46 research outputs found

    Data-driven crowd simulation

    Get PDF
    Our objective is to simulate entire cities with the most realistic possible scenario. This kind of systems require a lot of processing power, therefore we use hybrid computer clusters with graphics cards (GPUs). GPUs allow us to accelerate calculations and visualization

    Interactive Tracking, Prediction, and Behavior Learning of Pedestrians in Dense Crowds

    Get PDF
    The ability to automatically recognize human motions and behaviors is a key skill for autonomous machines to exhibit to interact intelligently with a human-inhabited environment. The capabilities autonomous machines should have include computing the motion trajectory of each pedestrian in a crowd, predicting his or her position in the near future, and analyzing the personality characteristics of the pedestrian. Such techniques are frequently used for collision-free robot navigation, data-driven crowd simulation, and crowd surveillance applications. However, prior methods for these problems have been restricted to low-density or sparse crowds where the pedestrian movement is modeled using simple motion models. In this thesis, we present several interactive algorithms to extract pedestrian trajectories from videos in dense crowds. Our approach combines different pedestrian motion models with particle tracking and mixture models and can obtain an average of 20%20\% improvement in accuracy in medium-density crowds over prior work. We compute the pedestrian dynamics from these trajectories using Bayesian learning techniques and combine them with global methods for long-term pedestrian prediction in densely crowded settings. Finally, we combine these techniques with Personality Trait Theory to automatically classify the dynamic behavior or the personality of a pedestrian based on his or her movements in a crowded scene. The resulting algorithms are robust and can handle sparse and noisy motion trajectories. We demonstrate the benefits of our long-term prediction and behavior classification methods in dense crowds and highlight the benefits over prior techniques. We highlight the performance of our novel algorithms on three different applications. The first application is interactive data-driven crowd simulation, which includes crowd replication as well as the combination of pedestrian behaviors from different videos. Secondly, we combine the prediction scheme with proxemic characteristics from psychology and use them to perform socially-aware navigation. Finally, we present novel techniques for anomaly detection in low-to medium-density crowd videos using trajectory-level behavior learning.Doctor of Philosoph

    Can we learn where people go?

    Get PDF
    In most agent-based simulators, pedestrians navigate from origins to destinations. Consequently, destinations are essential input parameters to the simulation. While many other relevant parameters as positions, speeds and densities can be obtained from sensors, like cameras, destinations cannot be observed directly. Our research question is: Can we obtain this information from video data using machine learning methods? We use density heatmaps, which indicate the pedestrian density within a given camera cutout, as input to predict the destination distributions. For our proof of concept, we train a Random Forest predictor on an exemplary data set generated with the Vadere microscopic simulator. The scenario is a crossroad where pedestrians can head left, straight or right. In addition, we gain first insights on suitable placement of the camera. The results motivate an in-depth analysis of the methodology

    Requirement Engineering Activities in Smart Environments for Large Facilities

    Get PDF
    Developing a large, but smart environment is a complex task that requires the collaboration of experts of different disciplines. How to successfully attain such collaboration is not a trivial matter. The paper illustrates the problem with a case study where the manager of the facility intends to influence pedestrians so that they choose a task that requires certain effort, e.g. using staircases, instead of the current one that requires less effort, e.g. using the elevator. Defining requirements for such scenarios requires a strong multidisciplinary collaboration which is not currently well supported. This paper contributes with an approach to provide non-technician experts with tools so that they can provide feedback on the requirements and verify them in a systematic way

    Exemplar-AMMs: Recognizing Crowd Movements From Pedestrian Trajectories

    Get PDF
    In this paper, we present a novel method to recognize the types of crowd movement from crowd trajectories using agent-based motion models (AMMs). Our idea is to apply a number of AMMs, referred to as exemplar-AMMs, to describe the crowd movement. Specifically, we propose an optimization framework that filters out the unknown noise in the crowd trajectories and measures their similarity to the exemplar-AMMs to produce a crowd motion feature. We then address our real-world crowd movement recognition problem as a multi-label classification problem. Our experiments show that the proposed feature outperforms the state-of-the-art methods in recognizing both simulated and real-world crowd movements from their trajectories. Finally, we have created a synthetic dataset, SynCrowd, which contains 2D crowd trajectories in various scenarios, generated by various crowd simulators. This dataset can serve as a training set or benchmark for crowd analysis work
    corecore