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Abstract 

On-die cache memory is a key component in advanced processors since it can boost 

micro-architectural level performance at a moderate power penalty.  Demand for denser 

memories only going to increase as the number of cores in a microprocessor goes up with 

technology scaling.  A commensurate increase in the amount of cache memory is needed 

to fully utilize the larger and more powerful processing units.  6T SRAMs have been the 

embedded memory of choice for modern microprocessors due to their logic compatibility, 

high speed, and refresh-free operation.  However, the relatively large cell size and 

conflicting requirements for read and write make aggressive scaling of 6T SRAMs 

challenging in sub-22 nm. 

In this dissertation, circuit techniques and simulation methodologies are presented to 

demonstrate the potential of alternative options such as gain cell eDRAMs and spin-

torque-transfer magnetic RAMs (STT-MRAMs) for high density embedded memories. 

Three unique test chip designs are presented to enhance the retention time and access 

speed of gain cell eDRAMs.  Proposed bit-cells utilize preferential boostings, beneficial 

couplings, and aggregated cell leakages for expanding signal window between data ‘1’ 

and ‘0’.  The design space of power-delay product can be further enhanced with various 

assist schemes that harness the innate properties of gain cell eDRAMs.  Experimental 

results from the test chips demonstrate that the proposed gain cell eDRAMs achieve 



 

 iv 

overall faster system performances and lower static power dissipations than SRAMs in a 

generic 65 nm low-power (LP) CMOS process. 

A magnetic tunnel junction (MTJ) scaling scenario and an efficient HSPICE 

simulation methodology are proposed for exploring the scalability of STT-MRAMs under 

variation effects from 65 nm to 8 nm.  A constant JC0•RA/VDD scaling method is 

adopted to achieve optimal read and write performances of STT-MRAMs and thermal 

stabilities for a 10 year retention are achieved by adjusting free layer thicknesses as well 

as projecting crystalline anisotropy improvements.  Studies based on the proposed 

methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, 

while its perpendicular counterpart requires further innovations in MTJ material 

properties in order to overcome the poor write performance from 22 nm node. 
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Chapter 1 

Introduction 

Multi-core processors exploit microarchitecture-level parallelism to deliver higher 

computing performance while curbing chip power dissipation.  The number of cores per 

socket has increased at a pace of two per year for high end enterprise processors [1].  

There needs to be a commensurate increase in the amount of on-die embedded memory in 

order to utilize the multi-core architecture fully with a larger appetite for data [1]-[3].  As 

a result, in the past decade, the die area devoted to cache memory has grown to 

approximately 50% in state-of-the-art processors (Fig. 1.1).  For example, Intel’s 8-core 

enterprise Xeon™ processor has a 24 MB Last Level Cache (LLC) [1] based on SRAM 

cells while IBM’s POWER7™ processor has a 32 MB L3 cache built in an embedded 

DRAM (eDRAM) technology [4], [5].  The need for robust high-density embedded 

memories is projected to grow as designers continue to seek power-conscious ways to 

improve multi-core chip performance. 

However, delivering dense embedded memories with higher performance for 

computing systems have faced with a unique scaling challenge compared to logic circuits.  

With technology scaling, transistor parameters and parasitic loadings are innovated in 



 

 2 

such a way that enhances the performance of the core that is the most important building 

block in microprocessors.  On the other side of the technology scaling, embedded 

memories, which are the other essential component in computing systems, have suffered 

from the reduced signal-to-noise margin due to the scaled power supply level for device 

reliability and power constraint.  Furthermore, memory bit-cells implemented using 

minimally sized devices are susceptible to device mismatches, various noise couplings, 

and sense amplifier offsets resulting in the difficulty of maintaining the traditional scaling 

trend in advanced CMOS technologies such as sub-22 nm node. 

 

Fig. 1.1:  High-end microprocessors with high density on-die L3 caches based on 6T 

SRAM and 1T1C eDRAM.  

 

1.1  Embedded Memories in Multi-Core Microprocessor 

6T SRAMs and 1T1C eDRAMs have been the embedded memory of choice.  The 

logic compatible bit-cell, fast differential read, and refresh-free operation make 6T 



 

 3 

SRAMs the most viable option for on-die cache memories.  1T1C eDRAMs have features 

such as small cell size, low cell leakage, and non-ratioed circuit operation.  The smaller 

footprints of 1T1C eDRAMs reduce global interconnect delay and enable faster overall 

system performance in high density cache memories [4]-[9].  Fig. 1.2 shows the trend of 

Intel’s and IBM’s high-end microprocessors based on 6T SRAM cells [10]-[15] and 

1T1C DRAM cells [5], [6], respectively.  The number of cores per socket has doubled at 

every process generations with commensurate increases of cache densities, namely 4 MB 

L3 caches have been added for every additional core (Fig. 1.2(a)).  However, the 

aforementioned trend has deviated from 45 nm due to the difficulty of achieving practical 

parallel computing performance as the chip design and programming become more 

complicated with the increased core count.  Delivering a dense and stable embedded 

memory is another constraint limiting the continuance of the traditional way to achieve 

higher computing performance while curbing chip power dissipation.  The relatively 

large cell size and conflicting requirements for read and write at low operating voltages 

make aggressive scaling of 6T SRAMs challenging in scaled CMOS technologies.  The 

bit-cell scaling trend of the 6T SRAMs has deviated from 45 nm due to the above-

mentioned technological difficulties, while the 1T1C eDRAMs have followed the 0.5X 

bit-cell scaling trend up to 45 nm (Fig. 1.2(b)).  However, the noise margin of 1T1C 

eDRAMs is reduced substantially at low voltages as the read operation is based on the 

charge sharing principle, and difficulties in scaling the trench capacitor and the additional 

process steps involved in manufacturing the thick oxide (TOX) access devices are 

currently limiting the wide spread adoption of 1T1C technology.  As a matter of fact, 
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only a limited company has been able to deliver stable 1T1C eDRAMs for high density 

on-die caches [4]-[6]. 

 

                                  (a)                                                                       (b) 

Fig. 1.2:  (a) Trend of number of cores and corresponding on-die L3 cache densities 

in Intel’s and IBM’s high-end microprocessors. (b) Bit-cell size scaling trend of 6T 

SRAMs and 1T1C eDRAMs. 

 

1.2  Alternative Memory Technologies  

Gain cell eDRAMs and spin-torque-transfer magnetic RAMs (STT-MRAMs) are 

gaining popularity in the research community due to their compact bit-cells and excellent 

scalabilities.  Gain cells are implemented using logic devices allowing them to be built in 

a standard CMOS process with minimal adjustments.  The cell can be implemented using 

three transistors, or even two transistors when used with delicate read control circuits, 

achieving a roughly 2X higher bit-cell density than SRAM as recently demonstrated by 

several industrial designs [16]-[19].  Furthermore, gain cells can have smaller cell 

leakage current than SRAMs in sleep mode due to the fewer number of devices and the 

negative-Vgs biasing condition.  Therefore, the static power dissipation of gain cell 
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eDRAM including both leakage and refresh components can be smaller than that of 

SRAMs and similar to that of 1T1C eDRAMs.  The cell write margin is better than 

SRAMs since there is no contention between the access device and the cross-coupled 

latch in a gain cell.  Despite these favorable attributes, conventional gain cells suffer from 

short retention times due to the small storage capacitor and leakage currents  that vary 

exponentially under Process-Voltage-Temperature (PVT) variations [16]-[19].  A shorter 

retention time leads to higher refresh power dissipation and/or smaller read current.  The 

former is a result of the frequent refresh operation while the latter is due to the fast loss of 

cell voltage.  Frequent refresh operation also reduces memory availability resulting in 

degradation in overall system performance.  Therefore, attaining practical retention time 

and improving random access speed remain as key challenges in gain cell eDRAM 

designs.  In this dissertation, three unique test chip designs are presented to enhance the 

retention time and random access speed of gain cell eDRAMs for achieving overall faster 

system performances and lower power dissipations than SRAMs and 1T1C eDRAMs. 

As the second part of this dissertation, STT-MRAMs are investigated to evaluate their 

potential as an alternative for high density on-die caches.  An STT-MRAM bit-cell 

consists of an access transistor and a magnetic tunnel junction (MTJ).  The simple 

structure makes the bit-cell size of STT-MRAM comparable to that of an eDRAM in a 

memory specific process.  The MTJ device has a free magnetic layer and a pinned 

magnetic layer which are separated by a thin insulator layer.  Depending on the direction 

of the write (WR) current, magnetization of the two layers can be set to a parallel state (P: 

low resistance, data ‘0’) or an anti-parallel state (AP: high resistance, data’1’) using spin 
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polarized current.  Read (RD) operation is accomplished by sensing the resistance 

difference between the two states using voltage or current Sense Amplifier (S/A). 

The state reversal happens only to the selected bit-cell when the current flowing into 

the MTJ is larger than its threshold current (write threshold current; IC0).  The STT 

switching originates from the exchange of angular momentum between a spin-polarized 

current and the magnetization of the free layer.  The localized spin-injection within a bit-

cell enables the excellent write selectivity with no high oxide field involved nor high 

temperature required during the process, which are the most critical scaling challenges in 

currently popular non-volatile memories such as FLASHs and phase-change RAMs 

(PCRAMs or PRAMs).  Most interestingly, the IC0 decreases exponentially with 

technology scaling as the critical current density (JC0) remains constant due to the STT 

switching phenomenon when there is no thermal stability constraint.  Therefore, the slow 

write time (TWR) which is several nanoseconds or even larger, is projected to be relieved 

with technology scaling [20]-[22].  Despite the recent advances in STT-MRAM 

fabrication and circuit techniques [23]-[32], it is still unclear whether this emerging 

memory technology can achieve higher overall performance than conventional SRAMs 

or eDRAMs in future technology nodes in the presence of variation effects.  In this 

dissertation, I explore the scalability and variability of STT-MRAM by comparing its 

performance with 6T SRAM from 65 nm to 8 nm process nodes. 

1.3  Summary of Dissertation Contributions  
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The remainder of this dissertation will explore the benefits of various circuit 

techniques and HSPICE simulation methodologies that we have proposed to demonstrate 

the potential of gain cell eDRAMs and STT-MRAMs as alternative options for high 

density embedded memories.  Three unique test chip designs will be presented to enhance 

the retention time and read speed of gain cell eDRAMs, enabling faster overall system 

performances and lower static power dissipations than SRAMs and eDRAMs [33]-[37].  

An MTJ scaling scenario, an efficient HSPICE simulation methodology, and a 

characterization macro are described for exploring the scalability of STT-MRAMs under 

variation effects from 65 nm to 8 nm, demonstrating that the alternative option can 

outperform SRAMs and eDRAMs in advanced CMOS technologies [38]. 
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Chapter 2 

A 3T Embedded DRAM Utilizing Preferential Boosting for 

Low Voltage On-Die Caches 

 

2.1  Basic Operation of a Conventional 3T EDRAM 

To aid the understanding of our proposed techniques, in this section, the basic 

operation of a conventional 3T gain cell eDRAM is described.  Fig. 2.1(a) shows the cell 

schematic and Fig. 2.1(b) summarizes the signal conditions for each operating mode.  

                

                              (a)                                                                 (b) 

Fig. 2.1:  (a) Conventional 3T PMOS eDRAM gain cell circuit diagram. (b) Signal 

voltages in each operating mode. 

 

PMOS devices are chosen over NMOS devices because they have significantly less 

gate tunneling leakage current, which extends the data retention time [19].  This 
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preference may not hold in the future where high-k gate dielectrics become prevalent.  

The operating principle of an NMOS cell is identical to that of a PMOS cell with the only 

difference being the signal polarities.  In the 3T PMOS cell, PW denotes the write access 

device, PS denotes the cell storage device, and PR denotes the read access device.  In 

write (or write-back) mode, the Write Bit-Line (WBL) data is written into the storage 

node through PW.  Similar to a 1T1C eDRAM cell, the Write World-Line (WWL) is 

negatively over-driven so that a 0 V can be written into the cell without the threshold 

voltage loss.  In read mode, the pre-discharged Read Bit-Line (RBL) voltage is pulled up 

only when the voltage stored in the gate of PS is low.  In case the storage voltage is high, 

PS is off so RBL remains at the pre-discharged level.  Cell data can be determined by 

comparing the RBL voltage with a reference RBL, whose level is between the data ‘1’ 

and data ‘0’ RBL levels, using a sense amplifier. 

During hold mode, PW and PR are turned off and the storage node is left floating.  

The sub-threshold, gate, and junction leakages in the surrounding devices make the 

floating voltage change with time as shown in Fig. 2.2.  Since the storage node is 

surrounded by high voltages in the PMOS cell, the retention time of data ‘0’ is much 

shorter than data ‘1’.  Similarly, the retention time of data ‘1’ becomes critical in an 

NMOS cell where the surrounding signal voltages are 0 V during hold mode.  The data 

retention time is directly related to the aggregated leakage currents flowing into the 

storage node.  In the presence of process variation, each cell in a memory array will have 

different retention characteristics so the cell with the shortest retention time (after 
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applying any redundancy schemes to remove bad cells) will determine the refresh rate of 

the entire eDRAM array. 

 

Fig. 2.2:  Monte Carlo simulation results of storage node voltage during data hold 

mode. 

 

Fig. 2.2 shows the simulation results of cell retention time variation.  This plot was 

obtained by running Monte-Carlo simulations in HSPICE with 1024 iterations, which 

gives a cell-to-cell variation equivalent to a 1 kb array.  Results indicate that the time it 

takes for the data ‘0’ voltage to rise to a specific voltage (0.3 V in this simulation to 

guarantee a 0.3V gate over-drive voltage in the storage transistor which has a VTP of 0.3 

V) ranges from 58 µs to 345 µs at a 0.9 V supply voltage and 85 °C temperature.  Poor 

retention characteristics of tail cells result in a large refresh current and decreased read 

performance.  Therefore, increasing the cell retention time is the foremost challenge in 

low voltage gain cell eDRAMs. 

2.2  Boosted 3T EDRAM Design 

In this section, three circuit techniques are presented for improving the eDRAM data 

retention time and ensuring robust circuit operation under PVT variations. 
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2.2.1  Boosted 3T Gain Cell 

The retention time and read speed of eDRAMs are highly dependent upon the storage 

node voltage at the time when the cell is accessed.  Even a small signal loss can cause 

severe speed degradation at low operating voltages.  Fig. 2.3(a) shows the proposed 3T 

PMOS gain cell which can preferentially boost the storage voltage via capacitive 

coupling.  Unlike the conventional design in Fig. 2.1(a), the drain of the storage device 

PS is connected to the RWL signal instead of the supply voltage.  For read operation, 

RBL is first precharged to VDD and then the RWL switches from VDD to 0V.  The 

resultant bitline signal is detected by a sense amplifier.  The central idea of the proposed 

cell is to preferentially boost the storage node voltage using the RWL signal for 

improving the cell’s data retention capability.  For example, consider the case when the 

storage node voltage is low (e.g. 0V).  This will make the gate-to-RWL coupling 

capacitance larger compared to when the storage node voltage is high (e.g. VDD).  PS in 

inversion mode makes the entire oxide capacitance act as the coupling capacitance 

whereas PS in weak-inversion mode, the significantly smaller depletion capacitance acts 

as the coupling capacitance.  Since a lower storage voltage has a larger coupling 

capacitance, it is coupled down more than a higher storage voltage when the RWL 

switches from high to low as illustrated in Fig. 2.3(b).  This preferential boosting action 

amplifies the signal difference during read which allows the storage node voltage to 

decay further before it needs to be refreshed.  This translates into a longer effective data 

retention time.  A similar concept was proposed by Luk et al., where a 3T1D cell was 

used to boost the cell voltage [18].  However, this cell structure requires an additional 
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diode device which increases the cell area as well as the gate tunneling leakage.  It also 

has a limited signal amplification effect since the storage device acts as a parasitic 

capacitor limiting the amount of coupling that can be achieved.  The proposed boosted 3T 

gain cell can provide a stronger coupling effect with only three transistors, increasing 

data retention time, enhancing the RBL margin and improving read performance. 

                

                                  (a)                                                               (b) 

 

(c) 

 

(d) 

Fig. 2.3:  (a) Proposed boosted 3T PMOS eDRAM gain cell. (b) Preferential RWL 

coupling effects of the proposed cell. (c) Simulation results of the storage node 

preferential boosting effects. (d) Signal voltage conditions for each operating mode. 
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Simulation results in Fig. 2.3(c) verify that the data ‘0’ voltage is amplified by 0.3 V 

while the data ‘1’ voltage is coupled down by only 0.16 V.  In addition to the 

amplification effect, the proposed cell can provide a ~2X larger current than conventional 

3T gain cells since the boosted voltage provides a higher gate overdrive for PS.  Fig. 

2.3(d) summarizes the signal conditions for each operating mode for the proposed gain 

cell.  It should be pointed out that the higher drive current is only observed when the RBL 

level is high, as the read current quickly diminishes as the RBL voltage drops due to the 

VTP loss in the PMOS read device.  To utilize the boosted read current of the proposed 3T 

cell, we employ a hybrid current/voltage sense amplification technique that keeps the 

RBL level close to VDD during the read operation [39], [40]. 

Fig. 2.4 shows the schematic and timing diagram of the bit-line Sense Amplifier 

(S/A) consisting of a hybrid current/voltage S/A, read port, write port and drivers for 

write-back.  During read, the RBL signals to the current S/A are amplified and converted 

to voltage signals through a cross-coupled PMOS pair and a NMOS resistor pair while a 

load PMOS pair keeps the RBL swing small.  After transferring the input differential 

current, the cross-coupled PMOS pair, in tandem with the cross-coupled NMOS pair, acts 

as a voltage S/A which generates a full CMOS swing signal.  Dedicated timing control 

circuits are implemented for the equalizer to ensure stable current S/A operation as 

shown in Fig. 2.4(b).  The write-back operation automatically follows the read cycle to 

refresh the cell data. 
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(a) 

 

(d) 

Fig. 2.4:  (a) Hybrid bit-line current/voltage sense amplifier (S/A) with read port, 

write port, and write-back circuits. (b) Read and write-back timing diagram of the 

proposed S/A. 
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2.2.2  Regulated Bit-Line Write Scheme 

When the WBL is driven to data ‘1’, the data ‘0’ levels in the unselected cells on the 

same WBL are pulled up by the sub-threshold leakage through the write access PMOS 

devices as shown in Fig. 2.5(a).  Most DRAM designs use a boosted supply for the WWL 

to prevent the signal loss in the unselected cells by asserting a negative Vgs in the write 

access devices.  However, this method incurs area and power penalty due to the large 

charge pump capacitors and poor pumping efficiency at low voltages.  In this work, we 

propose a regulated bit-line write scheme which can eliminate the data ‘1’ disturbance 

issue without having to generate an additional boosted supply. 

                     

                                 (a)                                                                       (b) 

 

(c) 

Fig. 2.5:  (a) Storage node disturbance problem when writing data ‘1’ to a cell 

sharing the same WBL. (b) Simulation results showing steady-state storage node 

voltage in case of no refresh. (c) Proposed regulated bit-line write bias generator 

based on replica cells. 
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Without a refresh, the storage node voltage eventually converges to a steady-state 

level close to VDD regardless of the initial cell voltage as shown in Fig. 2.5(b).  In our 

design, we use this steady-state voltage level for writing data ‘1’, as it will produce a 

negative Vgs in all the unselected cells without impacting the retention time of the 

selected cell.  Note that the retention time is determined by the data ‘0’ cell voltage rather 

than the data ‘1’ voltage in a PMOS gain cell.  A steady-state storage node voltage 

monitor shown in Fig. 2.5(c) is implemented with replica cells biased in hold mode, 

followed by a voltage down converter to drive the large WBL load.  The speed loss due 

to the regulated bit-line write voltage (VWR) is prevented by pre-charging the WBL to 

VWR using the negative supply VBB as the gate signal, which is readily available on-

chip for the WWL under-drive. 

2.2.3  PVT-Tracking Read Reference Bias 

An optimal bias voltage (VDUM) is applied to the reference dummy cells to 

maximize the read operating margin.  VDUM must be carefully chosen as it affects both 

the data retention time and the read speed; a higher VDUM level improves the data 

retention time at a read speed penalty.  Fig. 2.6 shows the proposed PVT-tracking and 

die-to-die adjustable read reference bias generator to cope with PVT variations.  The 

negative feedback circuit tracks the desired cell read reference current (IREF in the figure).  

Fig 2.7 shows simulation results of the proposed VDUM level under PVT variations.  

Unlike previous designs which use a fixed VDUM level or a simple averaging scheme 

[19], our circuit can achieve the target retention time without sacrificing read speed by 

adaptively lowering the VDUM level at low leakage PVT conditions as shown in Fig. 2.7.  
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For example, at lower temperatures or in slow corner dies, the excess retention time is 

traded off for faster read speed by lowering the VDUM level. Similarly, at low supply 

voltages, the VDUM level is shifted down since the reduced leakage make the storage 

node voltage lower compared to at high supply voltages for the same retention time.  

Binary weighted read path replica branches are implemented to precisely adjust the 

VDUM level according to the retention characteristics and read performance of each chip. 

 

Fig. 2.6:  PVT-tracking and die-to-die adjustable read reference bias (VDUM) 

generator. 

 

                

                                   (a)                                                                   (b) 

Fig. 2.7:  (a) Simulation results of the proposed VDUM generator tracking 

temperature and process variations. (b) Simulation results showing the dependency 

of VDUM on VDD. 

 

2.2.4  Architecture and Operation of a 32 kb Sub-Array 
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A detailed circuit diagram of the 32 kb boosted 3T array is shown in Fig. 2.8.  The 

array has 128 cells per WL and 128 cells per split BL, which share a common BL S/A 

located at the center of the array.  The proposed VDUM bias is connected to the dummy 

cells placed at both edges of the array, and the VWR bias is connected to the write-back 

circuitry of the BL S/A.  The RWL pull-down keepers are located at the top row of the 

array to keep the ground noise of the activated RWL as small as possible. HSPICE 

simulations indicate a 66 mV RWL ground noise at 0.9 V, 85 ºC when all cells connected 

to the same RWL contain data ‘0’ which corresponds to the worst case scenario. 

 

Fig. 2.8:  A 32 kb array structure of the proposed eDRAM including (a) boosted 3T 

gain cell, (b) hybrid current/voltage S/A, (c) regulated bit-line write scheme, and (d) 

PVT-tracking read reference scheme. 

 

Fig. 2.9 shows simulation waveforms of read and write-back operations with a 2 ns 

random cycle time.  A two-stage full pipeline structure was implemented to control read 

and write-back operations.  At the first clock cycle, RWL is selected, and this amplifies 



 

 19 

the cell node by preferential coupling.  When the current S/A control signal (ISAEN) is 

enabled, the current S/A amplifies its input signals to analog voltage signals with RBL 

held close to VDD.  After achieving a recognizable voltage difference, the voltage S/A 

control signal (SAEN) is enabled.  At the second clock cycle, read-out and write-back 

operations are followed.  After write-back, discharged WBLs are pre-charged using the 

negative supply VBB control signal (PRECHB).  

 

Fig. 2.9:  Read and write-back simulation waveform with a 2 ns random cycle time. 

 

2.3  Statistical Simulation Results for 6T SRAM and 3T EDRAM 

Arrays 
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This section presents Monte-Carlo simulation results on megabit density SRAM and 

eDRAM arrays to estimate their speed and power in a practical scenario [41].  An 

operating voltage of 0.9 V was chosen (nominal operating voltage of the 65 nm process 

used is 1.2 V) so that cell failures exist in the small 32 kb unit test array.  Fig. 2.10 

summarizes the simulation setup for the Monte-Carlo iterations including assumptions on 

the mismatch and voltage variations. 

 

Fig. 2.10:  Simulation setup for 1 M Monte Carlo simulations. 

 

2.3.1  Read and Write Performance 

Fig. 2.11 shows read bitline delay distributions with average and 6-sigma point delays 

annotated for the following three memory arrays; a 1Mb SRAM, a 2 Mb conventional 3T, 

and a 2 Mb boosted 3T.  Simulation results were obtained from 2
20

 Monte-Carlo 
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iterations.  The peripheral circuit delay, which is a function of the unit sub-array size, and 

the global interconnect delay, which is a function of the total cache area, are identical for 

the three simulated arrays since we selected an SRAM with half the number of cells as 

the eDRAMs.  Recall that an SRAM bitcell is about twice the area of an eDRAM bitcell.  

The single-ended sensing nature and the gradual loss in the storage node voltage of the 

conventional 3T eDRAM result in a 6-sigma read bit-line delay that is 2.6 times longer 

than a 6T SRAM as shown in Fig. 2.11.  The proposed 3T eDRAM with preferential 

amplification effect partially makes up for this performance shortfall, improving the bit-

line sensing speed by 36% compared with the conventional 3T eDRAM.  Although 6T 

SRAMs still have a 40% faster sensing delay than the proposed circuit, we will see later 

that their performance becomes worse than eDRAMs for large cache sizes due to the 

longer global interconnect delay. 

 

Fig. 2.11:  Read performance comparisons between 6T SRAM and 3T eDRAM 

obtained from 2
20

 Monte-Carlo iterations.  Results are equivalent to the distribution 

of a 1 Mb macro array.  6T SRAM has the shortest bitline delay attributed to the 

differential swing nature and large drive current (361.7ps @ 6σ) followed by the 

proposed 3T eDRAM (607.4ps @6σ) and the conventional 3T eDRAM (944.5ps 

@6σ). 
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Fig. 2.12 shows detailed cell layouts of various logic-compatible embedded memory 

cells drawn using a standard 65nm logic design rule.  The dense bitcell design rules were 

not available to the authors but for area comparison purposes, using a logic design rule is 

generally sufficient.  The four signal wire lines and the three transistors of the 

conventional boosted 3T gain cells are marked in Fig. 2.12.  The proposed boosted 3T 

gain cell is 47% smaller than a 6T SRAM cell. 

 

Fig. 2.12:  Comparison of various logic-compatible embedded memory cell layouts 

using a 65nm logic design rule (the authors did not have access to the dense bitcell 

design rule but for area comparison purposes, the logic design rule is generally 

acceptable). The outer box represents the cell boundary.  Signal names, wire tracks, 

and device names are marked for the boosted 3T and conventional 3T cells. 

 

Fig. 2.13 shows latency comparison results between a 6T SRAM array and the 

boosted 3T eDRAM array for two different cache sizes.  The latency of a cache shown in 

Fig. 2.13 consists of the bit-line sensing time (6-sigma value from Fig. 2.11), the 

peripheral circuit delay, and the global interconnect delay.  The boosted 3T eDRAM 
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achieves faster access times for cache sizes greater than 16 Mb (or 2 MB) owing the 

shorter interconnect delay made possible by the smaller bitcell. 

 

Fig. 2.13:  Latency comparisons between SRAM and 3T eDRAM for 1 Mb and 16 

Mb cache sizes.  Gain cells have a shorter interconnect delay due to the smaller cell 

size making their performance favorable in larger arrays. 

 

Fig. 2.14 shows the 1 Mb write delay distributions of a 6T SRAM array and the 

proposed 3T eDRAM array.  Here, the write delay is defined as the WL signal to the time 

when the cell node reaches 95% of the full voltage swing.  The write speed of the gain 

cell is faster than the 6T SRAM since the latter is based on a ratioed operation.  Note that 

the WWL of the gain cell must be sufficiently negative in order for the PMOS write 

devices to pass a good data ‘0’ level.  For a WWL under-drive voltage of -0.5V, the 1Mb 

Monte-Carlo simulations show a write speedup of 17 % (6-sigma point) for the boosted 

3T eDRAM. 
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Fig. 2.14:  Write delay distributions of 1Mb arrays using 6T SRAM and 3T eDRAM. 

 

2.3.2  Static Power Consumption 

Static power consumption of an eDRAM system consists of two main components: (i) 

the leakage current of the cell itself and (ii) the refresh power to keep the data “alive”.  

The refresh operation is a dummy read followed by a write-back cycle which simply 

reinforces the cell data.  Hence, the refresh power is inversely proportional to refresh 

period.  The data ‘0’ storage node voltage should be kept sufficiently low so that the 

PMOS read device can provide enough drive current that meets the target read speed.  

This criterion determines the refresh period as pointed out in section 2.1.  Fig. 2.15 (a), 

(b), and (c) illustrate the leakage components in the three memory cells.  Due to the 

higher number of devices per cell, there are more leakage paths from the supply to the 

ground in a 6T SRAM cell than in the 3T eDRAM cells.  Since the leakage current 

through the storage node has to be extremely small in an eDRAM cell for it to be viable 

(e.g., >100 µs retention time), the main cell leakage component is through the read access 
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device.  In other words, the refresh related leakages shown in Fig. 15 (b) and (c) are much 

smaller than the leakage current through the read access device. 

                

                              (a)                                                                      (b) 

                

                             (c)                                                                      (d) 

Fig. 2.15:  Leakage components of a (a) 6T SRAM, a (b) conventional 3T eDRAM 

and the (c) proposed 3T eDRAM. (d) Bias conditions and normalized cell leakages of 

SRAM and 3T eDRAM in active and sleep modes. 

 

Fig. 2.16 compares the static power consumption of a 1 Mb 6T SRAM array and a 2 

Mb 3T eDRAM array with a 100 µs refresh period.  HSPICE simulations were performed 

using a 65 nm low-leakage CMOS process at 1.0 V, 85 ºC.  Again, the number of cells of 

the 3T eDRAM array was chosen to be twice that of the SRAM array to account for the 

~50% smaller cell size.  Note that the eDRAM’s higher density makes up for its longer 
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latency improving the overall architectural performance [4], [5].  Simulation results show 

that the static power of a 2Mb conventional 3T eDRAM array is similar to that of a 1 Mb 

SRAM during active mode.  The refresh current consists of the RBL and WBL switching 

currents for the dummy read and write-back operations, as well as the refresh control 

power in the peripheral circuits.  The refresh power constitutes 75% of the total eDRAM 

static power for a 100 µs refresh period. 

 

Fig. 2.16:  Static power comparisons between a 1 Mb SRAM and a 2 Mb 3T eDRAM.  

Leakage power of the peripheral circuit is assumed to be negligible. 

 

Most embedded memories are now equipped with sleep mode capability, so it is 

important to compare the sleep mode power between SRAM and the proposed eDRAM.  

When power gating and wordline overdrive techniques shown in Fig. 2.15(d) are applied, 

the cell leakage component is reduced in both the SRAM and the eDRAM arrays [12], 

[42].  Since refresh power is not affected by these sleep techniques, the eDRAM’s total 

static power becomes 3X larger compared to the SRAM’s even with an additional 

boosted high supply for the RWL to suppress the read path sub-threshold leakage as 
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shown in Fig. 2.15(b).  Our proposed 3T eDRAM cell significantly reduces the refresh 

power component as it has a 10X longer retention time without any extra boosted supply.  

This makes the static power of the proposed eDRAM 53% less than that of a power gated 

SRAM, as shown in Fig. 2.16. 

Fig. 2.17 summarizes simulation and layout results of various logic-compatible 

embedded memory cells. 

 

Fig. 2.17:  Comparison of logic-compatible embedded memories. 

 

2.4  Test Chip Implementation and Measurements 

A proof-of-concept 64 kb eDRAM test chip was built in a 1.2 V, 65 nm low-leakage 

logic CMOS process to demonstrate the proposed circuit techniques.  In order to fully 

verify the proposed techniques against the existing ones, each sub-array has a different 

combination of cell structure (boosted 3T vs. conventional 3T), reference scheme 
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(proposed PVT-tracking vs. cell averaging [19]), and write scheme (conventional vs. 

regulated bit-line write).  Fig. 2.18 shows the chip microphotograph and feature summary 

of the 64 kb eDRAM test chip fabricated in a 1.2 V, 65 nm low-leakage logic CMOS 

process.   

 

Fig. 2.18:  Microphotograph of the 65 nm eDRAM test chip and feature summary. 

 

Fig. 2.19(a) shows the measured VWR levels at different supply voltages.  The data 

‘1’ voltage (i.e., VWR) is high enough to keep the storage transistor off: the PMOS 

threshold voltage (VTP) of this process is 0.315 V at 85 ºC and the measured VWR level 

is slightly lower than VDD-VTP.  The unselected cells undergoing the data ‘1’ disturbance 

situation are not affected since a sufficient amount of negative Vgs is applied to the write 

access transistor.  The VWR level is determined by the balance between the sub-

threshold, gate, and junction leakage components.  In most cases, sub-threshold leakage 

is the dominant factor in determining the VWR level.  At high temperature and high 

VDD conditions however, the junction and gate leakage components have a stronger 

affect on the VWR level than the sub-threshold leakage component resulting in higher 

level over 1.1 V as shown in Fig. 2.19(a). 
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                                    (a)                                                                  (b) 

Fig. 2.19:  (a) Measured regulated bit-line write bias (VWR) level. (b) Storage node 

voltage measurement results under data ‘1’ disturbance conditions. 

 

By externally adjusting the VDUM voltage, we can indirectly and noninvasively 

measure the storage node voltage at different data retention times.  For example, read 

failure will happen for data ‘0’ if the VDUM level is lower than the storage node voltage 

so the storage voltage can be measured by sweeping the VDUM voltage and measuring 

the failure point.  It is worth mentioning that the storage node voltage measured using this 

method include effects such as process variation or transient noise (e.g. coupling noise or 

supply noise) providing us with an “effective” cell node voltage.  Fig. 2.19(b) shows the 

measurement results of the storage node voltage of the proposed regulated write scheme 

compared with the conventional 3T gain cell under the data ‘1’ disturbance condition.  

The data retention characteristics of the data ‘1’ disturbance case and the data hold mode 

case are virtually identical when using the proposed regulated bit-line write scheme. 

Fig. 2.20(a) shows the data retention characteristics of the conventional 3T and the 

proposed boosted 3T from the same test chip, including the cell-to-cell retention time 

variation.  The retention time was for a read speed (i.e., RWL enable to voltage S/A 
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enable interval) of 1.0 ns at 0.9 V and 85 ºC.  This translates into a 2.0 ns cycle time.  The 

proposed boosted 3T design achieves a data retention time of 1.25 ms at 0.9 V, 85 ºC, 

which is a 10X improvement over the conventional 3T cell measured from the same 

silicon die.  Note that due to limitation in the test setup, only 32 cells were measured 

from each sub-array.  As a point of reference, the target retention time of a 2T gain cell 

eDRAM was 10 µs in [19] and the measured retention time of a 1T1C eDRAM was 40 

µs in [6]. 

          

                                     (a)                                                                    (b) 

Fig. 2.20:  (a) Measured retention time statistics. Due to limitations in the test setup, 

only 32 cells were measured from each sub-array.  The measured cells were located 

evenly across the memory array. (b) Measured storage node voltage in the proposed 

boosted 3T cell and the conventional 3T cell.  The cell voltage was indirectly and 

noninvasively measured by sweeping the reference cell node voltage. 

 

Similar to Fig. 2.19(b), Fig. 2.20(b) shows the measured storage node voltage of the 

proposed boosted 3T and the conventional 3T gain cell.  Due to threshold voltage 

variations between the read devices and the WWL coupling effect after the write-back, 

the data ‘0’ voltage of the conventional 3T started at around 0.1 V.  Read failures start to 

occur when the cell voltage is higher than around 0.2 V for the conventional 3T.  The 
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amount of cell node boosting of the proposed cell was 0.27 V after a 1.0 ms of hold time.  

The preferential boosting effect can be clearly observed in the measured data as the 

difference between the two curves diminishes at longer hold times.  Note that the VDUM 

level could not be lowered below 0V in the test chip, so although a large negative cell 

voltage is expected at short retention times, we were only able to measure the positive 

cell voltages as shown in Fig. 2.20(b).  This is sufficient as we are more interested in 

measuring the positive storage node voltage region which is when the memory operation 

starts to fail. 

Figs. 2.21(a) and (b) show the measured storage node voltage of data ‘1’ and data ‘0’ 

enabling a 2.0 ns random cycle time at 0.9 V, for high (85 ºC) and room (25 ºC) 

temperature corners, respectively.  Optimal VDUM levels to achieve longer retention 

time with fixed read speed were 0.2 V for high temperature and 0.14 V for room 

temperature.  Fig. 2.21(c) shows the measured VDUM level at high and room 

temperature corners for various supply voltages.  VDUM level change across a 

temperature range of 25 ºC to 85 ºC and a supply voltage range of 0.8V to 1.3V was 50 

mV.  The 50 mV voltage difference is approximately the threshold voltage difference 

between the two temperature conditions. 
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                                     (a)                                                                    (b) 

 

(c) 

Fig. 2.21:  Measured storage node voltages at (a) 85°C and (b) 25°C. (c) Measured 

PVT-tracking read reference (VDUM) level at different supply voltages. 

 

2.5  Conclusions 

Circuit techniques have been presented for increasing the data retention time and 

enhancing the performance of gain cell eDRAMs.  The proposed boosted 3T eDRAM 

cell preferentially boosts the cell voltage to obtain high performance and low static power 

dissipation, with a layout penalty of only 14% compared to a conventional 3T cell.  The 

proposed regulated bit-line write scheme can eliminate the data ‘1’ write disturbance 

problem without introducing another boosted supply for WWL.  The measurement results 
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show the 1.25 ms data retention time with 2 ns random cycle time at 0.9 V, 85 ºC, which 

is a 10X improvement compared to a conventional 3T gain cell measured from the same 

silicon die.  The measured static power dissipation from a 64 kb test chip with the 

proposed schemes was 91.3 µW per Mb at 1.0 V, 85 ºC, and 1.0 ms refresh period, which 

is about 50% smaller compared with a power gated SRAM with half the number of cells. 
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Chapter 3 

An Asymmetric 2T EDRAM for High Speed On-die Caches 

 

3.1  Retention Characteristics of Conventional Gain Cells 

In the second test chip, read paths implemented only with NMOS’s are explored to 

achieve higher performance than PMOS based gain cells described in Chapter 2.  To aid 

the understanding of our proposed techniques, I first describe the detailed retention 

characteristics of conventional gain cells having a NMOS read path. 

In the 3T NMOS cell shown in Fig. 3.1(a), PW denotes the write access device, PS 

the storage device, and PR the read access device.  Unlike 6T SRAMs or 1T1C eDRAMs, 

gain cells have a decoupled read and write structure – Read Word-Line (RWL) and Read 

Bit-Line (RBL) are used for read access and Write Word-Line (WWL) and Write Bit-

Line (WBL) are used for write access.  This attribute leads to improved read and write 

margins and flexibility in the bit-cell design - for example, the read and write paths can 

be optimized separately allowing gain cells to scale favorably in future technology nodes.  

In data retention mode, PW and PR are turned off and the storage node is left floating.  
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The sub-threshold, gate, and junction leakages in the surrounding devices cause the 

floating voltage to change with time as shown in Fig. 3.1(b).  Since the storage node is 

surrounded by many low supplies in an NMOS only cell, the retention time of data ‘1’ is 

much shorter than that of data ‘0’.  To make matters worse, the data ‘1’ (not data ‘0’) 

voltage level is critical for the read access speed as the read port also uses an NMOS.  

The data retention time depends on the aggregated leakage current flowing into the 

storage node.  Fig. 3.1(b) shows the cell retention time variations obtained by running 2
20

 

Monte-Carlo simulations in HSPICE, which represents the cell-to-cell variation of a 1 

Mb memory macro.  In this analysis, we define retention time as the time it takes for the 

cell node voltage to reach a level corresponding to a target RBL delay of 500 ps. 

                

                                (a)                                                                 (b) 

Fig. 3.1:  (a) Leakage components of a 3T NMOS gain cell during data hold mode. 

(b) Monte-Carlo simulation results of storage node voltage during data hold mode 

showing 1 Mb macro retention characteristics. 

 

The read reference bias level is set as 0.65 V and the data ‘1’ voltage should be higher 

than this reference voltage by at least 0.2 V to achieve the same read margins as the data 

‘0’ case.  Results based on our criterion indicate that the retention time of data ‘1’ varies 
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from 12.2 µs to 54.1 µs mainly due to the gate leakage through the inverted channel of 

the NMOS storage device, while the non-critical data ‘0’ voltage shows a very stable 

retention characteristic.  Note that the WWL coupling after write-back operation results 

in lower initial storage levels than VDD and GND in case of data ‘1’ and data ‘0’, 

respectively.  This further degrades the retention time of data ‘1’ when a gain cell is 

implemented only with NMOS devices.  The central idea of this work is to maximize the 

retention time and performance by using a new bit cell that balances the retention 

characteristics of data ‘0’ and ‘1’. 

3.2  Asymmetric 2T EDRAM Design 

3.2.1  Asymmetric 2T Gain Cell 

PMOS only gain cells were used in recent designs for improving retention time as 

they have 1-2 orders of magnitude lower gate leakage compared to their NMOS 

counterpart [19], [33].  However, the pull-up leakage currents of the PMOS devices 

surrounding the storage node have a negative impact especially on the data ‘0’ level 

which determines the current through the PMOS read device.  In addition, the poor 

channel mobility of PMOS devices limits the read performance.  The new 2T gain cell 

structure proposed in this work achieves a long retention time without sacrificing read 

speed by using an NMOS read device driven by RWL for high drive current and a PMOS 

write device to keep the speed critical data ‘1’ voltage close to VDD [35], [36].  Fig. 3.2 

shows the proposed 2T cell and a previous Asymmetric 3T Cell (ATC) which was chosen 

for comparison because it also contains both NMOS and PMOS devices, albeit the 
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structure and operating principle are considerably different [16].  In the previous ATC 

cell, a PMOS device was used for the write access transistor to extend the cell retention 

time by compensating the NMOS gate leakage with the PMOS gate overlap and junction 

leakages.  However, the leakage compensation effect of this cell is poor under PVT 

variations because the gate leakage through the inverted channel of the NMOS storage 

device is dominant for data ‘1’ as shown in Fig. 3.2(a).  In the proposed cell shown in Fig. 

3.2(b), the read access transistor is replaced by the RWL signal whose pre-charge level is 

VDD.  The storage transistor is nominally off making its gate leakage negligible.  Since 

there is no sub-threshold leakage through the read path, a low Vth transistor can be 

utilized to further improve read speed.  The proposed current sensing scheme described in 

the next section limits the RBL voltage swing to about 100 mV which eliminates 

problems associated with the pull-up leakage from the data ‘1’ cells on the same RBL. 

Fig. 3.2 (right) shows the simulated retention characteristics of a 1 Mb macro.  The 

WWL coupling after write-back operation boosts data ‘1’ level by 110 mV in a PMOS 

write device.  However, the previous 3T ATC still suffers from a poor data ‘1’ retention 

time due to the large gate leakage of storage device.  The proposed asymmetric 2T gain 

cell improves worst case retention time by 3.4X while at the same time achieving a 45% 

shorter RBL delay compared to the previous 3T ATC.  An additional benefit of the 

proposed 2T asymmetric cell is the balanced P and N diffusion densities which makes it 

more ideal to address Design-For-Manufacturability (DFM) concerns in extremely scaled 

technologies. 
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(a) 

 

(b) 

Fig. 3.2:  Circuit diagrams and retention characteristics of (a) a previous 

asymmetric 3T gain cell [16] and (b) the proposed asymmetric 2T gain cell. 

 

3.2.2  Pseudo-PMOS Diode Based Current-Mode Sense Amplifier (C-S/A) 

Unlike in 3T cell designs, the RBL of 2T cells must have a limited swing to prevent 

the leakage current of the unselected cells from causing a read failure as illustrated in Fig. 

3.3.  However, a small voltage swing means that the read sensing margin is poor.  The 

proposed asymmetric 2T gain cell worsens this situation since it utilizes a low Vth read 

device to achieve faster read speed by keeping the speed critical data ‘1’ voltage close to 

VDD.  Simulation results in Fig. 3.4 show a read failure in the worst case when all 
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unselected cells on the same RBL hold a strong data ‘1’ at a high temperature and fast 

process corner condition. 

 

Fig. 3.3:  Illustration of limiting read margin by adjacent cells holding high state in 

a 2T eDRAM. 

 

           

                                        (a)                                                                  (b) 

Fig. 3.4:  (a) Simulated RBL sensing waveform when all adjacent cells hold a data 

‘0’. (b) All adjacent cells hold a data ‘1’ indicating a data ‘1’ read failure. The 

shaded regions denote the ∆VRBL=100mV window between the accessed RBL and 

the reference. 

 

To overcome this problem, a Current-mode Sense Amplifier (C-S/A) is employed in 

our design to hold the RBL voltage close to VDD while sensing, allowing a large number 

of low Vth cells to be connected to a single RBL.  The most common C-S/A shown in 

Fig. 3.5(a) consists of a PMOS load (P0), a cross-coupled PMOS latch (P1) and an 

NMOS diode (N1) pair [39].  The PMOS load pair provides currents to the cells and the 

C-S/A so that RBL can remain close to VDD during read operation.  The cross-coupled 
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PMOS latch pair has a negative input impedance and amplifies the input currents.  The 

NMOS diode pair has a positive input impedance and stabilizes the output voltages.  The 

total input impedance of the C-S/A can be expressed as  

  
1,1,

1,1,

PmNm

PmNm

IN
gg

gg
R

−
=             (1) 

indicating that a good matching between the PMOS latch and the NMOS diode pairs is 

required for a low input impedance.  However, in the presence of P/N skew and PVT 

variations, matching the two impedances becomes difficult.  Moreover, this conventional 

C-S/A suffers from a limited voltage headroom due to the stacked devices between VDD 

and GND. 

An improved circuit shown in Fig. 3.5(b) consists of two folded PMOS diode pairs 

(P2 and P3), an NMOS current source (N2), and a cross-coupled PMOS latch pair (P1).  

N2 is biased using a separate voltage so the voltage headroom is increased by 

approximately 1xVth.  Note that the conventional NMOS diode pair (N1) turns on only at 

a high supply voltage condition to improve the stability of this C-S/A [40].  Despite these 

advantages, the large number of devices in this circuit makes it impractical for DRAM 

circuits where every BL should have a dedicated S/A for a row-by-row refresh operation.  

This results in a large BL-S/A layout overhead in addition to impedance mismatch issues 

under PVT variations.  The input resistance of this hybrid C-S/A is given as 

))(( 3,1,2,1,

1,3,2,1,
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PmPmPmNm

IN
gggg

gggg
R

++

−++
= .    (2) 
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                                 (a)                                                             (b) 

Fig. 3.5:  (a) NP series-stacked C-S/A [39]. (b) Hybrid C-S/A [40]. 

 

The proposed C-S/A shown in Fig. 3.6 consists of a cross-coupled PMOS latch (P1) 

and a pseudo-PMOS diode (P2) driven by the negative supply VBB which is readily 

available on the chip for WWL under-driving.  Recall that a negative WWL is needed for 

a PMOS device to write a data ‘0’ into the cell without a threshold voltage loss.  Similar 

to the conventional C-S/A, the input resistance of the proposed C-S/A can be expressed 

as: 

  
2,1,

1,2,

PmPm

PmPm

IN
gg

gg
R

−
= .     (3) 

 

Fig. 3.6:  Proposed pseudo-PMOS diode based C-S/A to overcome the issue of 

limited RBL voltage swing in a 2T eDRAM with improved voltage headroom and 

better impedance matching. 
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Fig. 3.7(a) shows simulated differential input resistances of the three C-S/A’s at 

different VDDs.  For this comparison, the C-S/A pairs were designed to have a minimum 

input resistance at the high VDD corner to ensure good stability [40].  The previous NP 

stack structure suffers from large input resistance at low operating voltage conditions 

leading to a considerable signal loss for the current sensing scheme.  When this C-S/A 

operates in the sub-threshold region, the transconductances of the two pairs decrease.  

The denominator of (1) is the product of the two transconductances, while the numerator 

is the sum.  This results in a rapid increase in input resistance at lower supply voltages as 

shown in Fig. 3.7(a).  Input resistance of the previous hybrid C-S/A and the proposed 

pseudo-PMOS C-S/A show a stable response down to 0.9 V and 0.7 V, respectively.  The 

maximum input resistance allowed in this design is 500 Ω which corresponds to a 10% 

signal loss during current sensing.  Unlike the previous hybrid C-S/A, the improvement 

of low voltage margin in the proposed design depends on the voltage difference between 

the VBB (-0.5 V) and the threshold voltage (-0.315 V).  Fig. 3.7(b) shows simulation 

results of RBL sensing delay for the NP stack, hybrid, and proposed C-S/A’s.  Each 

distribution represents the delay variation of the proposed gain cells from a 1 Mb macro 

with a refresh period of 100 µs.  These Monte-Carlo results include cell leakage 

variations as well as device variations in the read path and C-S/A pairs.  Although the 

hybrid C-S/A has a smaller input resistance than the NP stack C-S/A at 1.1 V, ensuring 

good matching between the large number of device pairs is difficult and results in a poor 

overall performance.  The proposed C-S/A utilizing a pseudo-PMOS diode enhances the 
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RBL sensing delay by 30.3% (6-sigma point) due to the improved impedance matching 

and better low VDD margin. 

 

                                         (a)                                                                     (b) 

Fig. 3.7:  (a) Simulated input resistance (∆VRBL/ ∆IIN) vs. VDD. (b) Comparison of 

RBL sensing delay under PVT variations and mismatches in the C-S/A pairs. 

 

3.2.3  Half Swing Write Bit-Line Scheme 

With the improved read bit-line sensing speed and increased number of cells per BL, 

WBL switching speed becomes the performance bottleneck.  Similar to the half-VDD 

pre-charge technique employed in standard 1T1C DRAMs, a half swing WBL scheme 

can be applied to gain cell eDRAMs.  By using a half swing WBL scheme with a tri-state 

buffer, the write speed is improved by 33% and the average WBL charging current is 

reduced by 25% without affecting the retention characteristics of the proposed 2T cell. 

Fig. 3.8(a) shows simulated waveforms for a conventional GND pre-discharge 

scheme (full swing) and the half-VDD pre-charge scheme (half swing) indicating a 33% 

improvement in WBL charging speed.  Retention characteristics of the GND pre-

discharge scheme and the half-VDD pre-charge scheme are similar as shown in Fig. 
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3.8(b) since the sub-threshold leakage through the write device during data hold mode is 

negligible owing to the WWL over drive (VDD+α, where α=0.3 V in this design).  

Moreover, sub-threshold leakage through the write device can be effectively cut off 

during the data ’1’ write-back operation of a cell sharing the same WBL.  The half swing 

WBL scheme is implemented as a part of the write-back circuit as shown in Fig. 3.10. 

           

                                         (a)                                                                   (b) 

Fig. 3.8:  (a) Simulated waveforms of the WBL charging delay. (b) Simulated 

storage voltage distributions of a conventional GND pre-discharge (full swing WBL) 

and the proposed half-VDD pre-charge (half swing WBL) schemes. 

 

3.2.4  Stepped Write Word-Line Driver 

DRAMs require a positive boosted voltage (VPP) to suppress the sub-threshold 

leakage in the write access device as well as a negative boosted voltage (VBB) to write 

data into the cell without a Vth drop (PMOS write device case).  In order to reduce the 

power and area overhead of charge pumps during fast chip operation, we adopted a 

stepped WWL control scheme which minimizes the current drawn from the boosted VPP 

and VBB voltages by utilizing the main VDD and GND supplies for most of the WWL 

transition.  The proposed WWL scheme consists of a nominal VDD/GND driver 
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including tri-state control circuits, a boosted VPP/VBB driver with an inverted signal, 

and a reset device as shown in Fig. 3.9(a).  Before the cell access, PUB and PDN nodes in 

Fig. 3.9(a) are set to VPP and VBB, respectively.  This deactivates the VDD/GND driver 

by cutting off the short circuit current path from VPP to VDD and from GND to VBB.  

The RSET signal is switched to VPP ensuring that all WWL’s are pre-charged to the 

desired VPP level.  Except during the initialization phase, the RSET signal stays at VBB.  

At the beginning of the write-back operation, decoded address signals and a short pulsed 

signal of PDNGND enable the GND pull-down path in Fig. 3.9(a).  This drives the 

selected WWL towards GND.  As the selected WWL is discharged, WWLB switches and 

enables the VBB pull-down path which drives the WWL to VBB.  The pulse duration has 

to be carefully controlled to guarantee proper circuit operation while saving the WWL 

switching power.  If the pulse duration is too short, the VBB pull-down path will not be 

enabled whereas if it is too long, there will be short circuit current between VBB and 

GND.  In this design, we chose a pulse duration of 375 ps which gave sufficient timing 

margin at a slight increase in the current drawn from the boosted supply.  The operating 

principle of the opposite high-to-low WWL transition is similar to what we described 

above and the waveforms are shown in Fig. 3.9(b). 

Fig. 3.9(c) shows the simulated waveforms of the current consumption and WWL 

transition for the conventional and proposed schemes.  With a stepped WWL control 

scheme, 67% of the boosted supply current and 4.3% of the total chip area can be saved 

with two additional peripheral control signals and four more transistors in the WWL 

control circuit compared to conventional two-stage level shifters.  Note that during a step 
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transition of WWL, the effective pulse width is decreased.  Nevertheless, a WWL pulse 

width of 406 ps can be achieved at a 1.5 ns cycle time which is significantly longer than 

the required pulse width of 210 ps.  Further details on the macro level timing will be 

given in section 3.3. 

  

(a)  

                     

                                     (b)                                                                (c) 

Fig. 3.9:  Proposed stepped WWL driver. (a) Schematic. (b) Timing diagram. (c) 

Simulated boosted current consumptions and WWL waveforms during transition. 

 

3.2.5  Sense Amplifier and Write-Back Circuit Design 

Fig. 3.10 shows the complete schematic and timing diagram of the proposed S/A, 

read port, write-back, and write port.  A two-stage full pipeline structure was 
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implemented to control the read and write-back operations.  In the first clock cycle, the 

RWL is selected.  When the C-S/A control signal (ISAEN) is enabled, the C-S/A 

amplifies the input signals to analog voltage signals while the RBL held close to VDD.  

Once a recognizable voltage difference is developed, the voltage S/A control signal 

(VSAEN) is fired.  In the second clock cycle, read-out and write-back operations follow.  

After the write-back, WBLs are pre-charged back to half-VDD using the boosted supply 

VPP control signal (PRECHL/R).  A stepped PRECH control scheme can be also adopted 

to further minimize the current drawn from the boosted supply VPP. 

           

                                      (a)                                                              (b) 

Fig. 3.10:  (a) Circuit diagram of the proposed Sense Amplifier (S/A) with read port, 

write port, and write-back circuits. (b) Two-stage read and write-back timing 

diagram. 

 

Fig. 3.11 shows post-layout simulation waveforms of the proposed 2T eDRAM.  This 

includes the proposed asymmetric 2T gain cell, the pseudo-PMOS diode based C-S/A, a 

half-swing WBL scheme, and a stepped WWL driver.  The memory array with 192 cells-
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per-WL and 512-cells-per-BL can operate at a random cycle time of 1.5 ns for a test 

sequence of data ‘0’ read and write-back followed by data ‘1’ read and write-back. 

 

Fig. 3.11:  Simulated waveforms of back-to-back read and write-back operations for 

a 1.5 ns cycle time. 

 

3.3  Comparison Between SRAM and Gain Cell EDRAM 

In order to demonstrate the advantages of the proposed 2T eDRAM over conventional 

3T eDRAM or 6T SRAM, this section presents macro level layout and performance 

comparisons.  Static power comparisons are detailed in Section 3.4.  Extensive Monte-

Carlo simulations were performed on megabit density SRAM and eDRAM arrays to 

estimate their performance in a practical scenario [35], [41].  Our analysis includes 

process variation in the memory cells and the C-S/A as well as realistic fluctuations for 

the reference biases and boosted supplies. 

3.3.1  Macro Layout Comparison 
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Fig. 3.12 shows the bit-cell and 128 kb sub-array layouts of a 6T SRAM and the 

proposed 2T eDRAM in a generic 65 nm LP CMOS process.  Dense bit-cell design rules 

were not available to the authors but for area comparison purposes, using a logic design 

rule is a generally accepted practice [35].  The 6T SRAM used for the comparison has the 

following transistor dimensions: WPU=Wmin, WPD=2xWmin, and WACCESS=Wmin, with all 

devices using a minimum channel length.  This is the most general sizing scheme and 

extensive Monte Carlo simulations were performed to verify good read and write margins.  

The bit cell area of the proposed 2T gain cell is 59.5% smaller (or 2.47X denser) than that 

of a 6T SRAM resulting in a 49.6% smaller area for a 128 kb sub-array.  It is worth 

mentioning that layout of the 128 kb 2T eDRAM sub-array includes a BL-S/A and write-

back driver in each BL, full RWL and WWL decoders, and charge pumps for generating 

boosted high and low supplies.  The unit 128 kb sub-array can be tiled to build a larger 

memory macro. 

 

Fig. 3.12:  Comparison of bit-cell and 128 kb sub-array layout between 6T SRAM 

and 2T eDRAM. 
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3.3.2  Macro Performance Comparison 

Fig. 3.13 shows read bit-line delay distributions for the following four memory 

arrays; a 1 Mb SRAM with 256 cells-per-BL, a 1 Mb conventional 3T eDRAM with 256 

cells-per-BL, and a 1 Mb proposed 2T eDRAM with 256 and 512 cells-per-BL.  The 

single-ended sensing nature and the gradual loss in the storage node voltage of the 

conventional 3T eDRAM result in a 6-sigma read bit-line delay that is 1.9 times longer 

than a 6T SRAM as shown in Fig. 3.13.  The proposed 2T eDRAM makes up for this 

performance shortfall, achieving a bit-line sensing speed comparable to that of a 6T 

SRAM with 256 cells-per-BL.  For an array with 512 cells-per-BL, the proposed 2T 

eDRAM shows only a 4% longer RBL sensing delay than a 6T SRAM that has half the 

number of cells-per BL.  The performance improvement is attributed to the following 

three factors: excellent data ‘1’ retention, low Vth device in the decoupled read path, and 

the proposed C-S/A which makes the read speed more or less independent of the RBL 

capacitance.   

 

Fig. 3.13:  RBL sensing delay distributions of SRAM and gain cell eDRAMs each 

with a 1 Mb macro density. 
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For cache sizes of 1 Mb or larger, the proposed 2T eDRAM achieves a faster access 

time owing to the shorter global interconnect delay made possible by the smaller bit-cell 

size as shown Fig. 3.14(a).  Therefore, a 512 cells-per-BL architecture was chosen for 

this 2T eDRAM design in order to verify our proposed schemes under extreme cases and 

to reduce the array layout overhead stemming from the complicated BL-S/A and write-

back circuits.  Embedded DRAMs require a write-back operation after the read operation 

to restore the cell data. This results in a 66.5% slower random cycle time for a 

conventional 3T eDRAM compared to a 6T SRAM as shown in Fig. 3.14(b).  The 

proposed 2T eDRAM improves the random cycle time by 31.6% compared to a 

conventional 3T eDRAM that has half the number of cells per BL. 

                

                                     (a)                                                                        (b) 

Fig. 3.14:  Performance comparison of 1 Mb macros using SRAM and gain cell 

eDRAMs. (a) Latency. (b) Random cycle. 

 

Fig. 3.15 shows the 1Mb write delay distributions of a 6T SRAM array and the 

proposed 2T eDRAM array.  Here, the write delay is defined as the WL activation to the 

time when the cell node reaches 95% of the full voltage swing.  The write speed of the 

gain cell is faster than the 6T SRAM since the latter is based on a ratioed operation.  For 

the speed critical data ‘1’ case, the proposed 2T eDRAM achieves an 11.5X faster write-
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back (6-sigma point performance) compared to the 6T SRAM as shown in Fig. 3.15.  

Note that the WWL of the gain cell must be sufficiently negative in order for the PMOS 

write devices to pass a good data ‘0’ level.  For a WWL under-drive voltage of -0.5 V, 

the 1 Mb Monte-Carlo simulations show a write speedup of 35% (6-sigma point) for data 

‘0’. 

 

Fig. 3.15:  Performance comparison of 1 Mb macros using SRAM and gain cell 

eDRAMs. (a) Latency. (b) Random cycle. 

 

3.4  Test Chip Implementation and Measurements 

A 192 kb eDRAM test chip was implemented in a 1.2 V, 65 nm Low-Power (LP) 

logic CMOS process to demonstrate the proposed circuit techniques.  The detailed array 

architecture is shown in Fig. 3.16 consisting of two 96 kb blocks sharing BL-S/A and 

write-back circuits located at the center of the array.  The dummy memory cells in each 

block are 4X larger than the regular cells to minimize random device mismatch.  RWL 

pull-down drivers are inserted every 64 WL’s in order to minimize the RWL ground 

noise during read access.  
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Fig. 3.16:  A 192 kb test array architecture with 192 cells-per-WL and 512 cells-per-

BL. 

 

Fig. 3.17 shows the chip microphotograph and a feature summary table of the 192 kb 

eDRAM test chip.  For a 99.9% bit yield at 1.1 V and 85 ºC, our design achieves a 

random cycle frequency of 667 MHz and 500 MHz using a refresh period of 110 µs and 

1200 µs, respectively. By increasing the VPP level from 1.5 V to 1.6 V, a 100 µs 

retention time can be achieved under a 99.99% bit yield condition.  To put this into 

perspective, the target retention time of a previous 2T gain cell eDRAM design was 10 µs 

[19] while the measured retention time of a commercial 1T1C eDRAM was 40 µs at 105 

ºC with a 99.99% bit yield [6] each with a random cycle of 500 MHz. 

           

                                       (a)                                                              (b) 

Fig. 3.17:  (a) Microphotograph of the 65nm eDRAM test chip. (b) Chip feature 

summary. 
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By externally adjusting the read reference voltage (VDUM), we can indirectly and 

noninvasively measure the storage node voltage at different data retention times [34].  

For example, read failure will happen for data ‘1’ if the VDUM level is higher than the 

storage node voltage so the storage voltage can be measured by sweeping the VDUM 

voltage and measuring the point of failure.  It is worth mentioning that the storage node 

voltage measured using this method includes effects such as process variation or transient 

noise (e.g. coupling noise or supply noise) providing us with the “effective” cell node 

voltage.  The measured storage node voltage of the proposed 2T eDRAM in Fig. 3.18 

shows that retention times even longer than 1 ms can be achieved. 

           

                                     (a)                                                                  (b) 

Fig. 3.18:  Measured storage node voltage at different retention times at (a) 85ºC 

and (b) 25ºC. 

 

Adjusting the VPP level modulates the gate overlap and gate-induced drain leakages 

and hence allows us to achieve an optimal retention time with the consideration of both 

data ‘1’ and data ‘0’ cases as shown in Fig. 3.19. This dependency can be further 

exploited for post-fabrication trimming to cope with die-to-die variations. 
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Fig. 3.19:  Measured retention time distribution vs. boosted high supply (VPP) level. 

 

The retention time of a 2T eDRAM can be extended at the expense of a longer 

random cycle time as shown in Fig. 3.20(a).  We can utilize this trade-off to enhance 

access speed, and at the same time minimize refresh power dissipation of the 2T eDRAM.  

During memory access, the S/A enable signal was triggered as early as possible after the 

RWL activation to achieve a high random cycle frequency as high as 667 MHz.  

Moreover, a delayed S/A enable signal extends the retention time resulting in significant 

refresh power savings.  The measured refresh power at a random cycle of 667 MHz and 

500 MHz were 1.16 mW/Mb and 109 µW/Mb, respectively at 1.1V and 85°C.  The 

flexibility in the cycle time offers further opportunities to reduce refresh power 

depending on the system level workload and frequency requirements.  For a 1 Mb macro 

with 1024 WL’s, only 1.40% of the total operating time is spent on refresh for a 1.5 ns 

random cycle and a 110 µs refresh period.  The refresh overhead reduces to 0.17% for a 

2.0 ns random cycle and a 1200 µs refresh period.  The measured VDD shmoo of cycle 
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time and the corresponding retention time in Fig. 3.20(b) shows a wide operating voltage 

range from 1.4 V down to 0.8 V. 

                     

                                     (a)                                                              (b) 

Fig. 3.20:  (a) Measured random cycle time vs. retention time. (b) Measured VDD 

shmoo of random cycle time and corresponding retention time. 

 

Fig. 3.21 shows the static current consumption of a 6T SRAM and the proposed 2T 

eDRAM for different random cycle times.  We assume a power-gated SRAM with a data 

retention voltage of 0.6V.  Supply voltage of the 2T eDRAM is assumed to be 1.1V 

during hold mode.  For very short random cycles (e.g. 1.5 ns), the static current of the 

proposed 2T eDRAM is much larger than that of the 6T SRAM due the frequent refresh 

operation required to maintain a good cell node voltage.  However, for longer random 

cycle times, the RBL sensing margin of the 2T eDRAM improves significantly which 

increases the retention time.  For a 2.0 ns random cycle time, the proposed 2T eDRAM 

has an 81% and 91% smaller static current consumption than a power-gated SRAM [42] 

at 85 °C and 25 °C, respectively.   
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Fig. 3.21:  Static power comparison between 6T SRAM and the proposed 2T 
eDRAM with varying random cycle time at 85 ºC and 25 ºC. 

 

The retention time of the proposed 2T eDRAM cannot be improved further for cycle 

times longer than 2.0 ns cycle time as shown in Fig. 3.20(a).  The maximum achievable 

retention time is set by the data window shown in Fig. 3.18 and the variability in the bit-

cells and BL-S/A’s.  The random cycle and retention time of eDRAMs are highly 

dependent on the number of cells-per-BL.  The proposed 2T eDRAM has 16 times more 

cells on the same RBL than previous 1T1C eDRAMs [6], [7] and 4 times more cells than 

a previous 2T PMOS eDRAM [19].  The measured random cycle time with 512 cells-per-

BL was 1.5 ns (667 MHz) which is a 33.4% improvement compared to previous eDRAM 

designs while achieving a retention time similar to 1T1C eDRAMs.  For a random cycle 

of 500 MHz, the measured retention time is >120X longer than a previous 2T PMOS 

eDRAM and around 12X longer than a 1T1C eDRAM. 

3.5  Conclusions 
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Several circuit techniques have been presented for improving data retention time and 

enhancing performance of gain cell eDRAMs for high speed and high density on-die 

caches.  The proposed asymmetric 2T gain cell keeps the critical data ‘1’ level close to 

VDD to improve memory performance and reduce static power dissipation.  The 

proposed pseudo-PMOS diode based C-S/A eliminates the RBL leakage, provides better 

impedance matching, and offers more voltage headroom than previous designs.  The half 

swing WBL scheme with a tri-state buffer achieves a 33% faster write speed and a 25% 

smaller WBL charging current without affecting the retention characteristics.  Finally, a 

stepped WWL control scheme reduces the current drawn from the boosted supply by 

67% which results in a 4.3% reduction in memory array area due to the smaller charge 

pump circuit and decoupling capacitors.  Measurement results show a 667 MHz random 

cycle using a 110 µs refresh period for a 99.9% bit yield at 1.1 V, 85 ºC.  The static 

power dissipation including refresh currents and cell leakages was 109 µW/Mb at 500 

MHz, 1.1 V, 85 ºC which is 81% smaller than a power gated SRAM under a data 

retention voltage of 0.6 V. 
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Chapter 4 

A Logic-Compatible 2T1C EDRAM for Enhanced Reliability 

 

4.1  Boosted Supply Level vs. EDRAM Performance 

DRAMs typically require two boosted supplies: a boosted high voltage (VPP) to 

suppress the subthreshold leakage (assuming a PMOS write device) and a boosted low 

voltage (VBB) to prevent VTH drop during write.  Fig.4.1 illustrates how the boosted 

supply level affects the performance of a 2T gain cell eDRAM.  Here we consider an 

asymmetric 2T cell described in Chapter 3 [35] with a PMOS write device and an NMOS 

read device, although a similar analysis can be made for other types of gain cells.  Write 

Word-Line (WWL) is biased at VPP during data retention mode in order to suppress the 

subthreshold leakages flowing into unselected cells.  The subthreshold leakage is worst 

when writing ‘1’ to another cell on the same the Write Bit-Line (WBL).  The VPP level 

modulates the gate overlap and gate-induced drain leakages and therefore the optimal 

retention time can be achieved by considering the retention times of both data ‘1’ and 

data ‘0’ as shown in Fig. 4.1(a).  The VBB level on the other hand affects the data ‘0’ 
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restore time during write.  The simulated data ‘0’ restore time dependency on VBB level 

in Fig. 4.1(b) indicates that VBB should be -0.4 V or below to ensure a practical write 

time.  The above analysis shows that a WWL voltage swing from -0.4V to 1.6V is 

required for optimal memory cell operation which is 67% higher than the nominal supply 

level of 1.2 V in this 65 nm LP CMOS process.  Boosted high and low supplies can only 

be used with special devices with a thicker TOX to avoid voltage overstress.  Alternatively, 

I/O devices can be considered; however, this will increase the bit-cell area considerably 

and in turn degrade the macro performance.  Layout comparison between several 

embedded memory bit cells are presented in Section 4.2. 

            

                                     (a)                                                                   (b) 

Fig. 4.1:  Impact of boosted supply level on 2T eDRAM performance [35]. (a) 

Boosted high supply (VPP) level vs. retention time (measured). (b) Boosted low 

supply (VBB) level vs. data ‘0’ write time (simulated). 

 

4.2  2T1C EDRAM with No Boosted Supplies 

4.2.1  2T1C Gain Cell 
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In order to realize a truly logic-compatible eDRAM with a competitive bit-cell size 

and higher macro level performance, we propose a 2T1C gain cell that can be 

implemented with regular thin oxide devices.  The new cell structure consists of an 

asymmetric 2T cell [35] and a separate coupling MOS capacitor controlled by a control 

signal.  Fig. 4.2 shows the proposed bit-cell schematic along with the signal conditions 

for each operating modes.  It’s important to note that none of the voltage levels exceed 

the nominal VDD.  The bit-cell may look similar to the previous 3T1D cell that has an 

additional gated-diode controlled by Read Word-Line (RWL) in order to enhance speed 

and retention time by signal amplification [18].  However, the structure and operating 

principle of the 2T1C cell are considerably different from prior work. 

            

                            (a)                                                                        (b) 

Fig. 4.2:  Proposed 2T1C gain cell based on thin oxide devices with no boosted 

supplies. (a) Schematic. (b) Signal conditions for each operating modes. 

 

The timing diagram shown in Fig. 4.3 illustrates the operation principle of the 

proposed cell.  The capacitor control signal (PCOU) is pre-discharged to 0 V during hold 

mode introducing only a small amount of gate-overlap leakage through the coupling 

device (PC).  At the beginning of the read access when the RWL is activated, PCOU is 

also switched to VDD. This couples up both data ‘1’ and ‘0’ storage voltages.  The higher 

voltage levels increase the drive current for the NMOS read access device (PS) enhancing 
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the read performance.  After the Sense Amplifier (S/A) samples the Read Bit-Line (RBL) 

data, a write-back operation follows which drives the WWL to 0 V instead of the usual 

negative boosted supply.  Using a data ‘1’ WBL voltage that is slightly lower than VDD 

(i.e. VDD-α in Fig. 4.3), the subthreshold leakage in the unselected cell can be effectively 

cut off without using a boosted high supply for WWL [33].  Data ‘1’ can be easily written 

back to the cell with a PMOS write device (PW).  However, without a boosted negative 

supply, data ‘0’ will not be fully restored due to the VTH drop in PW.  To resolve this 

issue, PCOU is switched to 0V immediately after write back.  This couples down the data 

‘0’ voltage while the data ‘1’ voltage is not affected since PW remains on when WBL is 

high.  Finally, WWL is switched back to its precharge level of VDD and this slightly 

couples up both data ‘1’ and ‘0’ voltages through the gate-overlap capacitance, fully 

restoring the cell storage levels. 

 

Fig. 4.3:  Timing diagram of the proposed 2T1C cell for read and write-back 

operations. 
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Fig. 4.4 shows the simulated waveforms of read and write-back operations.  The 

proposed 2T1C with no boosted supplies achieves a similar data ‘1’ voltage level during 

read and a similar data ‘0’ level after write-back operations compared to the asymmetric 

2T with boosted supplies. 

  

                                     (a)                                                                       (b) 

Fig. 4.4:  Simulated waveforms of read and write-back operations for (a) a 

conventional 2T eDRAM and (b) the proposed 2T1C eDRAM. 

 

The initial voltage levels and data windows between ‘1’ and ‘0’ in Fig. 4.4 are based 

on retention simulations for a 1 Mb macro (Fig. 4.5).  The data window at 200 µs for the 

2T1C eDRAM is 150 mV smaller than that of a 2T eDRAM with boosted high and low 

supplies.  A narrower data window reduces the margin between data ‘1’ and ‘0’ resulting 

in worse retention time and increased static power due to the frequent refresh operation.  

To cope with this issue, we propose two circuit techniques: (i) a single-ended 7T SRAM 

for weak gain cell repair and (ii) a storage voltage monitor for adaptive refresh by 

tracking the retention characteristics under PVT variations.  Fig. 4.6 shows the schematic 

diagram of a 64 kb 2T1C eDRAM macro including the 7T SRAM repair cells (details in 
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Section 4.2.2) and the storage voltage monitor (details in Section 4.2.3) that are 

seamlessly integrated into the array. 

  

                                     (a)                                                                        (b) 

Fig. 4.5:  Comparison of retention characteristics between (a) a conventional 2T 

eDRAM with boosted supplies and (b) the proposed 2T1C eDRAM with no boosted 

supplies. 

 

 

Fig. 4.6:  Schematic diagram of a 64 kb 2T1C gain cell eDRAM macro with no 

boosted supplies. 
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In the array, two adjacent WL’s share a single PCOU signal in order to minimize the 

cell size overhead.  Since gain cells have a non-destructive read, the shared PCOU has no 

effects on the retention time of the unselected cells when the WL is activated.  The shared 

PCOU reduces the bit-cell size by 21% compared to the separated layout shown in Fig. 

4.7(a).  Simulated waveforms in Fig. 4.7(b) confirm that the signal loss due to the 

redundant PCOU activation is negligible.  Note that the storage capacitance of a gain cell 

is very small (<1 fF), so the additional power consumption due to the shared PCOU is 

also insignificant. 

           

                               (a)                                                                     (b) 

Fig. 4.7:  Shared coupling signal (PCOU). (a) Bit-cell schematic and layouts. (b) 

Simulated waveforms show negligible disturbance in an unselected cell. 

 

4.2.2  Decoupled 7T SRAM Repair Cell with Shared Control 

Outlier cells having poor retention times are usually repaired using the same type of 

cell as the main array.  However, gain cells have a very small storage capacitance, so the 

probability of having a failure cell in a redundant row or column is also high compared to 
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a 1T1C DRAM.  The proposed 2T1C eDRAM has a narrower data window due to the 

reduced WWL voltage swing aggravating this situation.  In order to improve the retention 

time of the 2T1C eDRAM, we devise a single-ended decoupled 7T SRAM based repair 

scheme.  The proposed 7T SRAM consists of a decoupled read by replicating the 2T1C 

gain cell and a differential write using a locally generated complementary WBL signal 

(WBLB) as shown in Fig. 4.8.  The pitch matched 7T SRAM cell shares control signals 

(i.e. RBL, WBL, WWL, RWL) with the main 2T1C array minimizing the area overhead.  

Note that WBLB is generated by an inverter inside the 7T SRAM cell while WBL is 

connected to every cell in the bitline direction as shown in Fig. 4.6.  Therefore, the local 

differential write minimizes power dissipation incurred by the additional signal switching 

during memory access. 

 

Fig. 4.8:  Proposed decoupled 7T SRAM repair cell shares BL and WL signals with 

the 2T1C cell. 

 

Fig. 4.9 shows the comparison of signal-to-noise margin (SNM) between the 

proposed 7T SRAM and a conventional 6T SRAM.  The decoupled read structure of the 
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7T SRAM improves the read SNM by 113% than a 6T SRAM, and the write SNM of the 

7T SRAM having a lower WBL voltage can be made comparable to that of a 6T SRAM 

by sizing optimization.  As explained in Section 4.2.1, the data ‘1’ WBL voltage is lower 

than VDD by 0.2 V in order to suppress the subthreshold leakages flowing into 

unselected cells during write in the absence of a boosted WWL voltage [33]. 

            

                                        (a)                                                            (b) 

Fig. 4.9:  Signal-to-noise margin (SNM) of a 6T SRAM and the proposed 7T SRAM. 

(a) Read SNM. (b) Write SNM. 

 

Fig. 4.10 shows the transistor dimensions and layouts of the following memory cells: 

6T SRAM, 2T gain cell, 3T gain cells using thin and thick TOX devices, 7T SRAM, and 

2T1C gain cell.  All bit-cells were designed and drawn in a generic 65 nm LP process.  

Dense bit-cell design rules were not available to the authors but for area comparison 

purposes, using a logic design rule is a generally accepted practice.  The 2T and 3T gain 

cells are 2.4X and 2.2X denser than a 6T SRAM, respectively.  Similar cell area ratios 

have been reported in industry designs based on dense design rules; for example, the 2T 

gain cell in [19] is 2.1X denser than the 6T SRAM in [12], both implemented in Intel’s 

65 nm process.  However, the density advantage of gain cell over 6T SRAM claimed in 
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prior literature is misleading since the boosted supply voltages will cause oxide reliability 

concerns.  One way to get around this problem is to use 1.8 V I/O devices in which case 

the bit cell area density improvement compared to SRAM is reduced to around 1.2X.  

Since the array efficiency of gain cell eDRAMs is typically lower than SRAM due to 

charge pumps and the complex peripheral circuitry (e.g. RWL and WWL decoders for 

the decoupled bit-cell access, S/A with write-back circuits in each RBL and WBL [35]), 

gain cells no longer have an area advantage at the macro level when implemented using 

I/O devices.  Conversely, the proposed 2T1C gain cell implemented using regular thin 

TOX devices is 1.7X denser than a 6T SRAM without having an oxide reliability concerns. 

 

Fig. 4.10:  Bit-cell comparison(6T SRAM, 3T, 2T, 2T1C cells): All bit-cells were 

drawn in a generic 65 nm LP process. 
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For a 1 Mb macro including all peripheral circuitry, a 2T1C eDRAM is still 1.6X 

denser than a 6T SRAM array making it a viable alternative to conventional SRAM for 

last level caches 

4.2.3  Cell Storage Monitor 

Retention time of commodity DRAMs varies exponentially with temperature since it 

is highly sensitive to the junction and subthreshold leakages.  Therefore, DRAM products 

have on-chip temperature sensors to control the refresh period adaptively according to the 

chip operating temperature [40].  Similarly, retention time of gain cells is also dependent 

on operating temperature since the storage node voltage changes according to the 

junction, subthreshold and gate leakages.  However, the gate leakage has a weaker 

dependency on temperature and the various coupling effects illustrated in Fig. 4.4 makes 

a simple temperature sensor based refresh control ineffective for gain cell designs.  To 

overcome this problem, we propose a gain cell based temperature sensor that directly 

measures the storage node voltage using a cell access pattern generator and 2T1C replica 

cells.  Fig. 4.11 shows the proposed storage voltage monitor and its timing diagram.  The 

SCAN signal triggers the cell access pattern generator (PG) that provides control signals 

(WBL, WWL, PCOU, and RWL) to the 2T1C replica cells.  The repetitive access 

patterns have the same timing as the main array in order to track storage node voltages 

under a realistic memory access condition.  The operating clock frequency of the PG 

generated by the VCO-1 indicates the current retention time setting.  The merged storage 

node voltage of the 256 replica cells is captured by the sample-and-hold circuit.  The 

buffered storage voltage using a unity gain amplifier is temporarily stored in MOS 



 

 70 

capacitors implemented with thick TOX devices whose gate leakage is negligible.  The 

final storage node voltage is utilized to adaptively control the refresh rate of the 2T1C 

gain cell eDRAM.  In this design, the measured storage voltage is translated in the form 

of frequency for convenient off-chip measurement, and the corresponding storage voltage 

can be found out using a calibration procedure.  To remove any systematic error that may 

have been introduced while merging the 256 cells, the calibration step is needed to obtain 

the relationship between the measured storage voltage and the actual retention 

characteristic. 

 

Fig. 4.11:  Proposed storage voltage monitor for adaptive refresh control. 

 

In real systems, operating temperature of cache memories is strongly related with the 

activity of the nearby cores [1].  Therefore, on-chip thermal sensors readily available 
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across the microprocessor can be utilized to control the storage voltage monitor.  For 

example, the thermal sensor can trigger the monitor when there is a predetermined 

temperature change such as 10 ºC in the core area.  The measured storage voltage is then 

sampled and the retention information is sent to the refresh rate control and event 

scheduler as shown in Fig 4.12.  Repetitively sampling the storage node voltage stream 

lines the overall operation and removes any residual voltages in the sample-hold 

capacitors built using thick TOX devices.  During normal chip operation, two consecutive 

samples are enough to for a stable captured storage voltage.  For a retention time of 500 

µs, the average power dissipation of the monitor circuit is less than 1% of the total 

operating power dissipation as thermal conduction has a very long time constant in the 

order of hundreds of milliseconds [43].  In our design, the current consumption of the 

monitor circuit is 849 µA. 

 

Fig. 4.12:  Block diagram of the adaptive refresh control. 

 

4.3  2T1C EDRAM Test Chip Measurements 
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A 128 kb test macro implemented in a 1.2V, 65 nm low-power logic CMOS process 

comprises a conventional 3T array and the proposed 2T1C array for performance 

comparison.  Fig. 4.13 shows the chip microphotograph and key features of the 65 nm 

eDRAM test chip.  Our design achieves a 1.4 ns (=714 MHz) random cycle and a 500 µs 

retention time (after a single-BL repair scheme) at 1.1 V and 85 ºC without using a 

boosted supply.  

            

                                     (a)                                                                  (b) 

Fig. 4.13:  (a) Microphotograph of the 65 nm eDRAM test chip. (b) Chip feature 

summary. 

 

Fig. 4.14 shows the measured retention time distribution of a three eDRAM 

implementations: conventional 3T, the previous 2T [35], and the proposed 2T1C.  The 

amount of boosting (∆) above VDD and below GND is 0.5 V for the 2T and 3T eDRAMs 

whereas the 2T1C operates under a nominal power supply level.  The single-ended 

sensing nature and the small storage capacitance of conventional 3T eDRAMs result in 

the poor retention characteristics.  The asymmetric 2T eDRAM achieves a 400 µs 

retention time for a 99.9% bit yield condition at 1.1 V and 85 ºC.  The retention time for a 

99.99% bit yield is estimated to be 80 µs at 105 ºC which is 2x longer than that reported 
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for a commercial 1T1C eDRAM under the same yield and temperature condition [6].  

Therefore, it is fair to say that an asymmetric 2T eDRAM has a retention time that is 

comparable to real product eDRAMs.  However, the need for a special thick TOX device 

would limit the wide spread adoption of asymmetric 2T eDRAMs, especially for fabless 

companies.  The proposed 2T1C eDRAM achieves similar performance as previous 

designs but without any boosted supplies. 

 

Fig. 4.14:  Measured retention time distribution. 

 

Single-ended sensing methods usually exhibit more BL failures than WL failures 

since variation in the dummy reference cells and the BL-S/A offset impacts the read 

margin of the entire BL.  A decoupled 7T SRAM array was implemented to evaluate the 

effectiveness of a repair scheme under variation effects in the dummy cell and BL-S/A.  

The measured retention bit-map of a 1 kb 2T1C sub-array shows weak bit-lines as well as 

randomly located weak cells (Fig. 4.15).  The proposed 7T SRAM sharing the same BL-

S/A shows better stability compared to a 2T1C cell under the same operating condition.  
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Based on the measured retention time distribution of a 2T1C array in Fig. 4.16(a), we can 

estimate the effectiveness of various repair schemes.  A single BL repair scheme using a 

redundant 2T1C bitline will fail to meet a target retention time of 500 µs with a 

probability of 6.25%.  On the other hand, a single BL repair scheme based on a 7T 

SRAM for an array with 128 BLs can improve the retention time by 150% (200 µs to 500 

µs) while the array overhead is 1.23% as shown in Fig. 4.16(b). 

 

Fig. 4.15:  Measured retention bit-map of 2T1C and decoupled 7T arrays. 

 

           
                                          (a)                                                              (b) 

Fig. 4.16:  (a) Measured retention time distribution of the 2T1C array. (b) 

Effectiveness of various repair schemes. 
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Fig. 4.17(a) shows the measured retention characteristics of the 2T1C eDRAM at 25 

ºC and 85 ºC, respectively indicating a 5X retention time difference in the tail cells 

between the two temperatures.  This implies that a significant reduction in refresh power 

dissipation can be achieved at lower temperatures by adjusting the refresh rate 

accordingly.  Storage voltages were measured using the proposed monitor scheme at 

various temperatures and retention times as shown in Fig. 4.17(b).  The measured storage 

voltage includes all coupling effects during memory access as well as the change in 

leakage currents at different temperatures. 

           
                                       (a)                                                                    (b) 

Fig. 4.17:  (a) Measured retention time distribution of data ‘1’ and ‘0’ at 25 ºC and 

85 ºC. (b) Measurement storage voltage with varying temperature and retention 

time. 

 

Fig. 4.18 shows the static current comparison between a 1Mb SRAM in power down 

mode and proposed 1Mb 2T1C eDRAM.  The data retention voltages of the 6T SRAM 

and the 2T1C eDRAM are 0.6 V and 1.1 V, respectively.  The static current of the 6T 

SRAM decreases exponentially at lower operating temperatures.  Similarly, the static 

current of 2T1C eDRAM can be reduced exponentially by adjusting the refresh rate using 
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the proposed storage voltage monitor.  The static current of the proposed 2T1C eDRAM 

is 72% and 83% smaller than that of 6T SRAM at 85 ºC and 105 ºC, respectively.  

Without an adaptive refresh control, the 2T1C eDRAM has larger static power 

dissipation than the 6T SRAM at lower operating temperatures such as below 65 ºC in 

our tests. 

65nm LP CMOS, 85ºC
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Fig. 4.18:  Comparison of static current between SRAM (with power-gating) and 

2T1C eDRAM (with adaptive refresh control). 

 

           
                                (a)                                                                                (b) 

Fig. 4.19:  Measured VDD shmoo. (a) Random cycle time and retention time of the 

2T1C eDRAM. (b) Static power dissipations of a 6T SRAM and the 2T1C eDRAM. 
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The measured VDD shmoo of random cycle time, retention time and the 

corresponding static power dissipations in Fig. 4.19 shows a wide operating voltage range 

from 1.4 V down to 0.8 V.  One unique aspect of eDRAMs (both 1T1C and gain cell) 

that may not be very obvious to SRAM designers is that a lower operating voltage does 

not necessarily result in a lower static power consumption as shown in Fig. 4.19 (b).  This 

is contrary to SRAMs where the static power goes down at lower supply voltages making 

VMIN the chief design parameter.  Static power in eDRAM is dominated by refresh power 

which can be lower at higher supply voltages due to the robust cell retention 

characteristics.  So the operating voltage for eDRAMs should be chosen not based on the 

functional VMIN of the memory, but based on the lowest power consumption point which 

tends to be higher than an SRAM VMIN. 

 
Fig. 4.20:  Comparison between our design and several embedded memory options. 
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Fig. 4.20 compares the proposed 2T1C eDRAM with several other embedded 

memory options in the same 65 nm LP process.  The measured random cycle time of the 

2T1C eDRAM is 40% faster than that of a 1T1C eDRAM while achieving a similar 

retention time at 105 ºC under a 99.99% bit yield condition.  The 1T1C eDRAM has 

replaced 6T SRAMs in IBM’s POWER7
TM

 microprocessor [6].  Although the cycle time 

of the 1T1C eDRAM is 2X longer than that of 6T SRAMs, the smaller memory footprint 

and shorter global interconnect delay leads to a high overall cache performance.  Bit-cell 

size and random cycle time of the proposed 2T1C eDRAM stands between those of 6T 

SRAM and 1T1C eDRAM, and the read and write paths can be optimized separately 

allowing gain cells to scale favorably in future technology nodes.  Our experimental 

results show that gain cell based eDRAMs can be a strong contender for future embedded 

memories. 

4.4  Conclusions 

Several circuit techniques have been presented for enabling a truly logic-compatible 

gain cell eDRAM with a competitive bit-cell size and improved memory performance.  

The proposed 2T1C gain cell utilizes a beneficial coupling that enhances read margin and 

a preferential boosting that improves write margin.  This unique feature allows us to 

achieve robust DRAM operation without any boosted supplies.  A decoupled 7T SRAM 

was seamlessly integrated as part of the array by sharing control signals with the main 

2T1C array.  The retention time of the 2T1C eDRAM was improved by 2.5X using the 

7T SRAM based repair scheme while the repair failure rate was 6.25% when using 
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redundant 2T1C cells.  The array overhead of the 7T SRAM repair is 1.23% for a single 

redundant BL for every 128 BL’s.  The storage voltage monitor tracks the retention 

characteristics of the 2T1C gain cell under PVT variations while capturing realistic 

coupling effects during memory access.  Measurement results show a 714 MHz random 

cycle using a 500 µs refresh period for a 1 BL repair scheme at 1.1 V, 85 ºC.  The static 

power dissipation including refresh currents and cell leakages was 161.8 µA/Mb at 1.1 V 

and 85 ºC which is 72% lower than that of a power gated SRAM with a data retention 

voltage of 0.6 V. 
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Chapter 5 

A Scalability Exploration of STT-MRAMs Considering 

Variation Effects 

 

5.1  Introduction to STT-MRAM 

Spin-torque-transfer magnetic RAMs (STT-MRAMs) are gaining popularity in the 

research community due to their compact bit-cell structure, excellent scalability and non-

volatility [23]-[32].  An STT-MRAM bit-cell consists of an access transistor and a 

magnetic tunnel junction (MTJ).  The MTJ device has a free magnetic layer and a pinned 

magnetic layer which are separated by a thin insulator layer as shown in Fig. 5.1(a).  The 

simple structure makes the bit-cell size of STT-MRAMs comparable to that of 1T1C 

eDRAMs in a memory specific process.  The MTJ is schematized as a two-terminal 

device with varying resistance.  The typical relationship between MTJ resistance and 

write (WR) current (R-I hysteresis curve) is shown in Fig. 5.1(b).  Depending on the 

direction of the WR current, magnetization of the two layers can be set to a parallel state 

(P: low resistance, data ‘0’) or an anti-parallel state (AP: high resistance, data’1’) using 
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spin polarized current as illustrated in Fig. 5.1(c).  Read (RD) operation is accomplished 

by sensing the resistance difference between the two states using voltage or current Sense 

Amplifier (S/A). 

           

                                      (a)                                                               (b) 

 

(c) 

Fig. 5.1:  (a) Magnetic tunnel junction (MTJ) stack and its corresponding circuit 

schematic as a two-terminal device with varying resistance. (b) Resistance vs. write 

current (R-I) hysteresis curve. (c) Illustration of spin torque transfer (STT) 

switching’s. 

 

The state reversal happens only to the selected bit-cell when the current flowing into 

the MTJ is larger than its threshold current (write threshold current; IC0).  The STT 

switching originates from the exchange of angular momentum between a spin-polarized 

current and the magnetization of the free layer.  The localized spin-injection within a bit-

cell enables the excellent write selectivity with no high oxide field involved nor high 
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temperature required during the switching, which are the most critical scaling challenges 

in currently practical non-volatile memories such as FLASHs and phase-change RAMs 

(PCRAMs or PRAMs).  Most interestingly, the IC0 decreases exponentially with 

technology scaling as the critical current density (JC0) remains constant due to the STT 

switching phenomenon when there is no thermal stability constraint.  Therefore, the slow 

write time (TWR) which is several nanoseconds or even larger, is projected to be improved 

with technology scaling.  Fig. 5.2 shows the STT-MRAM bit-cell schematic and signal 

voltage conditions for each operating mode. 

           

                      (a)                                                                   (b) 

Fig. 5.2:  (a) STT-MRAM bit-cell schematic. (b) Signal voltages for each operating 

mode. 

 

Despite the recent advances in STT-MRAM fabrication and circuit techniques [23]-

[32], it is still unclear whether this emerging memory technology can achieve higher 

overall performance than conventional SRAMs or eDRAMs in future technology nodes 

in the presence of variation effects.  In this work, I explore the scalability and variability 

of STT-MRAM by comparing its performance with 6T SRAM from 65 nm to 8 nm 

process nodes. 

5.2  STT-MTJ Scaling Roadmap 
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Fig. 5.3 shows the proposed scaling methodology for both in-plane and perpendicular 

STT-MTJs.  The lateral dimension of the in-plane MTJ is fixed at 2FxF, where F is the 

half-pitch for a given process node, while the diameter of the perpendicular MTJ is fixed 

at F.  This enables the smallest bit-cell size for standalone as well as embedded memories.  

Although the bit-cell size of embedded memories can be larger than that of standalone 

counterparts, I stick to the aforementioned MTJ dimensions in order to evaluate the 

scalability of STT-MRAMs at the worst condition.  With technology scaling, we should 

maintain signal to noise margins (SNMs) for SRAMs and CS/CBL ratio with practical 

retention time for eDRAMs in order to achieve stable memory operations.  Similarly, the 

JC0•RA (JC0: critical current density in MA/cm
2
 and RA: resistance area product in 

Ω•µm
2
) design space and the thermal stability (∆) of STT-MRAMs needs to be 

maintained for optimal RD and WR performances as well as non-volatile properties. 

 

Fig. 5.3:  STT-MTJ scaling scenario based on dimensional adjustment and/or 

material innovation in order to maintain non-volatility and achieve optimal RD and 

WR operations. 
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5.2.1  In-Plane STT-MTJ Scaling Scenario 

The thermal stability of in-plane STT-MTJs is mainly affected by the elongated shape 

of the free layer. The fundamental equation is expressed as 
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where KU is the uniaxial anisotropy energy density, V is the volume of the free layer, T is 

the operating temperature, HK is the anisotropy, and MS is the saturation magnetization.  

The in-plane shape anisotropy HK can be approximated as  
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where w, AR, and t are width, aspect ratio, and thickness of the free layer, respectively 

[44].  Then, the thermal stability of in-plane STT-MTJs can be simplified as 
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As technology scales, w is shrunk to αw, where α is a scaling factor.  This requires the 

increase of t by 1/√α times in order to maintain thermal stability when AR remains at a 

constant.  The thickened free layer increases JC0, and it is expressed as  
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where e is the electron charge, a is the damping constant, ћ is the reduced Planck’s 

constant, Hext is the external field, and η is the spin transfer efficiency [45].  If we 

combine (2) with (4) while assuming that Hext=0, then JC0 can be expressed as  
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This indicates that JC0 scales by ~1/α0.5
 and write threshold current (IC0) by ~α1.5

 when 

t<<w, where t=1 nm and w=65 nm at 65 nm process node in this work.  In the JC0•RA 

design space, a lower IC0 improves the write time of STT-MRAMs at the expense of read 

margin [46].  In order to ensure the optimal tradeoff between the voltage headroom 

during WR and the sensing margin during RD, a constant JC0•RA/VDD scaling scenario 

is adopted.  The JC0•RA/VDD value was chosen as 0.25 at 65 nm process node 

determined by empirical methods, and this value remains as constant throughout the 

scalability analysis.  Note that, in reality, the JC0•RA/VDD value should be further 

adjusted in each technology for optimal RD and WR performances.  The aforementioned 

STT-MTJ scaling scenario is summarized in Fig. 5.3 (left). 

5.2.2  Perpendicular STT-MTJ Scaling Scenario 

Compared to in-plane STT-MTJs, perpendicular counterparts have no shape 

anisotropy.  The thermal stability of perpendicular STT-MTJs is directly proportional to 

bulk crystalline anisotropy (HK
C
) and the volume of the free layer that is an analogy with 

the cell capacitance of 1T1C DRAMs, where its capacitance is proportional to dielectric 

constant and area.  The thermal stability of perpendicular STT-MTJs is given by 
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where the bulk crystalline anisotropy HK
C
=HK-4πMS for perpendicular STT-MTJs [44].  

With technology scaling, HK
C
•t should be adjusted to HK

C
•t /α2

 in order to maintain the 

thermal stability since w is shrunk to αw.  Consequently, the JC0 of perpendicular STT-

MTJs scales by 1/α2
 and IC0 remains as constant.  Similar to in-plane case, RA values 

were adjusted such that JC0•RA/VDD to be constant as shown in Fig. 5.3 (right). 

5.2.3  STT-MTJ Scaling Trend 

 

Fig. 5.4:  In-plane and perpendicular STT-MTJ scaling trends based on Fig. 5.3. 

 

Fig. 5.4 shows the in-plane and perpendicular STT-MTJ scaling trends based on the 

proposed scaling scenario shown in Fig. 5.3.  The number of cores is 4 at 65 nm process 

node and has been doubled at every two process generations based on Intel’s server 

processor trends with the commensurate increase of on-chip memory densities such that 

each core has a dedicated 4 MB L3 cache [1]-[3].  The required thermal stabilities for 10 

year retention were calculated based on cache densities and allowable chip failure rates.  
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The chip failure rate (Fchip) can be estimated by expanding the cell reversal probability as 

follows:   

)}]1(exp{exp[1
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τ
                                    (7) 

where m is the cache density, t is the 10 years, and Icell is the cell current [29].  The 

allowable chip failure rate is determined by the capability of ECC and/or repair schemes.  

For example, at 22 nm process node with 48 MB density, the allowable Fchip=7.947e-7 

with a repair scheme having a redundant WL and BL per every 64 WL’s and 64 BL’s, 

respectively, and the corresponding required thermal stability is 74.  The JC0 and RA 

values at 65 nm process node were calibrated and refined based on our MTJ test devices 

as well as the previously reported data in [23], [24].  The fabricated MTJ structure, SEM 

image, and summary of measured data are shown in Fig. 5.5 [47].  

 

Fig. 5.5:  Vertical structure and SEM image of fabricated STT-MTJ (left) and 

summary of measured MTJ parameters (right). 

 

A STT-MTJ characterization macro was implemented in a 130 nm CMOS process.  

Fig. 5.6 shows the array layout and feature summary of the STT-MRAM test chip. 
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Fig. 5.6:  STT-MTJ characterization array layout and test chip feature summary. 

 

5.3  STT-MRAM HSPICE Simulation Methodology 

In order to compare the performances of STT-MRAMs with 6T SRAMs considering 

variation effects while technology scales, this section presents the proposed simulation 

methodology including an accurate MTJ macromodel, transistor parameters, sub-array 

architectures, and variation sources. 

5.3.1  STT Switching and MTJ Macromodel 

For efficient Monte Carlo simulations, an accurate MTJ macromodel capturing key 

MTJ properties such as hysteresis, TMR dependency on bias voltage, and the relationship 

between IWR and TWR was adopted [48], [49].  Fig. 5.7 shows examples of the MTJ 

macromodel fitted well with experimental data from [23] as well as our MTJ test devices 

in the characterization macro indicating the write time dependency on the write current.  

There are three distinct STT switching modes; thermal activation, dynamic reversal and 

precessional switching [22].  For fast switching in nanosecond regime, the required 
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switching current density is several times greater than the critical current density (JC0).  

The required switching current density is estimated as follow: 

]
)2/ln(

[)( 00
τ

θπ
τ +∝ CC JJ                                                    (8) 

where τ is the pulse width of switching current and θ is the initial angle between the 

magnetization vector of the free layer and the easy axis. 

 

Fig. 5.7:  MTJ macromodel fitting results using MTJ data from our characterization 

array and [23]. 

 

At a finite temperature, thermal agitation plays an important role in reducing the 

switching current at long write pulses (>10 ns).  In this slow thermal activated switching 

regime, the switching current is dependent on the write current density and the thermal 

stability factor of the free layer. 
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where τ0 ~1 ns is the inverse of the attempt frequency.  The critical current density (JC0) 

can be determined by extrapolating the experimentally obtained switching current density 
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(JC) at τ=τ0.  The JC0 is a good measure of STT performance in a nano-magnetic device 

and corresponds to JC value at switching times ranged from roughly 5 to 10 ns for room 

temperature operation.  The dynamic switching occurs at intermediate write pulses within 

a small range of 3 to 10 ns, which corresponds to the operating speed of currently 

practical STT-MRAMs [28]-[32]. 

5.3.2  Transistor Scaling Trend 

As for simulating access devices and peripheral circuitries, transistor parameters 

available on ITRS [50] were utilized from 65 nm down to 8 nm.  Based on high 

performance logic technology requirements of ITRS, we reproduced core NMOS 

parameters using the ITRS provided MASTAR tool that has been extensively used to 

predict electrical characteristics of advanced CMOS transistors.  The resulting Idsat’s of 

the core NMOS transistors were linearly extrapolated in order to make them have a 

gradual improvement.  This prevents the performance trends of SRAMs and STT-

MRAMs from being distorted by any abrupt change in transistor parameters.  The Vthsat’s 

of the core PMOS transistors are the same with the NMOS counterparts while the Idsat’s 

of PMOS were determined based on ITRS Ion,n/Ion,p ratios.  A boosted wordline scheme 

limited to 2VDD was adopted for a reliable WR operation with a commensurate increase 

in TOX for oxide reliability and a 1.2X longer gate length (Lgate) for variability.  The 

transistor parameters of this special thick oxide device were also extracted using the 

MASTAR tool.  Further increase in the boosted voltage will result in oxide reliability 

issues and difficulties in generating a boosted level stably as witnessed in DRAM designs.  
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The Idsat and Vthsat trends of the core thin and the special thick TOX devices are shown in 

Fig. 5.8 with indicating the innovations of CMOS technologies. 

 

Fig. 5.8:  High performance (HP) transistor scaling trend based on ITRS. 

 

5.3.3  Sub-Array Architecture and Variation Sources 

6T SRAMs used for the comparison have the following transistor dimensions: 

WPU=Wmin, WPD=2xWmin, and WACCESS=Wmin, with all devices using a minimum channel 

length.  This is the most general sizing scheme and extensive Monte Carlo simulations 

were performed to verify good read and write margins.  The width of the STT-MRAM 

access device (WTX) is chosen as 12F based on a 2T1MTJ style cell layout [29].  This 

makes the cell size of the STT-MRAM comparable to that of an eDRAM in a memory 

specific process or 3X denser when compared to an SRAM cell in a generic logic process. 

Fig. 5.9 shows the 128 kb sub-array architectures of 6T SRAM and STT-MRAM that 

has been extensively used in this work for performance evaluations.  The unit 128 kb sub-

array can be tiled to build a larger memory macro.  The layout dimension denoted in the 



 

 92 

figure shows that STT-MRAM is roughly 3X denser that 6T SRAM including all control 

circuitries in a 65 nm low power generic logic process.  The SRAM array includes an 

assist schemes to achieve good RD and WR margins.  The power supply level of SRAM 

array (VSRAM) is dynamically switched in a column-based manner [13].  Namely, the 

VSRAM is controlled to be a 0.1 V higher than wordline voltage level (VWL) in order to 

improve SNM during RD.  On the contrary, VWL is boosted by a 0.1 V than VSRAM for 

better WR margin.  Similarly, dummy cell averaging with disturb-free reference [32] and 

localized write driver techniques [29] are implemented in the STT-MRAM array for 

optimal RD and WR performances. 

           

                                            (a)                                                        (b) 

Fig. 5.9:  128 kb sub-array architectures of (a) SRAM and (b) STT-MRAM. 

 

Variation sources present in practical industry designs have been included in our 

analysis as described in Fig. 5.10 [41], [52], [53].  This ranges from process variation in 

the memory cells and the S/A to realistic fluctuations for the resistances, capacitances, 

reference biases and supply levels.  Here, a gradual scaling of σVt and CBL is again 
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assumed to prevent the performance scaling trends from being distorted with any abrupt 

change in the transistor parameters and the parasitic capacitances although this can 

happen in real situations. 

  

Fig. 5.10:  Simulation set-up for evaluating SRAM and STT-MRAM variability. 

 

Fig. 5.11 shows simulation results of JRD/JC0 vs. read disturb rate at TRD=2 ns with the 

proposed scaling scenario and simulation methodology.  This indicates that read disturb 

worsens for JRD/JC0>2.  The simulation results coincide with the previous MTJ physics-

based analysis in [51] showing that JRD/JC0<2 is required for disturb-free RD operation 

with a duty cycle (TRD/TCYCLE) of 50%.  So we chose a JRD/JC0 of 1.5 in this work. 

 

Fig. 5.11:  Simulated read disturb rate with varying JRD/JC0. 
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5.4  Comparison Between SRAM and STT-MRAM 

In order to demonstrate the potential of STT-MRAM as an alternative for large 

density on-chip memories, this section presents macro level performance comparisons 

with 6T SRAM considering variation effects with technology scaling.  Extensive Monte-

Carlo simulations were performed on megabit density SRAM and STT-MRAM arrays to 

estimate their performance in a practical scenario [41], [52], [53]. 

5.4.1  Macro Performance 

Despite a longer access time, dense memories such as eDRAMs or STT-MRAMs are 

preferred for L2 or L3 caches for their smaller memory footprint and shorter global 

interconnect delay.  Since STT-MRAMs have a 3-5X bit-cell density advantage over 

SRAMs, their system level performance is expected to be higher even with a longer 

access time.  Fig. 5.12 shows the latency comparison between several embedded memory 

options.  We assume a practical scenario that a denser memory has a longer access time.  

1T1C eDRAMs in [4]-[6] have 5X denser bit-cells and roughly 5X longer sensing delays 

than SRAMs.  Similarly, we assumed that the 3X denser STT-MRAM in a generic logic 

process have a 3X longer sensing delay.  When a cache density is small, a memory access 

time is dominant in determining system performance.  Simulated cache latencies with 1 

Mb densities in Fig. 5.12(a) show that shorter sensing delays enable faster system 

performances.  With the increase of memory density, the interconnect with repeater delay 

becomes significant, eventually overcoming the longer sensing delay of denser memories 

as shown in Fig. 5.12(b). 
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                                     (a)                                                                       (b) 

Fig. 5.12:  Latency comparison between several embedded memory options with (a) 

1 Mb and (b) 64 Mb densities. 

 

This concept is well appreciated in 1T1C eDRAMs [4]-[6] and can be also applied to 

STT-MRAMs.  As a rule of thumb, 3-5X denser STT-MRAMs having 3-5X longer 

memory access times can outperform SRAMs in large arrays such as 64 Mb or more.  We 

chose the 3X longer memory access time of STT-MRAMs than SRAMs as an iso-latency 

criterion, which is more than enough since cache densities in Fig. 5.4 start from 16 MB 

(128 Mb) and have been doubled for every two process generations. 

5.4.2  In-Plane STT-MRAM vs. 6T SRAM 

Fig. 5.13 shows the 6σ WR performance comparison between SRAM and in-plane 

STT-MRAM, absolute values in (a) and normalized values in (b), respectively.  Here, the 

write time (TWR) is defined as the WL activation to the time when the cell node flips for 

SRAMs, and the MTJ switching time for STT-MRAMs, respectively.  With technology 

scaling, the TWR of 6T SRAM degrades due to the reduced supply voltage level and the 

ratioed operation even with the write assist scheme [13].  On the contrary, IC0 of in-plane 

STT-MRAMs scales by roughly α
1.5

 enabling continuous improvement of the MTJ 
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switching time.  However, this is not enough for STT-MRAMs to outperform SRAMs in 

write latency even up to 8 nm process node.  If the supply voltage of STT-MRAMs can 

be increased by 0.3V, STT-MRAMs can outperform SRAMs from 15 nm when following 

the constant JC0•RA/VDD scaling scenario.  Unlike in STT-MRAMs where the standby 

power is zero, increasing the supply voltage is difficult in SRAMs as it will directly 

impact the leakage power consumption. 

                

                                       (a)                                                                     (b) 

Fig. 5.13:  In-plane STT-MRAM scaling trends: Write time. (a) Absolute values. (b) 

Normalized to SRAM. 

 

Fig 5.14 shows the detailed TWR distributions of SRAM and in-plane STT-MRAM for 

a 1 Mb macro density in 15 nm process node obtained by running 2
20

 Monte-Carlo 

simulations in HSPICE, which represents the cell-to-cell variation of a 1 Mb memory 

macro. 
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Fig. 5.14:  Write time distributions of SRAM and in-plane STT-MRAM (P-AP) for a 

1 Mb macro density at 15 nm node. 

 

Fig. 5.15 shows the 6σ RD sensing delay comparison between SRAM and in-plane 

STT-MRAM, absolute values in (a) and normalized values in (b), respectively.  Both 

SRAM and STT-MRAM arrays have a 1 Mb macro density and a 256 cells-per-BL 

architecture.  Here, the RD sensing delay (TRD) is defined as the WL activation to the 

time when ∆BL reaches 50 mV for SRAMs, 25 mV for STT-MRAMs, respectively.  Due 

to the single-ended sensing nature and the small TMR, it is not practical for STT-

MRAMs to have the same BL voltage difference with SRAMs.  This requires more 

robust S/As such as delicate pre-amplifiers and complicated reference schemes [29]-[32] 

in STT-MRAM design, resulting in the increase of S/A layout area.  The layout 

dimension of 128 kb sub-arrays in Fig. 5.9 counts this situation.  Based on the assumption, 

the 6σ TRD comparison in Fig. 5.15 indicates that a TMR greater than 200% is required in 

order for STT-MRAMs to be advantageous over SRAMs.  Note that the ITRS predicted 

value 150% for the next decade.  Fig. 5.16 shows the TRD distributions of SRAM and in-
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plane STT-MRAM for 1 Mb densities at 15 nm node.  Even with the reduced BL voltage 

difference of 25 mV, STT-MRAM suffers from read failure due to the small TMR.  This 

requirement can be relaxed by increasing JC0•RA since the fast write performance in Fig. 

5.13 can be traded off for better read margin. 

                     

                                    (a)                                                                         (b) 

Fig. 5.15:  In-plane STT-MRAM scaling trends: Read sensing delay. (a) Absolute 

values. (b) Normalized to SRAM. 

 

 

Fig. 5.16:  Read sensing delay distributions of SRAM and in-plane STT-MRAM for 

a 1 Mb macro density at 15 nm node. 
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5.4.3  In-Plane STT-MRAM vs. Perpendicular STT-MRAM 

Fig. 5.17 shows the scaling trends of JC0 and RA both for in-plane and perpendicular 

STT-MTJs.  Due to the different origin of magnetic anisotropy, the scaling trend of a 

perpendicular MTJ is drastically different from its in-plane counterpart, namely JC0 scales 

by 1/α
2
, resulting in the constant IC0, where α is a scaling factor [44].  It is commonly 

accepted in the research community that the IC0 of perpendicular STT-MTJs is smaller 

than that of in-plane counterpart while maintaining the required thermal stability.  This is 

valid until 22 nm process node based on our projection shown in Fig. 5.4.  The IC0 of in-

plane STT-MRAM is scaled by roughly α
1.5

 while perpendicular one remains constant, so 

the aforementioned trend will be reversed in scaled technologies; from 15 nm in this 

work. 

 

Fig. 5.17:  JC0 and RA scaling trends of in-plane and perpendicular STT-MTJs. 

 

Under the constant JC0•RA/VDD scaling scenario, the RD margin of perpendicular 

STT-MRAMs would be similar to that of in-plane counterparts as shown in Fig. 5.18 (a).  

Fig. 18(b) shows the TWR scaling trends of perpendicular STT-MRAMs.  Even with the 
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constant JC0•RA/VDD scaling scenario, perpendicular STT-MRAMs show very poor 

write performance.  As technology scales, the current drivability of STT-MRAM access 

transistor decrease since the device width scales by α as well as the scaling of supply 

voltage level even with process innovations.  This limits the fast MTJ switching of 

perpendicular STT-MRAM under the constant IC0 scaling conditions in scaled 

technologies.  Note that RA of a perpendicular MTJ needs to be scaled exponentially in 

order to maintain a constant JC0•RA/VDD as shown in Fig. 5.17.  Under this scenario, the 

required RA at 8 nm node is expected to be less than 0.2 Ω•µm
2
 which will cause severe 

reliability issues in the thin insulator as well as imposing limits on the TMR value.  In the  

JC0•RA design space, there should be a significant reduction in JC0 can be achieved 

through MTJ device innovations so that the poor write performance of perpendicular 

STT-MRAMAs can be traded off with the excellent RD margin in Fig. 5.18(a). 

                     

                                        (a)                                                                     (b) 

Fig. 5.18:  Perpendicular STT-MRAM scaling trends. (a) Sensing delay comparison 

with SRAM. (b) Write time comparison with SRAM. 

 

5.5  Conclusions 
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The scalability and variability of in-plane and perpendicular MTJ based STT-

MRAMs have been explored considering MTJ properties as well as CMOS circuits for 

demonstrating the potential as an alternative of high density caches.  The proposed STT-

MTJ scaling scenario is based on dimensional adjustments and MTJ material innovations 

in order to maintain the thermal stability.  The proposed constant JC0•RA/VDD scaling 

method provides optimal RD and WR performances.  The proposed simulation 

methodology includes efficient MTJ macromodel, transistor parameters for access 

devices and peripheral circuitries, state-of-the-art sub-array architectures, and variation 

sources present in practical industry designs.  Our studies based on the proposed 

methodology shows that the in-plane STT-MRAM is a promising alternative for future 

high density cache memories by outperforming SRAMs from 15 nm process node when 

the TMR can be achieved greater than 200% as well as the write supply voltage level is 

raised by 0.3 V with boosted write WL scheme having a 2VDD level.  Perpendicular 

STT-MRAMs suffer from the poor write performance due to the difficulty of IC0 scaling 

while maintaining thermal stability in scaled technologies from 22 nm process node.  

Unless there is a significant reduction in JC0 through MTJ device innovations, write 

performance is expected to become the main bottleneck for perpendicular MTJs in future 

technology nodes. 
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Chapter 6 

Conclusion 

A dense embedded memory is one of the most important components in modern 

microprocessors as a larger cache improves micro-architectural performance with only a 

modest increase in CV
2
f power.  The embedded memory options of 6T SRAMs and 

1T1C eDRAMs have faced with severe scaling challenges in advanced CMOS 

technologies.  In this dissertation, I presented circuit techniques and simulation 

methodologies to demonstrate the potential of gain cell eDRAMs and spin-torque-transfer 

magnetic RAMs (STT-MRAMs) as alternative options for high density embedded 

memories.  Three unique test chip designs that we have been implemented in a generic 65 

nm low-leakage CMOS process were presented to enhance the retention time and read 

speed of gain cell eDRAMs, enabling faster overall system performances and lower static 

power dissipations than SRAMs and eDRAMs.  The scalability of STT-MRAMs under 

variation effects from 65 nm to 8 nm process nodes were explored with our proposed 

scaling scenario and simulation methodology, demonstrating that the alternative option 

can outperform SRAMs in advanced CMOS technologies. 
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In Chapter 2, a 3T gain cell eDRAM with the proposed boosted 3T gain cell, 

regulated bit-line write scheme, and adaptive and die-to-die adjustable read reference was 

presented for enabling a low voltage operation.  Measurement results from a 64 kb 

eDRAM test chip implemented in the 65 nm LP process whose nominal supply level is 

1.2 V show a 1.25 ms data retention time with a 2 ns random cycle time at 0.9 V, 85 ºC, 

and a 91.3 µW per Mb static power dissipation at 1.0 V, 85 ºC.  The measured retention 

time is a 10X improvement over a conventional design measured from the same silicon 

die and the static power dissipation is about 75% smaller than a power-gated SRAM with 

a 0.6 V retention voltage. 

A high performance 2T gain cell eDRAM with a dense bit-cell was presented in 

Chapter 3.  The benefits of the proposed asymmetric 2T gain cell, pseudo-PMOS diode 

based current sense amplifier, half-swing WBL scheme, and stepped WWL driver were 

demonstrated using a 192 kb eDRAM test chip.  Measurement results from the test chip 

show a 667 MHz random cycle frequency with a 512 cells-per-BL architecture and a 400 

µs retention time with a 99.9% bit yield condition at 1.1 V and 85 ºC, and an estimated 

retention time is a 80 µs with a 99.99% bit yield condition at 1.1 V and 105 ºC.  To put 

this perspective, recently published 1T1C eDRAMs show a 500 MHz random cycle time 

and a 40 µs retention time with a 99.99% bit yield condition and 32 cells-per-local BL 

architecture at 1.0 V and 105 ºC.  The latency of the 2T eDRAM is 9.5% faster than a 6T 

SRAM each with a 1 Mb density, and the static power dissipation of the 2T eDRAM is 

81% smaller than a power-gated 6T SRAM.  As the cache density increases, the system 

performance of the 2T eDRAM can be further enhanced than a 6T SRAM while 
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maintaining the static power advantage due to the smaller footprint.  In the 65nm LP 

process, the 2T gain cell is 59.5% smaller than a 6T SRAM. 

In Chapter 4, the proposed 2T1C gain cell, single-ended 7T SRAM repair, and gain 

cell storage monitor enabled a truly logic-compatible gain cell eDRAM with no boosted 

supplies.  A 128 kb eDRAM test chip shows a random access frequency of 714 MHz and 

a static power dissipation of 161.8 µW per Mb with a 500 µs refresh rate at 1.1 V and 

85 °C which are comparable to the previous 2T eDRAM operating with boosted supplies.  

Although the bit-cell size of the 2T1C is 43% larger than that of the 2T, still a 1.72X 

denser than a 6T SRAM. 

Unlike 6T SRAMs or 1T1C eDRAMs, gain cells have a decoupled read and write 

structure leading to improved read and write margins and flexibility in the bit-cell design 

- for example, the read and write paths can be optimized separately allowing gain cells to 

scale favorably in future technology nodes.  With the proposed three designs, this 

dissertation demonstrates that gain cell eDRAMs are a promising alternative for high 

density embedded memories. 

Finally, in Chapter 5, the scalability and variability of in-plane and perpendicular 

MTJ based STT-MRAMs are explored by comparing its performances with 6T SRAM 

for high density on-die memories with the proposed scaling scenario and the simulation 

methodology.  Our studies based on the proposed methodology show that in-plane STT-

MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart 
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requires further innovations in MTJ material properties in order to overcome the poor 

write performance from 22 nm node.  
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