (solid blue line) and its deriva-

tive (dashed red line). The derivative is not defined at x = 1.

(b) Smooth and differentiable approximation to (a) defined in

Eq. (7). The derivative is also smooth and defined everywhere.

the term in parentheses is the same as for the standard RL

algorithm, while in the saturated portion R(x) ≃ 1 and

R′(x) ≃ 0, so that the term in parentheses is equal to unity

and has no influence on f . It is important to note that these

two regimes are not detected from the blurry image using

a threshold, but arise naturally from our current estimate of

the latent image, and thus no explicit segmentation of the

blurry image into unsaturated and saturated regions is nec-

essary. We refer to the algorithm using this update rule as

“saturated RL”. Figure 6 demonstrates the advantage of this

method over the standard RL algorithm on a synthetic 1D

example.

3.3. Preventing the Propagation of Errors

It is important to note that even using the correct for-

ward model, we are not necessarily able to estimate every

latent pixel in f accurately. In the blurring process, each

pixel fj in the latent image is blurred across multiple pixels

in the blurry image g. If some (or all) of these are satu-

rated, we are left with an incomplete set of data concerning

fj , and our estimate of fj is likely to be less accurate than

if we had a full set of unsaturated observations available.

This mis-estimation is one source of “ringing” artifacts in

the deblurred output; an over-estimate at one pixel must be

balanced by an under-estimate at a neighboring pixel, which

must in turn be balanced by another over-estimate. In this

way, an error at one pixel spreads outwards in waves across

the image. In order to mitigate this effect, we propose a

second modification to the Richardson-Lucy algorithm to

prevent the propagation of these errors.

We first segment f into two disjoint regions: S , which

includes the bright pixels that we are unlikely to estimate

accurately, and U , which covers the rest of the image and

which we can estimate accurately. We decompose the la-

tent image correspondingly: f = fU+fS . Our aim is then to

prevent the propagation of errors from fS to fU . To achieve

this, we propose to estimate fU using only data which is not

influenced by any pixels from S . To this end, we first define

the region (denoted by V) of the blurry image which is in-
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(a) No saturation (b) Partial saturation
(c) Complete

saturation

Figure 6. Synthetic example of blur and saturation. Each col-

umn shows a sharp “top-hat” signal, blurred using the box filter

shown at the top left. Gaussian noise is added and the blurred sig-

nal is clipped, to model saturation. The kernel is also degraded

with noise and one large error to produce a “perturbed” kernel

which is used for deconvolution, to simulate errors in the kernel

estimation step. The last three rows show the deblurred outputs

for three algorithms discussed in Section 3. (a) With no saturation,

all three algorithms produce similar results. (b) When some of the

blurred signal is saturated (region B), the standard RL algorithm

produces an output with large ringing artifacts. Although region

A is not itself saturated, the ringing propagates outwards from B

& C across the whole signal. The “saturated RL” algorithm re-

duces the ringing and correctly estimates the height of the top-hat

at its edges (region C), where there are some unsaturated observa-

tions available. In region B all information about the height of the

sharp signal is lost, and the output takes a sensible value close to

1. (c) When the blurred top-hat is completely saturated, it is no

longer possible to estimate its true height anywhere. The saturated

RL result accurately locates the top-hat, but contains ringing. The

proposed method (combined RL) mitigates this by preventing the

propagation of errors to the non-saturated region (compare D to

E).

dependent of fS , by eroding U using the non-zero elements

of the PSF: V =
⋂

k:wk>0 UTk
, where UTk

denotes the set

U transformed by Tk. By taking the intersection of all the

transformed versions of U , we ensure that V contains only

those blurry pixels that are completely independent of S .

We can then estimate fU using only the data in V , by defin-

ing the binary mask v which corresponds to V and adapting

the update equation from Eq. (4) for Richardson-Lucy with

missing data:

f t+1
U

= f tU ◦A⊤

(

g ◦R′(Af t) ◦ v

R(Af t)
+ 1−R′(Af t) ◦ v

)

.

(8)

We estimate fS using the previously defined “saturated RL”

algorithm:

f t+1
S

= f tS ◦A⊤

(

g ◦R′(Af t)

R(Af t)
+ 1−R′(Af t)

)

. (9)

Since the Richardson-Lucy algorithm is an iterative pro-

cess, we do not know beforehand which parts of f belong

in U and which in S . We thus perform the segmentation at

each iteration t using a threshold on the latent image:

U =
{

j
∣

∣f t
j ≤ φ

}

. (10)

We decompose f according to

f tU = u ◦ f t, f tS = f t − f tU , (11)

where u is the binary mask corresponding to U . We then

compute V , update fU and fS using Eqs. (8) and (9), and re-

combine them to form our new estimate of the latent image

f t+1 = f t+1
U

+ f t+1
S

. We refer to this algorithm as “com-

bined RL”, and Figure 6 shows the results of applying it to

a synthetic 1D example, demonstrating the advantage over

the standard RL and “saturated RL” algorithms.

Although this combined RL algorithm involves the use

of a threshold to segment the image, its effect is less dra-

matic than in Section 3.1. In this case, the threshold only

determines whether a given pixel fj should be updated us-

ing all the available data, or a subset of it. This is in con-

trast to Section 3.1, where parts of the data are discarded

and never used again. Since our aim is to ensure that no

large errors are introduced in fU , we set the threshold low

enough that most potentially-bright pixels are assigned to

S . Empirically, we choose φ = 0.9 for the results in this

paper.

4. Implementation

In this section we describe some of the implementation

details of the proposed algorithm, the PSF estimation for

the results shown, and an efficient approximation for the

forward model that leads to a significant speed-up.



4.1. PSF Estimation

For all the results shown in this work, we estimate the

PSFs using the blind deblurring algorithm proposed by Cho

& Lee [4], adapted to our spatially-varying blur model [21].

Due to space considerations, we refer the reader to [4] for

details of the algorithm. The only modification required to

handle saturated images using this algorithm is to discard

potentially saturated regions of the blurry image using a

threshold. Since in this case the aim is only to estimate the

PSF (and not a complete deblurred image), we can safely

discard all of these pixels, since the number of saturated

pixels in an image is typically small compared to the total

number of pixels. There will typically remain sufficient un-

saturated pixels from which to estimate the PSF.

4.2. Segmenting the Latent Image

When segmenting the current estimate of the latent im-

age in the combined RL algorithm, we take additional steps

to ensure that we make a conservative estimate of which

pixels can be estimated accurately. First, after thresholding

the latent image in Eq. (10), we perform a binary erosion

on U , using a disk with radius 3 pixels. This ensures that all

poorly-estimated pixels are correctly assigned to S (perhaps

at the expense of wrongly including some well-estimated

pixels too). Fewer artifacts arise from wrongly assigning

a well-estimated pixel into S than the other way around.

Second, in order to avoid introducing visible boundaries be-

tween the two regions, we blur the mask u slightly using a

Gaussian filter with standard deviation 3 pixels to produce

a smoother set of weights when extracting f t
U

and f t
S

from

the current latent image f t in Eq. (11).

4.3. Efficient Approximation for Forward Model

Due to the additional computational expense incurred by

using a spatially-varying blur model instead of a spatially-

invariant one, both the blind and non-blind deblurring steps

can be very time consuming. The number of homographies

Tk in the forward model in Eq. (1) can be large, even for

a moderately-sized blur: for a blur 30 pixels in size, up to

303 = 27, 000 homographies may need to be computed. To

reduce the running time of both the PSF estimation and the

non-blind deblurring, we extend the locally-uniform “Ef-

ficient Filter Flow” approximation proposed by Hirsch et

al. [9] to handle blur models of the form in Eq. (1).

Locally-uniform approximation. The idea is that for a

smoothly varying blur, such as camera shake blur, nearby

pixels have very similar point spread functions. Thus it

is reasonable to approximate the blur as being locally-

uniform. In the approximation proposed by Hirsch et

al., the sharp image f is covered with a coarse grid of

p overlapping patches, each of which is modeled as hav-

ing a spatially-invariant blur. The overlap between patches

ensures that the blur varies smoothly across the image,

rather than changing abruptly at the boundary between two

patches. The fact that each patch has a spatially-invariant

blur allows the forward model to be computed using p

small convolutions. Hirsch et al. [9] assign each patch r

a spatially-invariant blur filter a(r), and the forward model

is approximated by:

g =

p−1
∑

r=0

C⊤

r F
H Diag(Fa(r))FDiag(m)Crf , (12)

where the matrix F takes the discrete Fourier transform, FH

takes the inverse Fourier transform (both performed using

the FFT), and Cr is a matrix that crops out the rth patch

from the image f (and thus C⊤
r reinserts it at its correct

location). The vector m is a windowing function, e.g. the

Bartlett-Hann window, which produces the smooth transi-

tion between neighboring patches.

Applying the approximation to the forward model. In

their original work, Hirsch et al. [9] store a separate filter

a(r) for each patch r. However, given the blur model in

Eq. (1), which is parameterized by a single set of weights

w, we can write each a(r) in terms of w. For each patch

r, we choose a(r) to be the point spread function for the

central pixel ir, which is given by the ith
r row of A. Since

A is linear in w, we can construct a matrix Jr such that

a(r) = CrJrw. The elements of each Jr are simply a re-

arrangement of the elements of the matrices Tk: element

(j, k) of Jr is equal to element (ir, j) of Tk. Figure 7 shows

how the quality of the approximation varies with the number

of patches being used. In all our experiments, we use a grid

of 6× 8 patches.

Having written each filter a(r) in terms of w, we can

then substitute this into Eq. (12), and obtain the following

approximation for the forward model of Eq. (1):

g =

p−1
∑

r=0

C⊤

r F
H Diag(FCrJrw)FDiag(m)Crf . (13)

This allows the forward model to be computed quickly

using only a handful of frequency-domain convolutions.

Furthermore, the derivatives of
∑

k wkTkf with respect

to f and w can also be computed using a small number

of frequency-domain convolutions and correlations. These

three operations are the computational bottleneck in both

the blind PSF estimation algorithm of Cho & Lee [4], and

in the Richardson-Lucy algorithm.

5. Results

Figures 1 and 8 show results of non-blind deblurring us-

ing the proposed “combined RL” algorithm described in

Section 3.3 on real hand-held photographs. The PSFs for



(a) Approx. 3× 4 patches (b) Approx. 6× 8 patches

(c) Approx. 12× 16 patches (d) Exact

Figure 7. Approximating spatially-varying blur by combining

uniformly-blurred, overlapping patches. Using the model de-

scribed in Section 4.3, we can efficiently compute approximations

to the spatially-varying blur model in Eq. (1). With a small number

of patches (a), the PSF at each pixel is visibly the sum of different

blurs from overlapping patches. As more patches are used (b–c),

the approximation becomes increasingly close to the exact model

(d) – at 12× 16 patches it is almost indistinguishable.

these images were estimated from the blurry images them-

selves using the algorithm of Cho & Lee [4] (as described

in Section 4.1). Note that the standard Richardson-Lucy

algorithm and the approach of Krishnan & Fergus [11] pro-

duce large amounts of ringing around the saturated regions,

while the proposed algorithm avoids this with no loss of

quality elsewhere. In all results in this paper we performed

50 iterations of the Richardson-Lucy algorithm.

As a result of the approximation described in Section 4.3,

we are able to obtain a speed-up in both the blind PSF es-

timation and the non-blind deblurring steps over the exact

model, with no visible reduction in quality. For a typical

1024 × 768 image, the exact model in Eq. (1) takes approx-

imately 20 seconds to compute in our MATLAB implemen-

tation and 5 seconds to compute in our C implementation,

compared to 2 seconds for our MATLAB implementation of

the approximation, on an Intel Xeon 2.93GHz CPU.

6. Conclusion

In this work we have developed an approach for deblur-

ring images blurred by camera shake and suffering from

saturation. The proposed algorithm is able to effectively

deblur saturated images without introducing ringing or sac-

rificing detail, and is applicable to any blur model, whether

spatially-varying or not. We have also demonstrated an ef-

ficient approximation for computing spatially-varying blur,

applicable to any model of blur with the form of Eq. (1).
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(a) Blurry image
(b) Deblurred with

Richardson-Lucy

(c) Deblurred with algorithm of

Krishnan & Fergus [11]

(d) Deblurred with proposed

method

Figure 8. Deblurring saturated images. Note that the ringing around saturated regions, visible in columns (b) and (c) is removed by our

method (d), without causing any loss in visual quality elsewhere.


