7,704 research outputs found

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    Get PDF
    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations from arbitrary real-valued biometric modalities. In this paper, we propose a pairwise adaptive phase quantization (APQ) method, together with a long-short (LS) pairing strategy, which aims to maximize the overall detection rate. Experimental results on the FVC2000 fingerprint and the FRGC face database show reasonably good verification performances.\ud \u

    Hybrid Template Update System for Unimodal Biometric Systems

    Full text link
    Semi-supervised template update systems allow to automatically take into account the intra-class variability of the biometric data over time. Such systems can be inefficient by including too many impostor's samples or skipping too many genuine's samples. In the first case, the biometric reference drifts from the real biometric data and attracts more often impostors. In the second case, the biometric reference does not evolve quickly enough and also progressively drifts from the real biometric data. We propose a hybrid system using several biometric sub-references in order to increase per- formance of self-update systems by reducing the previously cited errors. The proposition is validated for a keystroke- dynamics authentication system (this modality suffers of high variability over time) on two consequent datasets from the state of the art.Comment: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2012), Washington, District of Columbia, USA : France (2012

    Performance Evaluation of Biometric Template Update

    Full text link
    Template update allows to modify the biometric reference of a user while he uses the biometric system. With such kind of mechanism we expect the biometric system uses always an up to date representation of the user, by capturing his intra-class (temporary or permanent) variability. Although several studies exist in the literature, there is no commonly adopted evaluation scheme. This does not ease the comparison of the different systems of the literature. In this paper, we show that using different evaluation procedures can lead in different, and contradictory, interpretations of the results. We use a keystroke dynamics (which is a modality suffering of template ageing quickly) template update system on a dataset consisting of height different sessions to illustrate this point. Even if we do not answer to this problematic, it shows that it is necessary to normalize the template update evaluation procedures.Comment: International Biometric Performance Testing Conference 2012, Gaithersburg, MD, USA : United States (2012
    • 

    corecore