909 research outputs found

    Comprehending queries over finite maps

    Get PDF

    Language-integrated provenance in Haskell

    Get PDF
    Scientific progress increasingly depends on data management, particularly to clean and curate data so that it can be systematically analyzed and reused. A wealth of techniques for managing and curating data (and its provenance) have been proposed, largely in the database community. In particular, a number of influential papers have proposed collecting provenance information explaining where a piece of data was copied from, or what other records were used to derive it. Most of these techniques, however, exist only as research prototypes and are not available in mainstream database systems. This means scientists must either implement such techniques themselves or (all too often) go without. This is essentially a code reuse problem: provenance techniques currently cannot be implemented reusably, only as ad hoc, usually unmaintained extensions to standard databases. An alternative, relatively unexplored approach is to support such techniques at a higher abstraction level, using metaprogramming or reflection techniques. Can advanced programming techniques make it easier to transfer provenance research results into practice? We build on a recent approach called language-integrated provenance, which extends language-integrated query techniques with source-to-source query translations that record provenance. In previous work, a proof of concept was developed in a research programming language called Links, which supports sophisticated Web and database programming. In this paper, we show how to adapt this approach to work in Haskell building on top of the Database-Supported Haskell (DSH) library. Even though it seemed clear in principle that Haskell's rich programming features ought to be sufficient, implementing language-integrated provenance in Haskell required overcoming a number of technical challenges due to interactions between these capabilities. Our implementation serves as a proof of concept showing how this combination of metaprogramming features can, for the first time, make data provenance facilities available to programmers as a library in a widely-used, general-purpose language. In our work we were successful in implementing forms of provenance known as where-provenance and lineage. We have tested our implementation using a simple database and query set and established that the resulting queries are executed correctly on the database. Our implementation is publicly available on GitHub. Our work makes provenance tracking available to users of DSH at little cost. Although Haskell is not widely used for scientific database development, our work suggests which languages features are necessary to support provenance as library. We also highlight how combining Haskell's advanced type programming features can lead to unexpected complications, which may motivate further research into type system expressiveness

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page

    Structural Recursion as a Query Language

    Get PDF
    We propose a programming paradigm that tries to get close to both the semantic simplicity of relational algebra, and the expressive power of unrestricted programming languages. Its main computational engine is structural recursion on sets. All programming is done within a nicely typed lambda calculus, as in Machiavelli [OBB89]. A guiding principle is that how queries are implemented is as important as whether they can be implemented. As in relational algebra, the meaning of any relation transformer is guaranteed to be a total map taking finite relations to finite relations. A naturally restricted class of programs written with structural recursion has precisely the expressive power of the relational algebra. The same programming paradigm scales up, yielding query languages for the complex-object model [AB89]. Beyond that, there are, for example, efficient programs for transitive closure and we are also able to write programs that move out of sets, and then perhaps back to sets, as long as we stay within a (quite flexible) type system. The uniform paradigm of the language suggests positive expectations for the optimization problem. In fact, structural recursion yields finer grain programming. Therefore we expect that lower-level and therefore better optimizations will be feasible

    Optimizing and Incrementalizing Higher-order Collection Queries by AST Transformation

    Get PDF
    In modernen, universellen Programmiersprachen sind Abfragen auf Speicher-basierten Kollektionen oft rechenintensiver als erforderlich. Während Datenbankenabfragen vergleichsweise einfach optimiert werden können, fällt dies bei Speicher-basierten Kollektionen oft schwer, denn universelle Programmiersprachen sind in aller Regel ausdrucksstärker als Datenbanken. Insbesondere unterstützen diese Sprachen meistens verschachtelte, rekursive Datentypen und Funktionen höherer Ordnung. Kollektionsabfragen können per Hand optimiert und inkrementalisiert werden, jedoch verringert dies häufig die Modularität und ist oft zu fehleranfällig, um realisierbar zu sein oder um Instandhaltung von entstandene Programm zu gewährleisten. Die vorliegende Doktorarbeit demonstriert, wie Abfragen auf Kollektionen systematisch und automatisch optimiert und inkrementalisiert werden können, um Programmierer von dieser Last zu befreien. Die so erzeugten Programme werden in derselben Kernsprache ausgedrückt, um weitere Standardoptimierungen zu ermöglichen. Teil I entwickelt eine Variante der Scala API für Kollektionen, die Staging verwendet um Abfragen als abstrakte Syntaxbäume zu reifizieren. Auf Basis dieser Schnittstelle werden anschließend domänenspezifische Optimierungen von Programmiersprachen und Datenbanken angewandt; unter anderem werden Abfragen umgeschrieben, um vom Programmierer ausgewählte Indizes zu benutzen. Dank dieser Indizes kann eine erhebliche Beschleunigung der Ausführungsgeschwindigkeit gezeigt werden; eine experimentelle Auswertung zeigt hierbei Beschleunigungen von durchschnittlich 12x bis zu einem Maximum von 12800x. Um Programme mit Funktionen höherer Ordnung durch Programmtransformation zu inkrementalisieren, wird in Teil II eine Erweiterung der Finite-Differenzen-Methode vorgestellt [Paige and Koenig, 1982; Blakeley et al., 1986; Gupta and Mumick, 1999] und ein erster Ansatz zur Inkrementalisierung durch Programmtransformation für Programme mit Funktionen höherer Ordnung entwickelt. Dabei werden Programme zu Ableitungen transformiert, d.h. zu Programmen die Eingangsdifferenzen in Ausgangdifferenzen umwandeln. Weiterhin werden in den Kapiteln 12–13 die Korrektheit des Inkrementalisierungsansatzes für einfach-getypten und ungetypten λ-Kalkül bewiesen und Erweiterungen zu System F besprochen. Ableitungen müssen oft Ergebnisse der ursprünglichen Programme wiederverwenden. Um eine solche Wiederverwendung zu ermöglichen, erweitert Kapitel 17 die Arbeit von Liu and Teitelbaum [1995] zu Programmen mit Funktionen höherer Ordnung und entwickeln eine Programmtransformation solcher Programme im Cache-Transfer-Stil. Für eine effiziente Inkrementalisierung ist es weiterhin notwendig, passende Grundoperationen auszuwählen und manuell zu inkrementalisieren. Diese Arbeit deckt einen Großteil der wichtigsten Grundoperationen auf Kollektionen ab. Die Durchführung von Fallstudien zeigt deutliche Laufzeitverbesserungen sowohl in Praxis als auch in der asymptotischen Komplexität.In modern programming languages, queries on in-memory collections are often more expensive than needed. While database queries can be readily optimized, it is often not trivial to use them to express collection queries which employ nested data and first-class functions, as enabled by functional programming languages. Collection queries can be optimized and incrementalized by hand, but this reduces modularity, and is often too error-prone to be feasible or to enable maintenance of resulting programs. To free programmers from such burdens, in this thesis we study how to optimize and incrementalize such collection queries. Resulting programs are expressed in the same core language, so that they can be subjected to other standard optimizations. To enable optimizing collection queries which occur inside programs, we develop a staged variant of the Scala collection API that reifies queries as ASTs. On top of this interface, we adapt domain-specific optimizations from the fields of programming languages and databases; among others, we rewrite queries to use indexes chosen by programmers. Thanks to the use of indexes we show significant speedups in our experimental evaluation, with an average of 12x and a maximum of 12800x. To incrementalize higher-order programs by program transformation, we extend finite differencing [Paige and Koenig, 1982; Blakeley et al., 1986; Gupta and Mumick, 1999] and develop the first approach to incrementalization by program transformation for higher-order programs. Base programs are transformed to derivatives, programs that transform input changes to output changes. We prove that our incrementalization approach is correct: We develop the theory underlying incrementalization for simply-typed and untyped λ-calculus, and discuss extensions to System F. Derivatives often need to reuse results produced by base programs: to enable such reuse, we extend work by Liu and Teitelbaum [1995] to higher-order programs, and develop and prove correct a program transformation, converting higher-order programs to cache-transfer-style. For efficient incrementalization, it is necessary to choose and incrementalize by hand appropriate primitive operations. We incrementalize a significant subset of collection operations and perform case studies, showing order-of-magnitude speedups both in practice and in asymptotic complexity
    • …
    corecore