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Structural Recursion as a Query Language yVal Breazu-Tannen, Peter BunemanDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia, PA 19104{6389, USAval, peter @cis.upenn.edu Shamim NaqviBELLCORE445 South St.Morristown, NJ 07960{1910, USAshamim@bellcore.comAbstractWe propose a programming paradigm that tries to get close to both the semantic simplicity of rela-tional algebra, and the expressive power of unrestricted programming languages. Its main computationalengine is structural recursion on sets. All programming is done within a \nicely" typed lambda calculus,as in Machiavelli [OBB89]. A guiding principle is that how queries are implemented is as important aswhether they can be implemented. As in relational algebra, the meaning of any relation transformer isguaranteed to be a total map taking �nite relations to �nite relations. A naturally restricted class of pro-grams written with structural recursion has precisely the expressive power of the relational algebra. Thesame programming paradigm scales up, yielding query languages for the complex-object model [AB89].Beyond that, there are, for example, e�cient programs for transitive closure and we are also able towrite programs that move out of sets, and then perhaps back to sets, as long as we stay within a (quiteexible) type system. The uniform paradigm of the language suggests positive expectations for the opti-mization problem. In fact, structural recursion yields �ner grain programming therefore we expect thatlower-level, and therefore better optimizations will be feasible.1 IntroductionApart from its simplicity, the major selling point of the relational model is the availability of simple querylanguages with well-understood properties. Realistic database programming calls, however, for more ex-ibility, and more expressiveness, than relational algebra (say) o�ers. To meet these needs, practical querylanguages add somewhat ad-hoc features (certain aggregate operators, \group-by") and when even this fails,programmers use query languages embedded in general-purpose ones.We see at least two problems with embedded query languages. The �rst problem is the mismatchbetween data models and type systems (the infamous "impedance mismatch" problem). Good progress hasbeen made in overcoming this problem (see for example, Pascal-R, Galileo [Sch77, ACO83]), and in fact,the present paper builds on Machiavelli [OBB89]. But there is also a second problem, which stems from theuniversality of the languages in which we try to integrate database manipulation primitives. Suppose wehave already achevied a smooth integration of the data model in the type system, and consider a functionwhose inputs and output have the type of relations (i.e., set of tuples, notation f�1� � � ���ng ). Thinkingwishfully, call such a function a relation transformer. In relational algebra, the meaning of any relationtransformer is guaranteed to be a total map taking �nite relations to �nite relations. Not so in the powerfullanguages we just mentioned, where potential non-termination will mess up the semantic picture. We canprogram everything, but proving/understanding properties of such programs becomes much more di�cult,and while good optimization techniques that have been developed for relational algebra, it is safe to saythat optimization techniques for relational algebra embedded in a general-purpose programming languageare non-existent (one usually resorts to doing things like: if we are calling a relational expression from withinan iteration, then factor out the call, etc., ). This is X������& (Charybdis).yThis paper has appeared in the proceedings of the 3rd International Workshop on Database Programming Languages,Naphlion, Greece, August 1991. Breazu-Tannen was partially supported by grants ONR NOOO-14-88-K-0634, NSF CCR-90-57570, and ARO DAAL03-89-C-0031PRIME. Buneman was partially supported by grants ONR NOOO-14-88-K-0634 and NSFIRI-86-10617, and by a UK SERC visiting fellowship at Imperial College, London.



Back to ������ (Scylla). Relational algebra has a simple and safe semantics, but where does it fallshort? The main practical problem is that there is no way of moving outside at relations; we cannot expectthe relational algebra to produce a set of sets, an ordered list, or even an integer. In fact a lot of work,under the title of normalization theory, was done to end up with at relations. The \band-aid" approachof throwing in count, average, group-by, etc., is unsatisfactory. On a more conceptual level, relationalalgebra does not \scale-up", and new primitives had to be invented to deal with the complex object model.Even so the main concern in the design of languages for the complex object model, has been absoluteexpressiveness [BK86, HS88, AB89]. The optimization techniques, and the concerns for correctness have yetto be discussed.We will instead put forward a programming paradigm that tries to get close to both the semanticsimplicity of relational algebra, and the expressive power of unrestricted programming languages. Its maincomputational engine is structural recursion on sets. All programming is done within a \nicely" typedlambda calculus, as in Machiavelli [OBB89]. A guiding principle is that how queries are implemented is asimportant as if they can be implemented. To summarize the main advantages:� As in relational algebra, the meaning of any relation transformer is guaranteed to be a total map taking�nite relations to �nite relations. (see [BS91] for the denotational, and operational semantics of suchlanguages, and for reasoning about such programs).� Relational queries have a natural representation using structural recursion. In fact, as we shall see,a naturally restricted class of programs written with structural recursion has precisely the expressivepower of the relational algebra/calculus (section 3).� The same programmingparadigm scales up, yielding query languages for the complex-object model [AB89]� Beyond that, there are, for example, e�cient programs for transitive closure (section 4). Moreover, weare also able to write programs that move out of sets, and then perhaps back to sets, as long as westay within a (quite exible) type system.� The uniform paradigm of the language makes a strong suggestion that the optimization problem canbe studied in such a language. The correspondence between restricted forms of structural recursionand the relational algebra indicates that we can import existing optimization techniques directly intothe language. In fact, we expect that lower-level, and therefore better optimizations will be feasible.More general possibilites are suggested by lazy evaluation.� The same programmingparadigm scales up, yielding query languages for the complex-object model [AB89](section 4).� Finally, we believe that in this paradigm, particularly because of the good �t of the type system andthe data model, the database manipulations can be better integrated with other programming features,even references and modules.Concretely, we will use the following programming constructs.fun h(;) = ej h(fxg) = f(x)j h(S1 [ S2) = u(h(S1); h(S2))In combinator style, we will write �(e; f; u) for h. The typing is �(e; f; u) : f�g ! � provided that e : � ,f : � ! � , and u : � � � ! � . fun g(;) = ej g(Insert(x; S)) = i(x; g(S))In combinator style, we will write 	(e; i) for g. The typing is 	(e; i) : f�g ! � provided that e : � , andi : �� � ! � .Intuitively, these de�nitions are based on the fact that all �nite subsets of a set can be generatedeither by repeated unions starting from singleton sets (and add the empty set, which is also �nite) or byrepeated insertions of elements, starting from the empty set. In fact, these two kinds of de�nitions are not



independent, one can express each by the other (and the correspondence extends to the associated reasoningby structural induction) as shown in [BS91]. There is however a fundamental subtlety: the meaning of h isuniquely de�ned by either set of clauses above, but in order for this meaning to exist, we must require thatthe meanings of u and e form a commutative-idempotent monoid on the range of the meaning of �(e; f; u),respectively that on the range of the meaning of 	(e; i), the meaning of i satis�es [BS91] (with a slight abuseof notation that confuses syntax and semantics)i(x; i(y; S)) = i(y; i(x; S)) (1)i(x; i(x; S)) = i(x; S) (2)Using an obvious analogy, we will call condition (1) commutativity, and condition (2) idempotence. Suchconditions make programming with sets more challenging, but also more interesting. Moreover, in ourexperience, veri�cation of these conditions is often closely related to proving the correctness of the programsin question.As an example, consider a program that takes a set and a linear order and returns a strictly ordered listof the elements of the set. We can write this with either one of the constructs presented above. With the�rst construct, the operation u is merging of strictly ordered lists; this is clearly associative, commutativeand idempotent, and nil (the empty list) is an identity for merging. With the second construct, i is insertionin a strictly ordered list, which satis�es the equations (1) and (2). Both implementations use equality testsfor the elements of the set, and thus are restricted to sets over equality types.Throughout this paper we shall write our examples without type decorations/tags on primitive con-structs, but one must assume that the decorations are there. These decorations can always be reconstructedfrom the context. For more clarity, we will occasionally specify the type of expressions. A more subtleproblem is whether our primitives can be typed in a polymorphic manner (thus leaving the type decorationso�). This is particularly challenging in the case of tuples/records (see [OB88] and references therein). Oneexample of a rich polymorphic type system for relational databases is to be found in Machiavelli [OBB89],and its ideas can be equally successfully applied to the language we consider here. To improve readabilitywe also occasionally write binary functions in in�x notation (as we did with union).2 First-order relational queriesWe begin with the simple queries that are speci�ed using disjunction, F _ G (provided F and G haveexactly the same free variables), conjunction, F ^ G (provided F and G have no common free variables),and existential quanti�cation 9x:F . In relational algebra, these are implemented via union, cartesianproduct (as de�ned in relational algebra, not in set theory! also known as disjoint join) and projection.Union is a primitive in our language too. To show how to implement the others with structural recursionwe make the abbreviation �[(f) = �(;; f;[) where f : � ! fg . This is correctly de�ned since [ and ;form a commutative-idempotent monoid. Moreover, we will usek : (�1 � � � � � �m) � (�1 � � � � � �n)! �1 � � � � � �m � �1 � � � � � �nfor tuple concatenation and�I : �1 � � � � � �n ! �i1 � � � � � �ik where I = (i1; : : : ; ik)for tuple projection.De�ne map f = �[(�x:ff(x)g) map : (� ! �) ! f�g ! f�gpairwith S r = map (�s:rks) Spairwith : f�1 � � � � � �ng ! �1 � � � � � �m ! f�1 � � � � � �m � �1 � � � � � �ngR� S = �[(pairwith S) R�I(R) = map �I RLooking at query speci�cation from the vantage point provided by a language like the one we areconsidering, we naturally take a more computational view of query safety. For example, since we do not



want to rule out working with databases of algorithms, i.e., sets of tuples of functions, we regard equalityas domain speci�c. This is why we have isolated above the disjoint join, which does not require equalityon the domain. The query speci�cations we have considered so far do not allow constructions like R(x; x),R(x; 3) and R(x; y) ^ R(y; z) . Note, however, that these formulas are equivalent to R(x; y) ^ x = y ,9y:R(x; y) ^ y = 3 , and R(x; y) ^ R(w; z)^w = y . We take the view that \variable coincidence" which isso easily expressed in logical languages, but can be|depending on the domain|nontrivial computationally,is treated explicitly via equality in the domain. We consider formulas like y = 3 , and w = y to be domainspeci�c, and we will perform a conceptual domain abstraction, by encapsulating everything that is speci�cto it in formulas of a domain logic. 1 We do not care really what form this logic takes, but we care that onlyformulas de�ning computable predicates on the domain be used. If F is a query speci�cation, ' is a formulain the associated domain logic, and all the free variables of ' are already in F (are limited), then F ^ ' isa query speci�cation. In relational algebra this corresponds to selection, and in our language selection it isimplemented by�lter p = �[(�r: if p(r) then frg else ;) �lter : (� ! bool) ! f�g ! f�g�p(R) = �lter p Rwhere R implements F and p is the implementation of the domain speci�c selection formula '.One can conceive of more exible ways to limit the variables of the selection formula. For example,9y:R(x; y)^y > 1^z = y�1 is perfectly safe. We note however, that this only amounts to a little additionalcomputation on the query R(x; y) ^ y > 1 , computation that is easily expressible in our language.What about negation (corresponding in relational algebra to di�erence)? Implementing it requiresmembership testing, therefore equality. The ability to specify negation in queries is therefore domain speci�c(we can't, for example, do it in a database of algorithms.) To emphasize this point, we would like to see thespeci�cation of negation as a particular case of the domain speci�c selection that we just mentioned. Thisfollows, if we regard membership as an aggregate operator. In general, aggregate operators map relationsto other types, related to the domain. Hence, aggregate operators are a kind of \feedback" to selection,allowing the relations to contribute to the domain speci�c logic. With thisR n S = ��r::(member S r)(R)To implement member : f�g ! (� ! bool ) we use the abbreviation �_(Q) = �(false; Q;_) whereQ : � ! bool . This is again correctly de�ned since _ and false form a commutative-idempotent monoid.Then member S r = �_(�s:s = r) S3 Structural recursion and the relational algebraWe have seen in the previous section that only a limited use of structural recursion was needed to implementthe operators of the relational algebra. The empty set, the union, and the relation variables (i.e., variables oftype set of tuples) are common to the two formalisms. The implementation of (disjoint) join and projectionused only �[ and concatenation and projection of tuples. Selection used in addition if-then-else, and �nallydi�erence used �_ and equality of tuples.We will show in this section that, in fact, this is a tight correspondence: the project-join algebra,the positive relational algebra (add selection) and the full relational algebra are, respectively, semanticallyequivalent to certain sublanguages of our language, organized around the operations mentioned above. Inorder to perform this translation uniformly we must augment the relational algebra with relation and tuplevariables. Its syntax is given by:A ::= v j ; j f�g j A [ A j �I(A) j A �A j ��t:PA j A n Awhere v ranges over relation variables, and t ranges over tuple variables. The project-join algebra is thesublanguage of A generated without selection and di�erence; and the positive algebra is the sublanguagegenerated without di�erence.1This leads to the interesting issue of the relationship between safety conditions on one hand, and parametric polymorphicdata abstraction on the other hand.



First, we give the sublanguage of our typed calculus with \union-recursors", which corresponds to theproject-join algebra. The syntax of tuple expressions is given by (t ranges over tuple variables)� ::= t j �k� j �I(� )The expressions in this �rst sublanguage are given by (v ranges over relation variables)E ::= v j ; j f�g j E [ E j �[(�t:E) EAll these expresions are assumed to be well-typed according to the conventions stated before.We will now give a translation that associates to each expression E in the sublanguage an expression Ein the project-join algebra (enriched with singleton sets of tuple variables).v = v; = ;ftg = ftgf�1k�2g = f�1g � f�2gf�i(� )g = �i(f�g)E1 [E2 = E1 [E2�[(�t:E1) E2 = E1[E2=ftg]In the last of these, E1[E2=ftg] means substitute E2 for all occurences of the subexpression ftg in E1.It is readily checked that the translation is well-de�ned, that expressions without free tuple variables aretranslated into expressions without free tuple variables, and that the free relation variables are exactlypreserved by the translation.An obvious property of this translation is that if there are no free tuple variables in E, then there areno tuple variables in E, i.e. the result of translating a combinator (with respect to tuple variables) is anexpression in what is normally regarded as relational algebra. To show that, in general, this translationpreserves meaning we have to describe the meaning of expressions with free (relation or tuple) variables,so we take their meanings are functions from valuations (environments) for these variables to values. Bythinking of the semantic domain as the domain of such functions on relation variables, we need not worryabout these variables, since they cannot get bound in these restricted languages. However, because tuplevariables get bound, we must, as usual, prove something about expressions with free tuple variables.Lemma 3.1 For any tuple variable environment �, and any expression E[[E]]� = [[E]]�Proof sketch. By induction on the structure of E. The only non-trivial step involves the translationof �[(�t:E1) E2 and follows from two equalities. First, for any E1 and E2[[�[(�t:E1) E2]]� =[f [[E1]]�[r=t] j r 2 [[E2]]� gwhich is shown by induction on E2. Second, for any two expressions A1; A2 in the project-join algebra(enriched with singleton sets of tuple variables)[[A1[A2=ftg]]]� =[f [[A1]]�[r=t] j r 2 [[A2]]� gSand this is shown by induction on A1. (Here, �[r=t] is the environment which maps t to r and all othertuple variables s to �(s).) 2In section 2, we have shown how to translate expressions of the join-project algebra, without freetuple variables into E-expressions without free tuple variables. That translation is easily shown to preservemeaning. Putting the two translations together we obtainTheorem 3.2 E-expressions without free tuple variables can be translated into semantically equivalent ex-pressions in the project-join algebra, and conversely.



Note that the translations are not, in general inverses. Also note that the translations are not dependenton the relations being at: the tuple expressions are polymorphic in the types of the components.We now add conditionals to the language of E-expressions, and show that this corresponds to addingselection to the project-join algebra. We de�ne the larger sublanguageE 0 ::= v j ; j f�g j E 0 [ E 0 j �[(�t:E 0) E 0 j if P then E 0 else E 0where P ranges over predicate expressions, of which we need stipulate only that they be of type bool, thattheir free variables be tuple variables, and that if P is a predicate, so is its negation, :P .Since if P then E1 else E2 is equivalent to (if P then E1 else ; ) [ (if :P then E2 else ; ), itis su�cient to concern ourselves with expressions of the form if P then E else ; . We will translate theE 0-expressions into the expressions of the positive relational algebra (the project-join algebra extended withselection) again enriched with singleton sets of tuple variables.The translation is as before, with the addition of the translation of expressions of the form if P then E else ; .Suppose the free (tuple) variables of P are t1; : : : ; tk. De�neif P then E else ; = �IE (��t:P (E � ft1g � � � � � ftkg)where IE and P are de�ned as follows. Let E be of type f�1 � � � � � �mg and then let tE be a tuplevariable of type �1 � � � � � �m. Then IE is the index vector such that tE = �IE (tEkt1k � � �ktk) . Moreover,P = P [�I1(t)=t1; : : : ; �Ik(t)=tk] where Ii is the index vector such that ti = �Ii(tEkt1k � � �ktk) .As a result of this translation, ��t:P is, as required by the algebra, de�ned over a combinator. Thismeans that there are no free variables in T (P ) to interfere with the substitution that occurs in the translationof �[(: : : ; : : :). Thus we are in a position to use our existing machinery to establish the equivalence of ourlanguage E 0 with the relational algebra extended with expressions of the form ��t:P (A). We haveTheorem 3.3 E 0-expressions without free tuple variables can be translated into semantically equivalent ex-pressions in the positive relational algebra, and conversely.Note that, provided our predicates contain equality, intersection can be de�ned asE1 \E2 = �[(�t1:�[(�t2:if t1 = t2 then ft1g else ; ) E2) E1This is the �rst point in our discussion of the equivalence of languages that we need to assume equality onthe underlying domain.Our selection predicates have so far been limited to boolean expressions built up from predicates ontuples. We now consider what happens if we allow predicates on sets, i.e. we add to our language E 0predicates using the \or-recursor" �_(�t:P ) E. From the equivalence of this expression (using the obvioussemantics) and : Empty(�[(�t:if P then ftg else ; ) E)we see that the or-recursor buys us nothing more than an emptiness test, and we may as well considerextending the predicates in our language E 0 with expressions of the form Empty(E), which now makes thelanguage non-monotonic.Note that, if nothing else, the type system of our language dictates that the only place a predicate suchas Empty(E) can occur is within a conditional. The translation of the simplest conditional containing anemptiness test is given by if Empty(E1) then E2 else ; = E2 n �I2(E2 �E1)where I2 is the vector of the �rst arity(E2) indices. It is immediate that this translation preserves meaning.To complete the translation we must now work inductively on the structure of the predicate in a conditional,for example: if P1 ^ P2 then E else ; = if P1 then E else ; \ if P2 then E else ;if :P then E else ; = E n if P then E else ;: : :We therefore obtain the main and �nal result of this section:Theorem 3.4 E 0-expressions, augmented with or-recursors in their predicates, and without free tuple vari-ables can be translated into semantically equivalent expressions in the relational algebra, and conversely.



4 Complex objects, transitive closure, and groupingWithout going into the details of the complex object model, we remark that it makes a good match withour language's type system [BJO89, OBB89]. In this section we will �rst show that our language is at leastas expressive as Abiteboul and Beeri's algebra (and therefore calculus) for complex objects [AB89]. Wehave already shown how to express cartesian product and di�erence(section 2). The Abiteboul-Beeri algebrahas an operation called replace which combines the relational algebra's selection and projection operations,moreover allowing algebraic operations to be applied recursively to subobjects. We implement it simply asreplace p f S = map f (�lter p S)The ability to apply algebraic operations recursively to sub objects is provided automatically by our typesystem: f and p can at their turn contain other program constructs.Finally, the Abiteboul-Beeri algebra features two truly higher-order operations: powerset (self-explanatory)and collapse which maps a set of sets into their union. We implement these as follows.collapse = �[(�S:S)collapse : ff�gg ! f�gpowerset = �(f;g ; �x:f;g [ ffxgg ; �(S1; S2): map [ cartprod(S1; S2))powerset : f�g ! ff�ggTo see that the commutative-idempotent monoid requirement is sati�ed for the de�nition of powerset, notethat semantically map [ cartprod(S1; S2) = fA1 [A2 j A1 2 S1 ; A2 2 S2 gAbiteboul and Beeri show that this (quite small) collection of operations is equivalent to a powerful higher-order logical calculus of nested tuples and sets. Interestingly, they also show that transitive closure (which,as shown by Aho and Ullman [AU79], cannot be implemented in relational algebra), can, in fact, be speci�edas a query in this calculus: it is the least transitive relation containing the given one among all subsetsof the (cartesian) squaring of the set of all elements that occur in the relation. Since in our language wecan implement the Abiteboul-Beeri algebra, we can also implement their calculus, hence transitive closure.Unfortunately, it is clear that the resulting algorithm is severely ine�cient. However, we will show next thatthe language we consider can express a much better algorithm for transitive closure, using structural recursionon the empty-insert presentation of sets.First we will need relation composition, which is in fact expressiblein relational algebra R�S = �(1;4)(��t:�2(t)=�3(t)(R�S)) . Now, consider i : (���)�f���g ! f���gde�ned by i(r; T ) = frg [ T [ frg � T [ T � frg [ T � frg � Tand then fun TC (;) = ;j TC (Insert(s;R)) = i(s;TC (R))We will have to verify that this is correctly de�ned, that is, that the semantics of i satis�es the commutativityand idempotence conditions (see section 1) on the right set of values, and moreover, that the meaning of TCis in fact the transitive closure operator. In what follows we will perpetrate a slight abuse of notation bywriting semantic proofs of semantic facts in programming syntax. (In fact, the proofs for the next lemmacan all be formalized in syntax too, by using one of the logics described in [BS91].) We still need one morenotation: the semantic transitive closure is denoted by R 7�! R+ .Lemma 4.1 1. ; is transitive. If T is transitive then i(r; T ) is also transitive.2. Let T be transitive. Then i(r; i(s; T )) = i(s; i(r; T )) and i(r; i(r; T )) = i(r; T ) .3. If T is transitive then i(r; T ) = (frg [ T )+ .4. i(r;R+) = (frg [R)+ .



The key observation in proving part 1 is the following simple fact: for any R, fsg �R � fsg � fsg . Part 2,which implies that TC is correctly de�ned, (working with arange consisting only of transitive relations), isshown using part 1. 2 Part 3 follows immediately from part 1, and part 4 from part 3.Part 4 of the lemmais the essential step in showing by structural induction on the empty-insert presentation of sets, that for anyR, TC (R) = R+ . This algorithm resembles Warshall's algorithm, except that we are doing edge insertionrather than node insertion. To actually obtain Warshall's algorithm, suppose we are given a set of nodesV : f�g and a set of edges E : f�� �g.fun W (;) = Ej W (Insert(v;A)) = W (A) [ W (A) � fhv; vig �W (A)One can show that W is correctly de�ned and that for any A � V , W (A) is the set of pairs of nodeswhich are connected by paths whose intermediate nodes all belong to A. It follows that W (V ) gives thedesired transitive closure. Warshall's algorithm runs in O(n3) time while the edge insertion algorithm runs inO(en2) time(n is the number of nodes and e is the number of edges).In any case, these are e�cient algorithmsfor transitive closure (compare with the complex object algebra query mentioned before). In the spirit ofWarshall's algorithm, one can also represent Floyd's shortest paths algorithm.Abiteboul and Beeri also showthat their calculus (and algebra) can simulate grouping which is an operation akin to the one obtaining aset-valued function out of a relation. Given a complex object R : f�1 � �2g , and a \domain" for its �rstprojection, i.e., D : f�1g such that �1(R) � D , grouping returns the complex object of type f�1�f�2ggwhose meaning is [[grouping(D;R)]] = fhz; T i j z 2 D and T = fy j hz; yi 2 RggAggregation by groups is a useful feature, especially in conjunction with other aggregate operators. It issomewhat ironical that whereas query languages are set oriented, the relational data model deals only withat relations. In many applications, one needs to construct a set of elements satisfying certain properties(e.g., all parts supplied by a supplier), to be subsequently manipulated by some computation (e.g.,�nd totalcost of all parts used in a composite part). Indeed, the plethora of "explosion" diagrams in any industrialcatalog, points to the ever present need for such an operation. All practical query languages introduce agrouping operation, and this operation plays a central role in LDL [NT89], which is based on a complexobject model. As in the case of transitive closure we give a direct implementation of grouping, which avoidsthe use of powerset. To do so, �rst we de�nefun gD(;) = D � f;gj gD(Insert(hx; yi; S)) = map f gD(S)where f stands for �hz; T i: if z = x then hz; Insert(y; T )i else hz; T iand then we take grouping(D;R) = gD(R) . It is not hard to see that this de�nition is correct (that is, thecommutativity and idempotence conditions are satis�ed), since the range of gD here consists only of graphsof functions D �! f�2g;. In connection with other work [BNST87], we remark that the grouping operatoralong with the empty-insert presentation of sets gives interesting expressions for negation, di�erence andunion ofsets.5 Pump, partition, and homFAD [BBKV88], LDL [NT89] and Machiavelli [OBB89] all have a construct related to structural recursionon sets. FAD and Machiavelli come closest with the operators pump, respectively hom, which are equivalentto the following fun h(;) = ej h(fxg) = f(x)j h(S1 [ S2) = u(h(S1); h(S2)) where S1 \ S2 = ;2For all we know, i may be commutative and idempotent on all relations, not only on the transitive ones, but checking thisfact seems to be better left to a machine! The restriction to transitive relations is su�cient for our purposes.



and where u is not required to be idempotent (but, of course, u and e must form a commutative monoid).LDL de�nes a predicate partition(S1; S2; S3) which imposes the disjointness of S1 and S2. For exampleconsider the rules for computing the sum of a set of integers:sum(;; 0) :� :sum(fng; n) :� :sum(S; n) :� partition(S1; S2; S) ; sum(S1; n1) ; sum(S2; n2) ; n = n1 + n2 :This style of programming was found to be very useful in de�ning aggregates, such as sum, count, averageetc., . Pump, hom, and LDL constructs based on partition as above, have a natural denotational semantics.The problem is that their operational semantics is quite contrived. In the case of pump and hom, theevaluator must evaluate sets eagerly and then do time consuming dynamic tests for equality of values. Ofcourse,this rules out working with sets of functions for example. Even for sets of, say, integers, mapping afunction over a disjoint union may yield a non-disjoint one, which fed into hom would yield a run-time error.One would like to obtain statically an assurance that the program goes through, but it seems that only afew very simple programs can be shown correct in this sense. The operational semantics of partition is suchthat all possible partitions are generated (whereas any partition will do).We can, however, express the same functions without using such problematic constructs, and by stayingwithin the framework we have described. One way of doing this would be to replace the de�nition of h abovewith 3 fun h(;) = ej h(Insert(x; S)) = if x 2 S then h(S) else u(f(x); h(S))A cleaner method is to convert sets to bags and then to do structural recursion on bags. (see [BS91]for such recursion constructs). Indeed, this is suggested by the fact that such programs plus droppingthe disjointness/partition conditions work just �ne for computing aggregate operators on bags. It is thensu�cient to program the fundamental function that coerces a set into a bag. To do this by structuralrecursion we need the appropriate commutative-idempotent monoid structure on bags. This is given bythe \max" operation, and implementing it requires that the elements of the underlying type have equality.We would like to note, however, that perhaps one of the most interesting features about using structuralrecursion on sets as advocated in this paper (with idempotent operations) is the ability to program exiblywith objects which lack equality (such as relations of algorithms) while this is quite restricted in the otherlanguages mentioned.6 Further researchWe expect that the linguistic techniques proposed here will also be applicable in dealing with incompleteobjects [INK91], a data model that captures the ideas of incomplete speci�cations. In particular, we areinterested in studying the semantic properties of or-objects as sets of possible worlds.The transitive closure algorithms (section 4) seem to underscore the ability of structural recursion torepresent e�cient interesting algorithms. We intend to investigate other such representations. In addition totransitive closure, and generalizing that idea, Abiteboul and Beeri show that their complex object calculus cansimulate (strati�ed) recursive queries. We conjecture that their calculus should be able to simulate structuralrecursion, hence that their calculus and our language are equivalent in terms of absolute expressiveness. Oneof the main points of this paper, however, is that structural recursion may allow the implementation ofbetter algorithms (for the same functionality). In particular, we intend to investigate ways of transformingrecursive queries into e�cient programs with structural recursion. Our paper demonstrates that structuralrecursion yields �ner grain programming than relational or complex object algebras. This should allow forimporting all classical query optimization techniques, and, in principle, for more optimizations. Searchingfor such optimizations is perhaps the most important topic for further research here. Optimizations could3This is apparently a more general form of de�nition than the one we used so far, since in addition to h(S), we also haveseparate occurrences of S on the right hand side of the second clause. The di�erence is similar to the one between iteration andprimitive recursion in de�ning arithmetic functions. Kleene's technique for representing the predecessor function in the lambdacalculus, which uses pairing, can also be applied here and we can express this more exible form of de�nition in terms of theone we gave originally.



be based on semantic equalities such as�lter p (�[(�r:S) R) = �[(�r: �lter p S) R (3)�[(�r:S) (�lter p R) = �[(�r: if p(r) then S else ;) R (4)For example, using these identities, we can perform the following classic optimization. Using (3) twice�p(R� S) = �lter p (�[(�r: �[(�s:frksg) S) R) = �[(�r: �[(�s: �lter p frksg) S) RNow, suppose that p only test the components of rks which are in s, for example, r : �1 � � � � � �m , s :�1 � � � � � �n and p is �t:�m+k(t) = 0 . Then, taking p0 to be �s:�k(s) = 0 , the expression is furtherequivalent to �[(�r: �[(�s: if p0(s) then frksg else ;) S) R . Using (4) we get�[(�r: �[(�s:frksg) (�lter p0 S)) R = R� �p0(S)which is cheaper to compute than �p(R� S) .Another example would be to replace �[(�r: map f S) R with the equivalent map f (�[(�r:S) R) .The following identity may also yield optimizations�[(�s:T ) (map f R) = �[(�r: T [f(r)=s]) RClearly, more work is needed, especially in investigating more general constructs than �[. In a di�erentvein, we intend to investigate optimizations that would result from a lazyevaluation of set expressions.References[AB89] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complexobjects.Technical Report, INRIA, 1988.[ACO83] Albano. A., L. Cardelli, and R. Orsini.Galileo: A strongly typed, Interactive Conceptual Language.Technical Report, Bell Laboratories, Bell Telephone Laboratories, Internal Technical documentServices, Murray Hill 1b-509, NJ, USA, 1983.[AU79] A. Aho and J. Ullman.Universality of data retrieval languages. In Proceedings of POPL, 1979.[BBKV88] F. Bancilhon, T. Briggs, S. Khosha�an, and P. Valduriez.FAD, a powerful and simple databaselanguage. In Proc. Intl. Conf. on Very Large Data Bases, pages 97{105, 1988.[BJO89] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize relational databases.Theoretical Computer Science, To Appear, 1989.Available as a technical report from Departmentof Computer and Information Science, University of Pennsylvania.[BK86] F. Bancilhon and S. Khosha�an. A calculus for complex objects. In Proc. ACM Symposium onPrinciples of Database Systems, 1986.[BNST87] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set constructors in a logic database language. InProceedings of PODS, 1987.Full paper to appear in Journal of Logic Programming.[BS91] V. Breazu-Tannen and R. Subrahmanyam.Logical and computational aspects of programmingwith lists/bags/sets. In Proceedings of ICALP, 1991.To appear.[HS88] R. Hull and J. Su. On the expressive power of database queries with intermediate types. InProceedings of PODS, 1988.[INK91] T. Imielinski, S. Naqvi, and Vadaparty K. Incomplete objects|a data model for design andplanning applications. In Proceedings of SIGMOD, 1991.To appear.[NT89] S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Computer SciencePress, 1989.



[OB88] A. Ohori and P. Buneman.Type inference in a database programming language. In Proc. ACMConference on LISP and Functional Programming, pages 174{183, Snowbird, Utah, July 1988.[OBB89] A. Ohori, P. Buneman, and V. Breazu-Tannen.Database programming in Machiavelli { a poly-morphic language with static type inference. In Proceedings of the ACM SIGMOD conference,pages 46{57, May { June 1989.[Sch77] J.W. Schmidt. Some high level language constructs for data of type relation.ACM Transactionson Database Systems, 5(2), 1977.


