2,415,530 research outputs found
Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems
In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge
Time Series of Count Data : Modelling and Estimation
This paper compares various models for time series of counts which can account for discreetness, overdispersion and serial correlation. Besides observation- and parameter-driven models based upon corresponding conditional Poisson distributions, we also consider a dynamic ordered probit model as a flexible specification to capture the salient features of time series of counts. For all models, we present appropriate efficient estimation procedures. For parameter-driven specifications this requires Monte Carlo procedures like simulated Maximum likelihood or Markov Chain Monte-Carlo. The methods including corresponding diagnostic tests are illustrated with data on daily admissions for asthma to a single hospital. --Efficient Importance Sampling,GLARMA,Markov Chain Monte-Carlo,Observation-driven model,Parameter-driven model,Ordered Probit
Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
In this paper the difficult problem of how to legitimisedata-driven hydrological models is addressed using an example of a simple artificial neural network modelling problem. Many data-driven models in hydrology have been criticised for their black-box characteristics, which prohibit adequate understanding of their mechanistic behaviour and restrict their wider heuristic value. In response, presented here is a new generic data-driven mechanistic modelling framework. The framework is significant because it incorporates an evaluation of the legitimacy of a data-driven model’s internal modelling mechanism as a core element in the modelling process. The framework’s value is demonstrated by two simple artificial neural network river forecasting scenarios. We develop a novel adaptation of first-order partial derivative, relative sensitivity analysis to enable each model’s mechanistic legitimacy to be evaluated within the framework. The results demonstrate the limitations of standard, goodness-of-fit validation procedures by highlighting how the internal mechanisms of complex models that produce the best fit scores can have lower mechanistic legitimacy than simpler counterparts whose scores are only slightly inferior. Thus, our study directly tackles one of the key debates in data-driven, hydrological modelling: is it acceptable for our ends (i.e. model fit) to justify our means (i.e. the numerical basis by which that fit is achieved)
- …
