173,729 research outputs found

    Machining feature-based system for supporting step-compliant milling process

    Get PDF
    STEP standards aims at setting up a standard description method for product data and providing a neutral exchanging mechanism that is independent of all the information processing systems for product information model. STEP Part 21 is the first implementation method from EXPRESS language and implemented successfully in CAD data. However, this text file consists of purely geometrical and topological data is hardly to be applied in machining process planning which requires machining features enriched data. The aim of this research is developing a new methodology to translate the EXPRESS language model of CAD STEP data into a new product data representation and enriched in machining features which is more beneficial to machining process planning. In this research, a target Database Management System (DBMS) was proposed for developing this system by using its fourth-generation tools that allow rapid development of applications through the provision of nonprocedural query language, reports generators, form generators, graphics generators, and application generators. The use of fourth-generation tools can improve productivity significantly and produce program that are easier to maintain. From this research, a new product data representation in a compact new table format is generated. Then this new product data representation has gone through a series of data enrichment process, such as normal face direction generation, edge convexity/concavity determination and machining features with transition feature recognition. Lastly, this new enriched product data representation is verified by generating to a new STEP standard data format which is according to ISO1030-224 standard format and providing an important part of solution for supporting STEP-compliant process planning and applications in milling process

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Experimental and simulation analysis for performance enhancement of elliptical savonius wind turbine by modifying blade shapes

    Get PDF
    Savonius turbines are drag-based rotors which operate due to a pressure difference between the advancing and retreating blades. After going through an exhaustive literature review, it was realized that the Savonius wind turbines are an applicable option at low wind speed areas, where the counterpart of these turbines cannot work efficiently. Nevertheless, the existing design is still under research to make it more applicable in urban areas. Therefore, the research objective was to develop and test an elliptical Savonius wind turbine to improving its performance in terms of power and torque coefficients by modifying blade shapes and overlap ratio. In the beginning, a series of 2D unsteady simulations (CFD-Fluent version 19.1) of the Savonius elliptical turbine has been performed to study the overlap ratio of blades and the effect of the turbulence models. Conventional elliptical Savonius turbine was modified by changing the overlap ratio from the value (OR=0.15) to (OR=0.2) and called as the Model-A. Then, the concave surface of the blade Model-A was modified (as zigzag shape) and called as Model-B. The blade shape of the Model-B was modified by adding bypass channels for each blade to creating new configuration was called the Model-C. The experimental work begins with the manufacturing of the models (A, B and C) of the blade using 3D printing technology. Models were tested by the wind tunnel in Aerodynamic laboratory (UTHM) with four cases of wind velocity. 2D simulation result for Model-A at OR= 0.2, where the increase in maximum power coefficient value obtained was 3.85% and 7.69% compared to overlap ratio (0.15 and 0.1), respectively. The result of the experimental test was obtained the maximum power coefficient (0.296, 0.292, 0.291, and 0.295) at wind velocity (6 m/s, 8 m/s, 9 m/s, and 10 m/s), respectively for Model-B. The Model-C result in the maximum power coefficient (0.28) compared with Model-A (0.26). The 3D unsteady simulation also has been done to visualisation the behaviour of flow around Model-B and it show a good agreement with experimental test results

    A tool-mediated cognitive apprenticeship approach for a computer engineering course

    Get PDF
    Teaching database engineers involves a variety of learning activities. A strong focus is on practical problems that go beyond the acquisition of knowledge. Skills and experience are equally important. We propose a virtual apprenticeship model for the knowledge- and skillsoriented Web-based education of database students. We adapt the classical cognitive apprenticeship theory to the Web context utilising scaffolding and activity theory. The choice of educational media and the forms of student interaction with the media are central success criteria
    • 

    corecore