372 research outputs found

    Modeling and performance evaluation of stealthy false data injection attacks on smart grid in the presence of corrupted measurements

    Full text link
    The false data injection (FDI) attack cannot be detected by the traditional anomaly detection techniques used in the energy system state estimators. In this paper, we demonstrate how FDI attacks can be constructed blindly, i.e., without system knowledge, including topological connectivity and line reactance information. Our analysis reveals that existing FDI attacks become detectable (consequently unsuccessful) by the state estimator if the data contains grossly corrupted measurements such as device malfunction and communication errors. The proposed sparse optimization based stealthy attacks construction strategy overcomes this limitation by separating the gross errors from the measurement matrix. Extensive theoretical modeling and experimental evaluation show that the proposed technique performs more stealthily (has less relative error) and efficiently (fast enough to maintain time requirement) compared to other methods on IEEE benchmark test systems.Comment: Keywords: Smart grid, False data injection, Blind attack, Principal component analysis (PCA), Journal of Computer and System Sciences, Elsevier, 201

    Protection Against Graph-Based False Data Injection Attacks on Power Systems

    Full text link
    Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. By representing power system voltages as smooth graph signals, recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification. Included, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as non-smooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. In addition, we develop a low-complexity algorithm that solves the non-convex GDFI attack optimization problem using ell_1-norm relaxation, the projected gradient descent (PGD) algorithm, and the alternating direction method of multipliers (ADMM). We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 bus test case reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    Detection of False Data Injection Attacks in Smart Grid under Colored Gaussian Noise

    Full text link
    In this paper, we consider the problems of state estimation and false data injection detection in smart grid when the measurements are corrupted by colored Gaussian noise. By modeling the noise with the autoregressive process, we estimate the state of the power transmission networks and develop a generalized likelihood ratio test (GLRT) detector for the detection of false data injection attacks. We show that the conventional approach with the assumption of Gaussian noise is a special case of the proposed method, and thus the new approach has more applicability. {The proposed detector is also tested on an independent component analysis (ICA) based unobservable false data attack scheme that utilizes similar assumptions of sample observation.} We evaluate the performance of the proposed state estimator and attack detector on the IEEE 30-bus power system with comparison to conventional Gaussian noise based detector. The superior performance of {both observable and unobservable false data attacks} demonstrates the effectiveness of the proposed approach and indicates a wide application on the power signal processing.Comment: 8 pages, 4 figures in IEEE Conference on Communications and Network Security (CNS) 201

    Cybersecurity Strategy against Cyber Attacks towards Smart Grids with PVs

    Get PDF
    Cyber attacks threaten the security of distribution power grids, such as smart grids. The emerging renewable energy sources such as photovoltaics (PVs) with power electronics controllers introduce new potential vulnerabilities. Based on the electric waveform data measured by waveform sensors in the smart grids, we propose a novel cyber attack detection and identification approach. Firstly, we analyze the cyber attack impacts (including cyber attacks on the solar inverter causing unusual harmonics) on electric waveforms in distribution power grids. Then, we propose a novel deep learning based mechanism including attack detection and attack diagnosis. By leveraging the electric waveform sensor data structure, our approach does not need the training stage for both detection and the root cause diagnosis, which is needed for machine learning/deep learning-based methods. For comparison, we have evaluated classic data-driven methods, including -nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN). Comparison results verify the performance of the proposed method for detection and diagnosis of various cyber attacks on PV systems

    Detecting False Data Injection Attacks Against Power System State Estimation with Fast Go-Decomposition Approach

    Get PDF

    Vulnerability Analysis of Power System State Estimation

    Get PDF
    corecore