8 research outputs found

    Temperature Variation Operation of Mixed-VT 3T GC-eDRAM for Low Power Applications in 2Kbit Memory Array

    Get PDF
    Embedded memories were once utilized to transfer information between the CPU and the main memory. The cache storage in most traditional computers was static-random-access-memory (SRAM). Other memory technologies, such as embedded dynamic random-access memory (eDRAM) and spin-transfer-torque random-access memory (STT-RAM), have also been used to store cache data. The SRAM, on the other hand, has a low density and severe leakage issues, and the STT-RAM has high latency and energy consumption when writing. The gain-cell eDRAM (GC-eDRAM), which has a higher density, lower leakage, logic compatibility, and is appropriate for two-port operations, is an attractive option. To speed up data retrieval from the main memory, future processors will require larger and faster-embedded memories. Area overhead, power overhead, and speed performance are all issues with the existing architecture. A unique mixed-V_T 3T GC-eDRAM architecture is suggested in this paper to improve data retention times (DRT) and performance for better energy efficiency in embedded memories. The GC-eDRAM is simulated using a standard complementary-metal-oxide-semiconductor (CMOS) with a 130nm technology node transistor. The performance of a 2kbit mixed-V_T 3T GC-eDRAM array were evaluated through corner process simulations. Each memory block is designed and simulated using Mentor Graphics Software. The array, which is based on the suggested bit-cell, has been successfully operated at 400Mhz under a 1V supply and takes up almost 60-75% less space than 6T SRAM using the same technology. When compared to the existing 6T and 4T ULP SRAMs (others' work), the retention power of the proposed GC-eDRAM is around 80-90% lower

    Design techniques for dense embedded memory in advanced CMOS technologies

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2012. Major: Electrical Engineering. Advisor: Chris H. Kim. 1 computer file (PDF); viii, 116 pages.On-die cache memory is a key component in advanced processors since it can boost micro-architectural level performance at a moderate power penalty. Demand for denser memories only going to increase as the number of cores in a microprocessor goes up with technology scaling. A commensurate increase in the amount of cache memory is needed to fully utilize the larger and more powerful processing units. 6T SRAMs have been the embedded memory of choice for modern microprocessors due to their logic compatibility, high speed, and refresh-free operation. However, the relatively large cell size and conflicting requirements for read and write make aggressive scaling of 6T SRAMs challenging in sub-22 nm. In this dissertation, circuit techniques and simulation methodologies are presented to demonstrate the potential of alternative options such as gain cell eDRAMs and spin-torque-transfer magnetic RAMs (STT-MRAMs) for high density embedded memories.Three unique test chip designs are presented to enhance the retention time and access speed of gain cell eDRAMs. Proposed bit-cells utilize preferential boostings, beneficial couplings, and aggregated cell leakages for expanding signal window between data `1' and `0'. The design space of power-delay product can be further enhanced with various assist schemes that harness the innate properties of gain cell eDRAMs. Experimental results from the test chips demonstrate that the proposed gain cell eDRAMs achieve overall faster system performances and lower static power dissipations than SRAMs in a generic 65 nm low-power (LP) CMOS process. A magnetic tunnel junction (MTJ) scaling scenario and an efficient HSPICE simulation methodology are proposed for exploring the scalability of STT-MRAMs under variation effects from 65 nm to 8 nm. A constant JC0*RA/VDD scaling method is adopted to achieve optimal read and write performances of STT-MRAMs and thermal stabilities for a 10 year retention are achieved by adjusting free layer thicknesses as well as projecting crystalline anisotropy improvements. Studies based on the proposed methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material properties in order to overcome the poor write performance from 22 nm node

    Low-Power Design of Digital VLSI Circuits around the Point of First Failure

    Get PDF
    As an increase of intelligent and self-powered devices is forecasted for our future everyday life, the implementation of energy-autonomous devices that can wirelessly communicate data from sensors is crucial. Even though techniques such as voltage scaling proved to effectively reduce the energy consumption of digital circuits, additional energy savings are still required for a longer battery life. One of the main limitations of essentially any low-energy technique is the potential degradation of the quality of service (QoS). Thus, a thorough understanding of how circuits behave when operated around the point of first failure (PoFF) is key for the effective application of conventional energy-efficient methods as well as for the development of future low-energy techniques. In this thesis, a variety of circuits, techniques, and tools is described to reduce the energy consumption in digital systems when operated either in the safe and conservative exact region, close to the PoFF, or even inside the inexact region. A straightforward approach to reduce the power consumed by clock distribution while safely operating in the exact region is dual-edge-triggered (DET) clocking. However, the DET approach is rarely taken, primarily due to the perceived complexity of its integration. In this thesis, a fully automated design flow is introduced for applying DET clocking to a conventional single-edge-triggered (SET) design. In addition, the first static true-single-phase-clock DET flip-flop (DET-FF) that completely avoids clock-overlap hazards of DET registers is proposed. Even though the correct timing of synchronous circuits is ensured in worst-case conditions, the critical path might not always be excited. Thus, dynamic clock adjustment (DCA) has been proposed to trim any available dynamic timing margin by changing the operating clock frequency at runtime. This thesis describes a dynamically-adjustable clock generator (DCG) capable of modifying the period of the produced clock signal on a cycle-by-cycle basis that enables the DCA technique. In addition, a timing-monitoring sequential (TMS) that detects input transitions on either one of the clock phases to enable the selection of the best timing-monitoring strategy at runtime is proposed. Energy-quality scaling techniques aimat trading lower energy consumption for a small degradation on the QoS whenever approximations can be tolerated. In this thesis, a low-power methodology for the perturbation of baseline coefficients in reconfigurable finite impulse response (FIR) filters is proposed. The baseline coefficients are optimized to reduce the switching activity of the multipliers in the FIR filter, enabling the possibility of scaling the power consumption of the filter at runtime. The area as well as the leakage power of many system-on-chips is often dominated by embedded memories. Gain-cell embedded DRAM (GC-eDRAM) is a compact, low-power and CMOS-compatible alternative to the conventional static random-access memory (SRAM) when a higher memory density is desired. However, due to GC-eDRAMs relying on many interdependent variables, the adaptation of existing memories and the design of future GCeDRAMs prove to be highly complex tasks. Thus, the first modeling tool that estimates timing, memory availability, bandwidth, and area of GC-eDRAMs for a fast exploration of their design space is proposed in this thesis

    Modeling and Fabrication of Low Power Devices and Circuits Using Low-Dimensional Materials

    Get PDF
    University of Minnesota Ph.D. dissertation.July 2016. Major: Electrical Engineering. Advisor: Steven Koester. 1 computer file (PDF); x, 112 pages.As silicon approaches its ultimate scaling limit as a channel material for conventional semiconductor devices, alternate mechanisms and materials are emerging rapidly to replace or complement conventional silicon based devices. Attractive semiconducting properties such as high mobility, excellent interface quality, and better scalability are the properties desired for materials to be explored for electronic and photonic device applications. Hybrid III-V semiconductor based tunneling field effect transistors (TFETs) can provide a strong alternative due to their attractive properties such as subthreshold slopes less than 60 mV/decade, which can lead to aggressive power supply scaling. Here, InAs-SiGe-Si based TFETs are studied in detail. Simulations predict that subthreshold slopes as low as 18 mV/decade and on currents as high as 50 µA/µm can be achieved using such a device. However, the simulations also show that the device performance is limited by (1) the low density of states in the source which induces a trade-off between the source doping and the subthreshold slope, limiting power supply scaling, and (2) direct source-to-drain tunneling which limits gate length scaling. Another approach to explore low power alternatives to conventional semiconductor device can be to use emerging two-dimensional (2D) materials. In particular, the transition metal dichalcogenides (TMDs) are promising material group that, like graphene, these material exhibit 2D nature, but unlike graphene, have a finite band gap. In this work, the off-state characteristics are modelled for MoS2 MOSFETs (metal–oxide–semiconductor field-effect transistors), and their circuit performance is predicted. MoS2 Due to its higher effective masses and large band gap compared to silicon it is shown that MoS2 MOSFETs are well suited for dynamic memory applications. Two of such circuits, one transistor one capacitor (1TIC) and two transistor (2T) dynamic memory cells have been fabricated for the first time. Retention times as high as 0.25 second and 1.3 second for the 1T1C and 2T cell, respectively, are demonstrated. Moreover, ultra-low leakage currents less than femto-ampere per micron are extracted based on the retention time measurements. These results establish the potential of 2D MoS2 as an attractive material for low power device and circuit applications

    Study and development of innovative strategies for energy-efficient cross-layer design of digital VLSI systems based on Approximate Computing

    Get PDF
    The increasing demand on requirements for high performance and energy efficiency in modern digital systems has led to the research of new design approaches that are able to go beyond the established energy-performance tradeoff. Looking at scientific literature, the Approximate Computing paradigm has been particularly prolific. Many applications in the domain of signal processing, multimedia, computer vision, machine learning are known to be particularly resilient to errors occurring on their input data and during computation, producing outputs that, although degraded, are still largely acceptable from the point of view of quality. The Approximate Computing design paradigm leverages the characteristics of this group of applications to develop circuits, architectures, algorithms that, by relaxing design constraints, perform their computations in an approximate or inexact manner reducing energy consumption. This PhD research aims to explore the design of hardware/software architectures based on Approximate Computing techniques, filling the gap in literature regarding effective applicability and deriving a systematic methodology to characterize its benefits and tradeoffs. The main contributions of this work are: -the introduction of approximate memory management inside the Linux OS, allowing dynamic allocation and de-allocation of approximate memory at user level, as for normal exact memory; - the development of an emulation environment for platforms with approximate memory units, where faults are injected during the simulation based on models that reproduce the effects on memory cells of circuital and architectural techniques for approximate memories; -the implementation and analysis of the impact of approximate memory hardware on real applications: the H.264 video encoder, internally modified to allocate selected data buffers in approximate memory, and signal processing applications (digital filter) using approximate memory for input/output buffers and tap registers; -the development of a fully reconfigurable and combinatorial floating point unit, which can work with reduced precision formats

    ULTRA ENERGY-EFFICIENT SUB-/NEAR-THRESHOLD COMPUTING: PLATFORM AND METHODOLOGY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Data-Retention-Time Characterization of Gain-Cell eDRAMs across the Design and Variations Space

    No full text
    The rise of data-intensive applications has increased the demand for high-density and low-power embedded memories. Among them, the gain-cell embedded DRAM (GC-eDRAM) is a suitable alternative to the static random access memory (SRAM) due to its high memory density and low leakage current. However, as the GC-eDRAM dynamically stores data, its memory content has to be periodically refreshed according to the data retention time (DRT). Even though different DRT characterization methodologies have been reported in the literature, a practical and accurate method to quantify the DRT across Monte Carlo (MC) runs to evaluate the impact of local process variations (LPVs) has not been proposed yet. Thus, the minimum memory refresh rate is generally estimated with large design guard bands to avoid any loss of data, at the expense of a higher power consumption and less memory bandwidth. In this work, we present a current-based DRT characterization methodology that enables an accurate LPV analysis without the need of a large number of costly electronic design automation (EDA) software licenses. The presented approach is compared with other DRT characterization methodologies for both accuracy as well as practical aspects. Furthermore, the DRT of a 3-transistor (3T) gain cell (GC) designed in 28nm FD-SOI process technology is measured for different design choices, global and local variations. The analysis of the results shows that LPVs have the most degrading effect on the DRT and therefore that the proposed approach is key for either the design of GC-eDRAMs or the choice of their refresh rate to avoid the need for overly pessimistic worst-case margins
    corecore