433,726 research outputs found

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Inconsistency-tolerant business rules in distributed information systems

    Full text link
    The final publication is available at Springer via http://10.1007/978-3-642-41033-8_41Business rules enhance the integrity of information systems. However, their maintenance does not scale up easily to distributed systems with concurrent transactions. To a large extent, that is due to two problematic exigencies: the postulates of total and isolated business rule satisfaction. For overcoming these problems, we outline a measure-based inconsistency-tolerant approach to business rules maintenance.Supported by ERDF/FEDER and MEC grants TIN2009-14460-C03, TIN2010-17139, TIN2012-37719-C03-01.Decker, H.; Muñoz EscoĂ­, FD. (2013). Inconsistency-tolerant business rules in distributed information systems. En On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Springer Verlag (Germany). 8186:322-331. https://doi.org/10.1007/978-3-642-41033-8_41S3223318186Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI SQL isolation levels. In: Proc. SIGMOD 1995, pp. 1–10. ACM Press (1995)Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Butleris, R., Kapocius, K.: The Business Rules Repository for Information Systems Design. In: Proc. 6th ADBIS, vol. 2, pp. 64–77. Slovak Univ. of Technology, Bratislava (2002)Davis, C.T.: Data Processing sphere of control. IBM Systems Journal 17(2), 179–198 (1978)Decker, H.: Partial Repairs that Tolerante Inconsistency. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 389–400. Springer, Heidelberg (2011)Decker, H.: Causes of the violation of integrity constraints for supporting the quality of databases. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 283–292. Springer, Heidelberg (2011)Decker, H.: New measures for maintaining the quality of databases. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 170–185. Springer, Heidelberg (2012)Decker, H.: Controlling the Consistency of the Evolution of Database Systems. In: Proc. 24th ICSSEA, Paris (2012)Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. IEEE Transactions on Knowledge and Data Engineering 23(2), 218–234 (2011)Decker, H., Muñoz-EscoĂ­, F.D.: Revisiting and Improving a Result on Integrity Preservation by Concurrent Transactions. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010 Workshops. LNCS, vol. 6428, pp. 297–306. Springer, Heidelberg (2010)Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The Notions of Consistency and Predicate Locks in a Database System. CACM 19(11), 624–633 (1976)Gilbert, S., Lynch, N.: Brewer’s Conjecture and the feasibility of Consistent, Available, Partition-tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)Ibrahim, H.: Checking Integrity Constraints - How it Differs in Centralized, Distributed and Parallel Databases. In: Proc. 17th DEXA Workshops, pp. 563–568. IEEE (2006)Lynch, N., Blaustein, B., Siegel, M.: Correctness Conditions for Highly Available Replicated Databases. In: Proc. 5th PODC, pp. 11–28. ACM Press (1986)Martinenghi, D., Christiansen, H.: Transaction Management with Integrity Checking. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 606–615. Springer, Heidelberg (2005)Christiansen, H., Decker, H.: Integrity checking and maintenance in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent Databases: Technologies and Applications, pp. 238–285. Idea Group (2006)Morgan, T.: Business Rules and Information Systems - Aligning IT with Business Goals. Addison-Wesley (2002)Muñoz-EscoĂ­, F.D., Ruiz-Fuertes, M.I., Decker, H., ArmendĂĄriz-ĂĂ±igo, J.E., de MendĂ­vil, J.R.G.: Extending Middleware Protocols for Database Replication with Integrity Support. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 607–624. Springer, Heidelberg (2008)Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)Novakovic, I., Deletic, V.: Structuring of Business Rules in Information System Design and Architecture. Facta Universitatis Nis, Ser. Elec. Energ. 22(3), 305–312 (2009)Pipino, L., Lee, Y., Yang, R.: Data Quality Assessment. CACM 45(4), 211–218 (2002)Stonebraker, M.: Errors in Database Systems, Eventual Consistency, and the CAP Theorem (2010), http://cacm.acm.org/blog/blog-cacm/83396-errors-in-database-systems-eventual-consistency-and-the-cap-theoremStonebraker, M.: In search of database consistency. CACM 53(10), 8–9 (2010)Stonebraker, M.: Technical perspective - One size fits all: an idea whose time has come and gone. Commun. ACM 51(12), 76 (2008)Taveter, K.: Business Rules’ Approach to the Modelling, Design and Implementation of Agent-Oriented Information Systems. In: Proc. CAiSE workshop AOIS, Heidelberg (1999)Vidyasankar, K.: Serializability. In: Liu, L., Özu, T. (eds.) Encyclopedia of Database Systems, pp. 2626–2632. Springer (2009)Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann (2002)Vogels, W.: Eventually Consistent. ACM Queue 6(6), 14–19 (2008)Pereira Ziwich, P., Procpio Duarte, E., Pessoa Albini, L.: Distributed Integrity Checking for Systems with Replicated Data. In: Proc. ICPADS, vol. 1, pp. 363–369. IEEE CSP (2005

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Class Association Rules Mining based Rough Set Method

    Full text link
    This paper investigates the mining of class association rules with rough set approach. In data mining, an association occurs between two set of elements when one element set happen together with another. A class association rule set (CARs) is a subset of association rules with classes specified as their consequences. We present an efficient algorithm for mining the finest class rule set inspired form Apriori algorithm, where the support and confidence are computed based on the elementary set of lower approximation included in the property of rough set theory. Our proposed approach has been shown very effective, where the rough set approach for class association discovery is much simpler than the classic association method.Comment: 10 pages, 2 figure
    • 

    corecore