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Summary

State estimation is a significant tool for a system’s control and monitoring purposes.
It is a process of estimating the actual state of the system. It has been extensively
used in electrical power networks. Transformation of power systems to largely
distributed smart grids provides the ability to deal with networks that are more
complex and to enhance robustness. On the other side, for a smart grid to be ro-
bust, its information infrastructure must be reliable in case of failures and attacks.
This thesis contributes to the characterisation of information flows and error prop-
agation within state estimators (centralised and hierarchical) in the face of different
(yet novel) attacks.

For a couple of decades, state estimation has gained much attention and sev-
eral state estimators have been proposed so far including centralized, hierarchical
and distributed. However, as far as resilience and robustness against attacks are
concerned, conventional state estimation has remained the centre of interest. While
future generation smart grid is mostly distributed, decentralised structures are high
in demand to retain system robustness. We particularly propose data and topology
related (novel) attacks for centralised state and then extend them to hierarchical
case determining the necessary and sufficient conditions for the adversary to at-
tack.

We instigate a constrained swapping attack mechanism which will be realis-
tic even with the communication channel (for measurements) being authenticated
and integrity-protected such as those recommended by the ISO/IEC 62351 stan-
dard. We show that measurement re-ordering is sufficient to provoke errors in
state estimation or prevent it to converge. We define security metrics to quantify
the importance of sparse and minimum magnitude re-ordering attacks, assuming
partial knowledge available. In addition, we translate re-ordering attacks on hier-
archical state estimation and study fault propagation in intermediate and top-level
state estimate because of attack on bottom level region.

Among deliberate attacks on state estimation, data-driven malicious activities
e.g., false data attacks are extensively explored than the other main cause i.e., topol-
ogy related attacks. Hence, we consider types of attacks including single and
double topology modifications and study the impacts on state estimators of in-
duced double line faults. Possible effects range from state forcing to divergence
while determining optimal conditions for attackers (with partial system knowl-
edge). Moreover, as topology processing is conventionally performed before state
estimation, attacker has a good chance to stealthily induce and possibly revert
topology changes within a single scan cycle. We exploit the abstraction that all
measurements arrive instantly and synchronously to be processed by state estima-
tor. We therefore give an adversary model by formulating an optimisation problem
that minimises attack cost and determines the impacts in form of denial of service
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attacks up to loss of observability and study recoverability.
Both the use of renewable energy and demand management require more fre-

quent controlled topology changes compared to arising from faults/maintenance.
Topology processing is hence an integral part of state estimation. We expand topol-
ogy processing algorithm for better understanding of vulnerabilities with respect
to an attacker. Therefore, we propose topology modifications that can cause im-
pacts including state forcing and propose an approach to determine optimum cost
attacks for adversaries with limited system knowledge.
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Chapter 1

Introduction

Conventionally, power systems have been following a unidirectional flow of energy
from generation through transmission and distribution to the loads. The downside
of having no real-time information on (load) parameters along with other issues
(including rapidly increase in demand) calls for a more distributed system. To deal
with such drawbacks, the idea of smart grid emerged with a concept of automated
real-time monitoring and control, so that the system is more resilient and robust
to failures/attacks. Regardless of how better is the smart grid, existing power net-
works cannot be completely replaced but both work side by side adding new tech-
nology i.e., smart devices to the system now.

In recent decades, an adequate amount of study has been done dealing with
bad data and robustness issues of power system state estimators. However, most
of the state estimators (introduced) so far are not taking into account the level of
integration involved in recent grid environment i.e., penetration of renewables, mo-
bile loads and high precision measurement devices etc. Such situations demand a
dynamic system able to cope with unanticipated scenarios e.g., load changes and
topology faults including others.

Moreover, reviewing most of the influential works on attacks and mitigation
schemes on state estimation along with their limitations can be a crucial task. It
can be a helpful survey for an interested individual to follow the path of theoretical
advancements in this area.

State estimation depends on remote sensors (for measurements) and topology
processing for its reliable operation. Sequentially, it has a crucial role in Energy
Management system (EMS) operating the grid and carrying out contingency anal-
ysis [4]. Measurements can both be faulty and attacked on sensors or communi-
cation network. Several attacks have been presented ranging from the measure-
ment manipulation [61] to delays in communication channels by Baiocco et al. [9].
False data injection is, however, may not be quite a realistic assumption and that
the future grid is equipped with the security of measurements and communication
channels, at least being authenticated and integrity protected as provided e.g. by
the ISO/IEC 62351 standard. This feature should be investigated for possible ad-
vanced attacks i.e., measurement re-ordering including others, both on centralised
and decentralised state estimation cases (hierarchical).

In addition, attacks on topology have become a vital aspect to consider besides
the well-known data-related attacks. Induced single and multiple line faults would
be interesting to explore. Topology processing can either be performed before (con-
ventionally) or alongside state estimation (generalised). In an ideal world, state es-
timation should take a few seconds for its one scan but rather, a scan cycle is taking
a few minutes until recently. In all respect, an adversary can make changes to the
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1. INTRODUCTION

topology within this time window and remain unobservable by maintaining the
topology to be the same before and after measurement taking process.

Network topology processing is itself a complex algorithm consisting of further
sub-tasks to be performed in a certain order. To launch an attack on topology al-
gorithm, understanding the information flow from one phase to other is critical.
State forcing can be one of the possible impacts of addressing the vulnerability in
topology processing algorithm.

1.1 Research Questions

In this section, we first give justifications/motivations and then state the corre-
sponding research questions.

• Unlike the work mentioned before, most of attacks, however, rely on the as-
sumption that arbitrary values may be injected by an adversary. We argue that
this assumption is quite strong and that instead, it is of considerable interest to
study cases where measurements and communication channels are protected,
at least using authentication and integrity protection as provided e.g. by the
ISO/IEC 62351 standard. RQ1 Can a feasible measurement re-ordering (swap-
ping) attack be modelled in centralized state estimation assuming certain security
protocols?

• In addition to the same security measures in place, it would be interesting to
see the error propagation after a swapping attack in a decentralised structure.
RQ2 and translated to hierarchical (decentralized) case with reference to swapping
in one of the sub-areas?

• Looking into line-faults, it is compelling to see how an attacker can fool Trans-
mission System Operators (TSO)/ Distribution System Operators (DSO) into
believing that a topology change has occurred, while no such change has
taken place. RQ3 Can targeted single-line and double-line attacks be made pos-
sible against state estimation and constructed to determine optimal attack strategies
for such attacks?

• Moreover, with transient topology changes in today’s grid, it is of consider-
able interest to study a type of topology attack within a single measurement
poll. RQ4 How the transient topology changes affect state estimation particularly
if occurred during a single scan cycle and what is the possible trade-off between the
reverse-nature sequential topology attack and its overall impact?

• Finally, a type of state forcing attack which is initiated by topology processing
is quite appealing to examine. RQ5 Can different phases of topology processing al-
gorithm be explicitly demonstrated and vulnerability be spotted in respect of attacker
to launch a possible state forcing topology attack?

After giving the motivation statements and the follow-up questions, we put for-
ward our research proposal as:
An investigation of State Estimation robustness in the face of both data and
topology-driven attacks in a decentralized configuration focused on state forc-
ing.
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1.2 MAIN CONTRIBUTIONS

1.2 Main Contributions

In this thesis, we address the general problem of attack models with regards to the
updated security and safety protocols in power system state estimation. As noted
above, the research described in this thesis makes contributions in two specific ar-
eas within this field: data-related attacks and topology-related attacks. We enlist
the main contributions as follows:

• We propose a measurement swapping attack model and critically examine
the assumptions/constraints for instantiating this model, including all those
previously presented for various attacks. We offer a greedy algorithm to find
a re-ordering attack along with the optimization tools. This analysis reveals
several practical issues with existing models including the consideration of
strong assumptions against weak detection methods. We translate the mea-
surement re-ordering attack to a three-level hierarchical infrastructure (which
was already developed by Baiocco et al. in [10]) while considering the region
and level-wise division and information flow.

• Topology processing and risks involved in its manipulation is an area of huge
practical importance. We propose algorithmic visualisations of all the steps
involved in topology processing. Understanding the vulnerability and nov-
elty, we offer both general and induced topology faults along with the nec-
essary and sufficient criteria for the attacker to force a certain system state.
Optimization tools are used to achieve optimal attacks.

• We initiate a novel topology attack scenario as In-cycle Topology modifications
to exploit the time interval before the next state estimation roll defining the
limitations of such attack. Time constrained optimization problem is formu-
lated to get the optimal sequential attack.

1.3 List of Publications

• Gul, A. and Wolthusen, S.: ‘Measurement Re-Ordering Attacks on Power
System State Estimation’ in Innovative Smart Grid Technologies Conference Eu-
rope (ISGT-Europe), 2017 IEEE PES, and pp. 26-29 (DOI: 10.1109/ISGTEu-
rope.2017.8260145).
• Gul, A. and Wolthusen, S.: ‘A Review on Attacks and their Countermeasures

in Power System State Estimation’ in Smart Micro-Grid Systems Security and
Privacy (SMGSP 2017).
• Gul, A. and Wolthusen, S.: ‘Error Propagation after Re-ordering Attacks in

Hierarchical State Estimation’ in Twelfth IFIP WG 11.10 International Conference
on Critical Infrastructure Protection, Virginia, USA, March 2018.
• Gul, A. and Wolthusen, S.: ‘In-Cycle Sequential Topology Faults and Attacks:

Effects on State Estimation’ in Thirteenth International Critical Infrastructures
Conference (CRITIS), Lithuania, 2018.
• Gul, A. and Wolthusen, S.: ‘State Estimation under Undetectable Single and

Double Line Failures’ in Innovative Smart Grid Technologies Conference (ISGT-
North America), 2019.
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1. INTRODUCTION

• Gul, A., Baiocco, A. and Wolthusen, S.: ‘State Forcing under Dynamic Topol-
ogy Faults and Attacks’ (under review)

1.4 Structure of the Dissertation

The remainder of this thesis is divided into three parts:

• Part I contributes an introductory review. It consists of following two chap-
ters.

– Chapter 2 provides background material and covers the following top-
ics: an overview of power system state estimation techniques, topology process-
ing principles, bad data detection (identification) and optimal (and continuous)
power flow.

– Chapter 3 provides a state of art for the following topics: state estima-
tion, topology detection and identification, error propagation due to attacks
(data and topology), Phasor Measurement Units (PMUs) and a discussion
of the shortcomings of existing state estimation, bad data detection and
attack regimes.

• Part II is comprised of attacks on centralised and decentralised state estima-
tion. This part is the author’s (my) original contribution.

– Chapter 4 introduces a mathematical model for measurement re-ordering
attack. It considers modern security measures in designing an attack
model to address identified shortcomings in existing schemes. Further,
it provides a detailed analysis of how re-ordering attack can be trans-
lated on hierarchical state estimation. In particular, it describes the im-
pact of message swapping in a region of lower level on the regions of
upper level(s).

– Chapter 5 provides a detailed specification and analysis of topology at-
tacks including single-line, double-line and in-cycle failures. Least cost at-
tacks can be formulated by solving a constrained optimization problem.
In addition, induced double-line faults can be designed in a way to avoid
detection however causing the desirable bias. Also, it introduces in-cycle
topology attacks which gives an overview of a scan cycle of the measure-
ment taking process.

– Chapter 6 describes in detail the algorithm of topology processing, and
also gives the pseudo-codes of each of the sub-processes. Moreover, it
identifies the vulnerability by formulating a state forcing attack on topol-
ogy processing.

• Part III concludes the thesis by summarising the main contributions including
the model limitations as well as highlighting possible areas for future work.
This part of the thesis consists of a single chapter.
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Chapter 2

Background

This chapter provides the background material on Power grid necessary for the
remainder of the thesis. It is concerned with introducing real-time network model,
network topology processing, WLS state estimator and observability analysis. It
also introduces multi-area state estimation including hierarchical and distributed
state estimation.

A power grid has several main elements e.g., power plant, transformer, trans-
mission line, substation, distribution line and the distribution transformer among
others. Usually, the number of elements in an actual grid varies a lot, e.g., medium-
scale system model with buses on the order of 10000 and large-scale on the or-
der of 22000 buses [74]. In general, neither grid models nor grid data are publicly
available [65] however, there are various European and British grid models that
are available e.g., French, Polish, Iceland and British grids respectively. For in-
stance, Iceland network data which represents electricity transmission network of
Iceland consists of 118 nodes, 206 branches and 35 generators. British grid data (GB
network) represents detailed model of electricity transmission network of Great
Britian (GB) which consists of 2224 nodes, 3207 branches and 394 generators [1].

The definitions of some of the elements are as follows:

• A generating plant is an installation that produces electric current for commer-
cial sale.

• A transmission line is a pair of electrical conductors carrying an electrical sig-
nal from one place to another.

• A Substation transforms voltage from high to low, or the reverse, or perform
any of several other important functions.

• A transformer is a passive electrical device that transfers electrical energy from
one electrical circuit to another, or multiple circuits.

2.1 Real-Time Power Network Model

All the elements of the power grid are connected through a communication net-
work called Smart Grid Communication Network (SGCN). SGCN is expected to
carry various types of traffic that require different quality of services (QoSs) in
terms of bandwidth, latency and reliability [72]. The following Table 2.1 provides
typical bandwidths and delays required by different traffic types.

Figure 2.1 illustrates the conceptual reference diagram for smart grid informa-
tion networks [15]. It consists of six domains such as bulk generation, transmission,
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2. BACKGROUND

Traffic Types Descriptions Bandwidth Latency
Meter Reads Meters report energy con-

sumption (e.g., the 15min in-
terval reads are usually trans-
ferred every 4h)

upto 10kbps 2− 10s

Demand Re-
sponse (DR)

Utilities to communicate with
customer device to allow cus-
tomers to reduce or shift their
power use during peaks

Low 0.008s

Connects and
Disconnects

To connect/disconnect cus-
tomers to/from the grid

Low 0.010s

Synchrophasor The major primary measure-
ment technologies deployed
for WASA

A few
100kbps

0.008s

Substation
SCADA

Periodical polling by the
master to IEDs inside substa-
tion

10− 30kbps 0.008s

Inter-substation
communications

Emerging applications such
as DER might need GOOSE
communication outside sub-
station

- 0.010s

Substation
Surveillance

video site surveillance A few Mbps 0.004s

FLIR for distribu-
tion grid

To control protec-
tion/restoration circuits

10− 30kbps 0.004s

Protection for mi-
crogrids

To report to faults, isolate
them and ensure that loads
are not affected

- 100ms −
10s

Table 2.1: QoS requirements of some types of traffic in SGCN [72]

distribution, customer, operations, service providers and market. Generation sta-
tions which generate electricity and send to the transmission line. The transmission
system that carries the power from generating centres to load centres through mul-
tiple substations. This network is typically operated by a Regional Transmission
Operator or Independent System Operator (RTO/ISO) whose primary responsibil-
ity is to maintain stability on the electric grid by balancing generation with load
across the transmission network. The distribution domain is the electrical intercon-
nection between the transmission domain, the customer domain and the metering
points for consumption, distributed storage, and distributed generation which may
be arranged in a variety of structures, including radial, looped or meshed. Cus-
tomer domain is the domain where electricity is consumed. Operations domain is
responsible for the smooth operation of the power system.

A real-time power system model is a mixture of static data from network and
snapshots of real-time measurements (phasor measurements). Static network data
is related to the parameters while real-time measurements including analogue mea-
surements and switch statuses. A real-time model is a mathematical representation
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2.1 REAL-TIME POWER NETWORK MODEL

Figure 2.1: Reference Model for Power Network [15]

of the current conditions in a power network extracted at intervals from state esti-
mation results [70]. Real-time modelling is a six-step procedure that a power net-
work usually follows:

• data gathering

• network topology processing

• observability analysis

• state estimation

• processing of bad data and

• identification of network model.

Step 1) is data or measurement gathering assumes a bus-section/switching-device
model. Steps 2) and 3) assume that the given switch status is true. Step 4) assumes
the parameters to be correct as well. Step 5) processes bad data considering them
as faults in analogue measurements.

Note that the above procedure does not include any security-related processes
e.g., attack or malicious activities. In addition, the topic of observability analysis is
not described in detail here (For details please see [16]).

As far as typical measurement size is concerned, it is 10-16 bits. As seen in Fig.
2.2 energy storage technology can be present at different locations in the power
grid where electricity is generated, transported, consumed, and held in reserve
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(back-up). Based on the location, these storage systems can be large-scale (GW),
medium-sized (MW) or micro, local (kW). The capabilities of different type energy
storage systems [24] are given below:

• The bulk energy storage has capacity in GW e.g Thermal storage, Pumped
hydro.

• The grid storage systems has capacity in MW e.g super capacitors, flywheel.

• The end-user storage systems has capacity in kW e.g Li-ion batteries.

The energy storage systems maintain a real-time balance between generation and
load (matching supply to demand). Information processing in a power system
involves primary analysis at the power plants and substations and then the sec-
ondary analysis by integrating the primary processing from throughout the net-
work [43]. These monitoring and control functions can be summarised as super-
visory control and data acquisition (SCADA). This system controls and monitors
the parameters (voltage, current etc) of electric grid from a central control location
through a software installed on computers which have processing capability of 2-3
Ghz. Moreover, as far as security protection capabilities are concerned, a power
grid has a mixture of several protections which can be summarized and compared
as follows [23]:

• Risk management involves machine learning and adaptive relaying etc.

• Situational awareness and asset discovery involves cyber and physical based
anomaly detection and asset management etc.

• Automated orchestration involves threat informed defences and mitigation
sharing etc.

• Endpoint Protection involves trusted systems and device fingerprints etc.

• Boundary Protection involves zero trust architecture and command register
etc.

• Identity-based networking involves virtual secure enclave etc.

2.1.1 Conventional State Estimation

State estimation relies on data gathering and topology processing and the protec-
tive features that they may or may not have. The basic IEEE C37.118 and the ba-
sic IEC 61850-90-5 are the two well-known communication frameworks for syn-
chrophasor technology [50].

2.1.1.1 IEEE C37.118

IEEE C37.118 is the improved version of IEEE 1344 which was the first available
synchrophasor communication standard. It defines methods for evaluation of syn-
chrophasor measurements, time synchronization, application of time-tags and for-
mat of messages exchanged over the network.
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2.1 REAL-TIME POWER NETWORK MODEL

Figure 2.2: Storage capabilities of various parts of the system

Due to no encryption, eavesdropping on IEEE C37.118 traffic could reveal use-
ful information to an attacker e.g., name and current state of substation, location
of devices (PMUs, breakers etc), communication configurations etc. An attacker
may launch authentication or access attack to get unauthorized access to informa-
tion. Such an attack could be launched on a physical device or network traffic (by
inspecting packet content). With no authentication process in IEEE C37.118, it is
possible that a device assumes data is received from genuine sender but it may
indeed generated by an intruder.

In addition, Man-in-the-middle MITM attack on the configuration message of
IEEE C37.118 could permanently leave a receiver unable to decode upcoming data
messages. Another common attack in communication system is Denial of Service
(DoS) which targets availability and IEEE C37.118 is vulnerable to DoS/availability
attacks.

The communication overhead indirectly reflects the maximum size of data that
can be included in a single packet. It is also a factor determining how much addi-
tional channel bandwidth is required due to overhead information. High commu-
nication overhead for synchrophasor applications which involve high data trans-
mission rates significantly increases the channel bandwidth requirement. Note that
the communication overhead for IEEE C37.118 is significantly high. IEEE C37.118
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data messages are very compact in size due to reporting configuration/decoding
information separately in infrequent configuration message, resulting in much lower
bandwidth requirement.

2.1.1.2 IEC 61850-90-5

IEC 61850-90-5 is derived from IEC 61850 which was initially proposed for sub-
station automation. IEC 61850 is a complete communication system that addresses
modeling of power system components, abstraction of services and communication
protocols and methods.

IEC 61850-90-5 is protected against unauthorized access attacks as security cre-
dentials are only known to authorized devices (assuming that communicating de-
vices are secure). Re-ordering attack stores network traffic between communicat-
ing peers and replays it to the receiver to hide real time status of the sender (e.g.,
power system). The outdated replayed packets will leave receiver unintentionally
performing wrong decisions. Replay/reflection attacks could be launched on both,
unencrypted (e.g., IEEE C37.118) as well as encrypted (e.g., IEC 61850-90-5) traffic.

Furthermore, IEC 61850-90-5 based communication is protected against MITM
attacks due to encryption. As far as DoS are concerned, IEC 61850-90-5 is vulnera-
ble to DoS/availability attacks. However, it could be mitigated to some degree in
IEC 61850- 90-5 communication.

The overhead is relatively low for IEC 61850-90-5. It has high bandwidth re-
quirement because of the fact that IEC 61850-90-5 has large packet size due to meta-
data and carrying complete decoding information in each packet.

2.1.2 Node Capabilities

In the traditional grid like in 1980s, the measurement cycle (e.g, voltage, current,
phase are collected and) was measured in minutes. State estimation was done
on the order of once every couple of minutes. In such scenario, node capabilities
stopped really mattering. In other words in a conventional grid where you did not
have PMUs or the need to co-ordinate (and then run state estimation frequently),
the requirements were just very different. This was developed in the early 1970s
and at that time, state estimation calculations were still demanding on the system
running the state estimator, and communication requirements had to be satisfied
over slow links. Now (with aggressive use of PMUs), communication and compu-
tational requirements went up several orders of magnitude.

2.1.2.1 SCADA node

Supervisory control is a general term for a high-level of overall control of many in-
dividual controllers or multiple control loops. It gives the operations supervisor an
overview of the plant process and permits integration of operation between low-
level controllers [4]. Whereas, Data acquisition is the process of sampling signals by
measuring a physical property of the real world in the form of signals and convert-
ing it from analog waveform into digital numeric values so that it can be processed
by computing machines. Following are the minimum system requirements to host
SCADA [2]:
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2.1 REAL-TIME POWER NETWORK MODEL

• 1.5 GHz processor; recommended: 2.4 GHz multi-core processor

• 1 GB RAM; recommended: 4GB RAM

• Windows 7 or higher (not Embedded Compact)

• Microsoft .NET 4.0 Framework

2.1.2.2 EMS node

An energy management system (EMS) is a system of computer-aided tools used by
operators of electric grids to monitor, control, and optimize the performance of the
generation or transmission system. Also, it can be used in small scale systems like
microgrids.

2.1.2.3 Sensor node

Recently, the difference came when you have a network full of PMUs. In case of
PMUs, there are some requirements like reliable timestamps and they have the ca-
pability to send these messages either by IEEE C37 or IEC 61850 protocol. The
choice of the protocol matters because the communication overhead you are pro-
ducing depends on the protocol [50]. For example, if I sent you a message that is
cyrptographically protected, on the sender side, no problem but if the receiver has
to do the decryption and verification not for just one sensor but thousands of them.
As currently utilities are putting PMUs quite aggressively in their network mainly
because of the cost (as the cost of PMUs has gone down may be by the factor be-
tween 20-50). In other words, you can put PMUs in a lot more places inside your
network therefore getting a precise state estimate. But the flip side is that now all
these sensors will now produce a much greater volume of traffic of values that need
to be processed and fed into state estimator. In a European network, these measure-
ments will come in up to every 1/50th of a second (20ms) because it is fairly com-
mon to take these measurements at a maximum speed of the grid frequency i.e., 50
Hz. You can take them less frequently but that will be a kind or worst case estimate
i.e, every PMU generates messages of the order of few hundreds of bytes (in size)
and does that every 20ms that means the recipient will now have 20ms to receive
and process this message feeded into the state estimator and now you multiply that
with however many units you have. Even so, that is not much of a concern when
you have e.g., 20-25 PMUs spread throughout the network but when you multiply
that with a 1000 or 5000, then you are certainly talking about an awful lot of mes-
sages that need to be processed. Certainly, the EMS that is running state estimator,
the pressure isn’t so much coming from running the state estimation algorithm but
also the pressure of handling the measurements.

2.1.3 Storage Capabilities

Actually, for the state estimator, a relatively limited time horizon is needed and
no need to retain a huge amount of history. As far as storage capabilities are con-
cerned, we only need a sliding time window to retain messages and not storage
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upto even day(s), say for example to detect re-ordering attacks, we will be inter-
ested in keeping the packet history in a certain window while no need to retain of
what happened yesterday.

2.1.4 Processing Capabilities

As per processing capabilities, state estimation algorithm has the influence of the
size of the measurement matrix, the more PMUs you have, the larger the matrix.
Therefore, computationally more complex in addition to the topology processing
and all that worst case scenario every 20ms.

Real-time power network modelling in conventional state estimation has two
components i.e., 1. processing of topological data (switching device statuses) and 2.
processing of analogue data (power flow, power injection, voltage measurements
etc.). The first phase involves the processing of switch-status data using a bus-
section/ switching-device network model. In a conventional setting, the next tasks
including state estimation consider system topology to be known.

2.1.5 Generalised State Estimation

There is no definite dividing line between logical and analogue data processing in
generalised state estimation. Rather, it often estimates some parts of topology and
even network parameters. In the case of topology faults, this type of precise switch
status modelling helps bad data analysis to detect/identify errors.

This case also includes measurements on zero impedance branches and switches
due to the parts of the network model being at the physical level. These new mea-
surements are called pseudo-measurements and the additional state variables will
be augmented with the conventional state vector. Pseudo-measurements will be
added in both the cases of switch status being open or closed but will be ignored if
it is unknown. There can be conditions where wrong switch status affects state estimation
results. In such situations, it is more desirable to consider that status as unknown.

2.2 Topology Processing

A network topology processor (NTP) is the pre-requisite in state estimation. It is
responsible for the first stage of data processing and to determine the connectivity
and the location of the metering devices in the system. The main function of an
NTP is to transform the bus-section/switching device model to bus/branch model
and to allocate metering devices to the parts of the new model. Topology process-
ing can be performed either by a conventional method or generalized method. Conven-
tional topology processing is performed before other functions like state estimation
and bad data analysis. On the other hand, generalized topology processing can be
considered as an on-line approach that sends the topology information in parallel
with the other measurement data for state estimation [70]. Generalised topology
processing involves one task in addition to the basic functions of conventional one
i.e., to identify extended islands. This will help to represent the open switching
devices in the database more explicitly. This way, suspected and unknown statuses
can be identified and help in processing bad data.
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Converting raw analogue measurements into appropriate units is the first task
of the network topology processor. Next task includes simple tests and checks
i.e. verifying operating limits, validating non-zero flows in open switches and
non-zero voltage differences across closed switching devices. Assuming that the
switching data is correct, initially, a bus-section/switching-device model is con-
sidered and data is gathered for topology processing. Then the state estimator as-
sumes the topology to be correct and carry on with estimating the states and detect-
ing/identifying bad data. Recently, there is quite a number of papers addressing
topology processing with distinct perspectives including [55] where the authors
studied topology processing in distribution systems and [34] where the topology
processing itself is explicitly described.

2.3 State Estimation

State Estimation is the core function in the control centre of the power systems.
State estimator evaluates the most likely state of the system by filtering and pro-
cessing the measurements from the RTUs installed in the system via transmission
lines, In this section, two well-known methods to solve the state estimation prob-
lem will be discussed briefly, which are Weighted Least Square (WLS) Method and
Weighted Least Absolute Value (WLAV) Method. Other methods are stated in Sec-
tion 3.1.

2.3.1 Weighted Least Square (WLS) State Estimation

The well-known WLS approximation involves solving a non-linear set of equations
relating measurements and state variables (voltage magnitudes and phase angles)
by minimizing the summation of squares of residuals. Consider the non-linear
measurement model as,

z = h(x) + e (2.1)

where z is the vector of measurements (m vector), x is the state vector (n vector,
and m > n), h(.) is usually a non-linear function relating measurements to the
states and e is the vector of measurement errors having zero mean and known
co-variance, which is denoted by R. The errors are assumed to be independent,
therefore, R is a diagonal matrix.

Cov(e) = R = diag{σ2
1, σ

2
2, · · · , σ2

m} (2.2)

Now, the objective function will be given as

J(x) =
m∑
i=1

(zi − hi(x))2/Rii = [z− h(x)]TR−1[z− h(x)] (2.3)

which is to be minimized and the first-order optimality condition is

g(x) =
∂J(x)

∂x
= −HT (x)R−1[z− h(x)] = 0 (2.4)

Where H(x) = ∂h(x)/∂x. After expanding g(x) with Taylor series and writing the
relation of k + 1 iteration in terms of kth iteration

xk+1 = xk −G(xk)−1g(xk) (2.5)
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Where G(x) is the Gain matrix

G(xk) =
∂g(xk)

∂x
= HT (xk)R−1H(xk) (2.6)

With the help of the above three equations, the normal equation to solve the state
estimation problem will be

G(xk)∆xk+1 = HT (xk)R−1(z− h(xk)) (2.7)

Where ∆xk+1 = xk+1 − xk.
We can summarize this method by a simple algorithm.

• Initialize the state vector xk for k = 0 and get the measurement function h(x).

• Calculate the Jacobian H(x) and the gain matrix G(x) from Eq. (2.3).

• Determine the right-hand side of normal Eq. (2.4) and solve it for ∆xk

• Check for convergence, | ∆xk |≤ ε.

• If not converged, update xk+1 = xk + ∆xk and get a new h(x) and repeat the
above procedure.

It is assumed that now the reader has a rigorous view of the state estimation. Before
going into the details of the procedures, some definitions are worth mentioning:

Definition 2.1 (Energy Management System (EMS) [68])
An energy management system is usually a collection of computer-aided tools used by op-
erators of electric facilities to monitor, control, and optimize the performance of the gen-
eration and/or transmission system. Different computer aided tools are implemented from
short time control modules to scheduling or commitment of power production units on a
day/week basis.

Definition 2.2 (Supervisory Control And Data Acquisition (SCADA))
Supervisory Control And Data Acquisition (SCADA) is a system for remote monitoring
and control that operates with coded signals over communication channels (using typically
one communication channel per remote station).

Definition 2.3 (Remote Terminal Units (RTUs))
Remote Terminal Units (RTUs) is a microprocessor-controlled electronic device that inter-
faces objects in the physical world to a distributed control system or SCADA (supervisory
control and data acquisition) system by transmitting telemetry data to a master system,
and by using messages from the master supervisory system to control connected objects.

Definition 2.4 (Intelligent Electronic Devices (IEDs))
Intelligent Electronic Devices (IEDs) are the devices incorporating one or more processors
with the capability to receive or send data/control signals from or to an external source (e.g.,
electronic multi-function meters, digital relays, controllers) [33].
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Definition 2.5 (Phasor Measurement Units (PMUs))
Phasor Measurement Units (PMUs) are the devices that measure voltage and current mag-
nitudes using a global positioning system (GPS) reference source for synchronization with
an accuracy of 1µ second. The resultant time-tagged phasors can be transmitted to a local
or remote receiver at rates up to 60 samples per second [33].

For giving more transparency, the network model and the method to construct
h(xk) and H(xk) is as follows:

2.3.1.1 Network Model

We can model the entire power network if we start from the line data information.
First, by writing the nodal equations for each bus from Kirchhoff’s current law be-
ing applied on each bus. Net current injection and net voltage phasors are denoted
by I and V respectively and nodal equations will become

I =

 i1
...
iN

 =

Y11 · · · Y1N
... . . .

...
YN1 · · · YNN


 v1

...
vN

 = YV̄ (2.8)

where ik and vk is the current injection and voltage phasor at bus k respectively.
Each element of the admittance matrix Y is denoted by Ykm. In general, bus admit-
tance matrix is complex i.e., it is of the form G + jB.

Each entry of Y can be derived from scratch by using one branch at a time by
these equations,

Ykk = Ykk + ykm/|a|2

Ykm = Ykm − ykm/a∗
Ymk = Ymk − ykm/a
Ymm = Ymm + ykm

(2.9)

where ykm is the line series admittance of the branch (k,m) and a is off-nominal tap
ratio which is considered as complex.

2.3.1.2 The measurement function h(xk)

The measured quantities include real and reactive power injection Pi andQi at each
bus i, real and reactive power flow Pij and Qij and the line current flow Iij from
every bus i to bus j. They are related to the state variables as

Pi = Vi
∑
i 6=j

Vj(Gijcosθij +Bijsinθij) (2.10)

Qi = Vi
∑
i 6=j

Vj(Gijsinθij +Bijcosθij) (2.11)

Pij = V 2
i (gsi + gij)− ViVj(gijcosθij + bijsinθij) (2.12)

Qij = −V 2
i (bsi + bij)− ViVj(gijsinθij − bijcosθij) (2.13)

Iij =
√
P 2
ij +Q2

ij/Vi (2.14)
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Where in the above relations, Vi is the voltage magnitude at bus i,
θi is the phase angle at bus i, θij = θi − θj ,
Gij + jBij is the ijth element of the admittance matrix,
gij + jbij is the admittance of the series branch between buses i and j
and gsj + jbsj is the admittance of the shunt branch at bus i.

2.3.1.3 The measurement Jacobian H

The Jacobian matrix H can be written as

H =



∂Pinj
∂θ

∂Pinj
∂V

∂Pflow
∂θ

∂Pflow
∂V

∂Qinj
∂θ

∂Qinj
∂V

∂Qflow
∂θ

∂Qflow
∂V

∂Imag
∂θ

∂Imag
∂V

0
∂Vmag
∂V


(2.15)

Where in each block

• the expressions corresponding to Pi (real power injection):

∂Pi
∂θi

=

N∑
j=1

ViVj(−Gijsinθij +Bijcosθij)− V 2
i Bii (2.16)

∂Pi
∂θj

= ViVj(Gijsinθij −Bijcosθij) (2.17)

∂Pi
∂Vi

=
N∑
j=1

Vj(Gijcosθij +Bijsinθij) + ViGii (2.18)

∂Pi
∂Vj

= Vi(Gijcosθij +Bijsinθij) (2.19)

• the expressions corresponding to Qi (reactive power injection):

∂Qi
∂θi

=

N∑
j=1

ViVj(Gijcosθij +Bijsinθij)− V 2
i Gii (2.20)

∂Qi
∂θj

= ViVj(−Gijcosθij −Bijsinθij) (2.21)

∂Qi
∂Vi

=

N∑
j=1

Vj(Gijsinθij −Bijcosθij)− ViBii (2.22)

∂Qi
∂Vj

= Vi(Gijsinθij −Bijcosθij) (2.23)
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• the expressions corresponding to Pij (real power flow):

∂Pij
∂θi

= ViVj(gijsinθij − bijcosθij) (2.24)

∂Pij
∂θj

= −ViVj(gijsinθij − bijcosθij) (2.25)

∂Pij
∂Vi

= −Vj(gijcosθij + bijsinθij) + 2(gij + gsi)Vi (2.26)

∂Pij
∂Vj

= −Vi(gijcosθij + bijsinθij) (2.27)

• the expressions corresponding to Qij (reactive power flow):

∂Qij
∂θi

= −ViVj(gijcosθij + bijsinθij) (2.28)

∂Qij
∂θj

= ViVj(gijcosθij + bijsinθij) (2.29)

∂Qij
∂Vi

= −Vj(gijsinθij − bijcosθij)− 2(bij + bsi)Vi (2.30)

∂Qij
∂Vj

= −Vi(gijsinθij − bijcosθij) (2.31)

• the expressions corresponding to Vi (voltage magnitude):

∂Vi
∂Vi

= 1,
∂Vi
∂Vj

= 0 (2.32)

∂Vi
∂θi

= 0,
∂Vi
∂θj

= 0 (2.33)

• the expressions corresponding to Iij (current magnitude)

∂Iij
∂θi

=
g2
ij + b2ij
Iij

ViVjsinθij (2.34)

∂Iij
∂θj

= −
g2
ij + b2ij
Iij

ViVjsinθij (2.35)

∂Iij
∂Vi

=
g2
ij + b2ij
Iij

(Vi − Vjcosθij) (2.36)

∂Iij
∂Vj

=
g2
ij + b2ij
Iij

(Vj − Vicosθij) (2.37)

Example 1 Consider a 3-bus power system shown in Fig. 2.3. The network data
are presented in the table below. 2
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Figure 2.3: one-line diagram and measurement configuration of a 3-bus power sys-
tem [4]

Line
(from bus)

Line
(to bus)

Resistance
R(pu)

Reactance
X(pu)

Total Susceptance
2bs(pu)

1 2 p12 0.888 0.008
1 3 p13 1.173 0.008
2 3 p2 −0.501 0.010

The system is monitored by 8 measurements and hence m = 8 in Equation 2.3.1.
Measurement values and their associated error standard deviations

√
Rii = σi, are

given as:

Measurement, i Type Value (pu)
√
Rii

1 p12 0.888 0.008
2 p13 1.173 0.008
3 p2 −0.501 0.010
4 q12 0.568 0.008
5 q13 0.663 0.008
6 q2 −0.286 0.010
7 V1 1.006 0.004
8 V2 0.968 0.004

The state vector x will have 5 elements in this case (n = 5),

x = [θ2, θ3, V1, V2, V3] (2.38)

θ1 = 0 is chosen as the arbitrary reference angle. Assume flat start conditions,
where the state vector is equal to:

x0 =

θ2

θ3

V1

V2

V3


0
0

1.0
1.0
1.0


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Then, the measurement Jacobian can be evaluated as follows, using the expression
already given above:

H(x)0 =

∂p12

∂p13

∂p2

∂q12

∂q13

∂q2

∂V1

∂V2



−30.0 10.0 −10.0
−17.2 6.9 −6.9

40.9 −10.9 −10.0 14.1 −4.1

10.0 30.0 −30.0
6.9 17.2 −17.2

−14.1 4.1 −30.0 40.9 −10.9
1.0

1.0


Note that the dimension of H is 8×5, and it is a sparse matrix. Its sparsity becomes
more pronounced for large scale systems where the number of nonzeros per row
stays fairly constant, irrespective of the system size. Next, Gain matrix G(x)0 will
be obtained as follows:

G(x)0 = 107


3.4392 −0.5068 0.0137 −0.0137
−0.5068 0.6758 −0.0137 0.0137 0.0000

0.0137 −0.0137 3.1075 −2.9324 −0.1689
0.0137 −2.9324 3.4455 −0.5068

−0.0137 0.000 −0.1689 −0.5068 0.6758


Gain matrix is 5 × 5, symmetric and less sparse than the corresponding Jacobian
H0. Its eignvalues can be computed as

x0 = 107


3.5293
6.2254
0.5857
0.9992
0.0042


confirming that it is positive definite. Cholesky decomposition of the gain matrix
G(x0) is given as follows:

G(x0) = LLT

where:

L = 103


5.8645 0 0 0 0
−0.8643 2.4517 0 0 0
0.0234 −0.0476 5.5743 0 0
−0.000 0.0559 −5.2600 2.6045 0
−0.0234 −0.0082 −0.03030 −2.5579 0.3503


Triangular factors of G are not unique and their sparsity depends heavily on the
way the decomposition is carried out. Consider the iterative solution of the WLS
state estimation problem for the system and applying the algorithm described in
section 2.3.1, the state vector can be solved iteratively. The convergence criteria
will be chosen as 10−4 for the state variable updates. Starting from the flat start,
and using the jacobian and gain matrices as above, the solution is obtained in 3
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iterations. The convergence summary for the objective function J(xk) and the state
updates ∆xk are given in the below table.

Iterations, k 1 2 3

∆θk2 −2.10e− 2 −6.00e− 4 −0.02e− 5
∆θk3 −4.52e− 2 −2.70e− 3 2.81e− 6
∆V k

1 3.00e− 4 −1.09e− 4 −1.65e− 6
∆V k

2 −2.57e− 2 −1.06e− 4 −1.63e− 6
∆V k

3 −5.72e− 2 1.15e− 3 1.87e− 6

Objective function, J(xk) 49, 123 59.6 8.6

The algorithm converges to the following state estimation solution:

Bus i V̂i (pu) θ̂i (degrees)
1 0.9996 0.0000
2 0.9742 −1.2475
3 0.9439 −2.7457

Finally, we can also compute the estimated measurements and their residual
vector given by:

r = z− h(x)

These values are shown below:

Measurement
No. i

Type Measured
Value (pu)

Estimated
Value (pu)

Residual
(pu)

1 p12 0.888 0.8930 −0.0050
2 p13 1.173 1.1711 0.0019
3 p2 −0.501 −0.4959 −0.0051
4 q12 0.568 0.5588 0.0092
5 q13 0.663 0.6677 −0.0047
6 q2 −0.286 −0.2977 0.0117
7 V1 1.006 0.9996 −0.0064
8 V2 0.968 0.9742 −0.0062

The gain matrix G evaluated in the 3rd iteration is given by:

G(x)3 = 107


3.2086 −0.4472 −0.0698 −0.0
−0.5068 0.6758 −0.0137 0.0137 0.0000

−0.0698 −0.0451 3.2011 −2.8862 −0.2160
−0.0314 0.0045 −2.8862 3.3105 −0.4760
0.0038 0.000 −0.2160 −0.4760 0.6684


Note that this matrix is not very different from the initial G(x0) matrix evaluated
as a flat start. While there are exceptions, in general, the gain matrix elements do
not change significantly during the iterative solution procedure.
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2.3.2 Weighted Least Absolute Value (WLAV) State Estimation

The very famous and comparable alternative to WLS estimation is the approach
of WLAV estimation. The problem in WLAV estimation can be framed as a Lin-
ear Programming (LP) problem, which is then solvable by utilizing one of the well
known LP solution methods. LP based solution methodologies for WLAV estima-
tion problems were first proposed in 1978. In this section, first of all, we formulate
the LAV estimation problem, then we demonstrate how it can be seen as an LP
problem and in the end, two eminent strategies, namely simplex and interior point
methods are briefly explained. Consider the linear regression model given below
[4]:

zi = AT
i x + ei (2.39)

where zi is the vector of measurements, which is linearly dependant on x, which is
the state vector which is to be determined, A, set of vectors and the measurement
error e. Now, the least absolute value estimate (LAV) x̂ for the unknown state
vector x is given by the following minimization problem

Minimize cT | r |
Subject to z−Ax = r

(2.40)

Where c ∈ Rm is a vector with all entries as 1 and r ∈ Rm is the vector of measure-
ment residuals.

In a simple one dimensional case, a sample median is considered as the LAV
estimate.

2.3.2.1 LAV Problem as an LP Problem

The LAV problem given in Eqs. (2.35) and (2.36) can be seen as a linear program-
ming LP problem. Therefore, first, we will formulate the LAV problem as an LP
problem and then solve it using one of the well-established techniques of LP meth-
ods.

Let ξi is defined such that,

| ri |≤ ξi, 1 ≤ i ≤ m

and if we introduce two slack variables li and ki, and replace the above inequality
by

ri − li = −ξi

ri + ki = ξi

Let us now consider 4 new variables xui , xvi , ui and vi such that

xi = xui − xvi

rr = ui − vi

ui =
1

2
li

vi =
1

2
ki
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and Eq. (2.35) can be rewritten as

zi = {
n∑
j=1

[Aijx
u
j −Aijxvj ]}+ ui − vi, 1 ≤ i ≤ m (2.41)

Note that the term | ri | in the objective function in Eq. (2.36) can be replaced by ξi
in terms of new variables [4]

ξi = ui + vi (2.42)

Then, the optimization problem in Eq. (2.36) can be formulated as the following
linear programming problem

Minimize
m∑
i=1

[ui + vi]

Subject to
n∑
j=1

Aij(ui + vj) = −ui + vi + zi, 1 ≤ j ≤ m
(2.43)

xuj , x
v
j > 0, 1 ≤ j ≤ n (2.44)

ui, vi > 0, 1 ≤ i ≤ m (2.45)

2.3.3 Kalman Filter for State Estimation

In wide-area control applications, dynamic state estimation is important. Along
with system states, other variables need to be accurately and precisely estimated
for reliable operation of a power system. These variables can be rotor angle and
speed among others. For such cases, Kalman Filter (both extended and unscented
one) is widely used. An Ensemble Kalman Filter is proposed for power distribution
system state estimation which uses previous estimates to enhance the accuracy of
the present ones [22]. Based on Extended and Unscented Kalman filters, a new
filter is introduced to improve the performance of dynamic power system state
estimation [18].

2.3.3.1 Extended Kalman Filter (EKF) Algorithm

EKF is a recursive state estimation algorithm for non-linear systems. This method
involves a minimization problem of squared error covariance between real and
estimated states. A general non-linear state and measurement equations are as
follows (please see [89] for the complete process)

xk+1 =fk(xk,uk, wk)

yk+1 =hk+1(xk+1,vk+1)

wk ∼(0,Qk)

vk ∼(0,Rk)

(2.46)

where xk+1 be the state vector, uk be the input vector, f be the non-linear function,
yk+1 be the output vector, wk, vk be the (state and measurement) noise and Qk,
Rk be the respective covariances. Usually EKF regime has two main steps: time
update equations and measurement equations.

A non-linear system solution by EKF has the following stages:
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1. Filter initialization

2. Partial derivative matrices of system equations

3. Time update

4. partial derivative matrices of output equations

5. Measurement update

The above steps of EKF can be seen as:

• The filter initialization is as follows

x̂+
0 = E(x0) (2.47)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (2.48)

where x̂k+1 is a priori state estimate at step k + 1 given knowledge of the
process prior to this step, x̂+

k+1 is a posteriori state estimate at step k+ 1 given
measurement yk+1,P−k+1 and P+

k+1 is the a-priori and a-posteriori estimate
error covariance, Fk is the Jacobian matrix of f with respect to X , and Kk+1

is the Kalman gain that minimizes the error covariance. For k = 1, 2, 3, · · · , n
the following stages are performed.

• Partial derivative matrices of system equations are the following:

Fk =
∂fk
∂X

∣∣∣∣
x̂+
k

(2.49)

Lk =
∂fk
∂w

∣∣∣∣
x̂+
k

(2.50)

• Time update equations are as follows:

P−k+1 = FkP
+
k FT

k + LkQkL
T
k (2.51)

x̂−k+1 = fk(x̂
+
k ,uk, 0) (2.52)

• Partial derivative matrices of output equations can be obtained as follows:

Hk+1 =
∂hk+1

∂X

∣∣∣∣
x̂k̄+1

(2.53)

Mk+1 =
∂hk+1

∂v

∣∣∣∣
x̂k̄+1

(2.54)

• Finally, the measurement update equations are as follows:

Kk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 + Mk+1Rk+1M

T
k+1)−1 (2.55)

x̂+
k+1 = x̂−k+1 +Kk+1[yk+1 − hk+1(x̂−k+10)] (2.56)

P+
k+1 = (I−Kk+1Hk+1)P−k+1 (2.57)

23



2. BACKGROUND

EKF expand Taylor series up to first order and therefore the system state equations
become linear. It is computationally cheap but in some instances, it cannot capture
the real non-linearity of the system and therefore, estimated states come out com-
plete different than the real states. The ultimate solution to this is the use of UKF
which has the ability to approximate the states’ mean and covariance up to third
order.

2.3.3.2 Unscented Kalman Filter (UKF) Algorithm

UKF generates the mean and covariance of states of the system through non-linear
equations up to third order. Consider the system and measurement equations, UKF
approach will be as follows: (the whole procedure of this approach is given in [48]
and a similar one in [83])

UKF has the following main steps:

1. Filter initialization

2. Derivation of Sigma points

3. Time update

4. a priori state estimate

5. a priori estimate for error covariance matrix

6. Measurement update

7. Measurement prediction

8. Measurement covariance prediction

9. Cross covariance

10. Measurement update

• Filter initialization is as follows:

x̂+
0 = E(x0) (2.58)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (2.59)

• Sigma points can be derived using the following equations:

x̂
(i)
k−1 = x̂−k−1 + x̃(i) i = 1, 2, . . . ., 2n (2.60)

x̃(i) =

(√
nP+

k−1

)T
i

i = 1, 2, . . . ., n (2.61)

x̃(n+i) = −
(√

nP+
k−1

)T
i

i = 1, 2, . . . ., n (2.62)

where n is the total states the system have and
√
nP is the matrix square root.

Subscript i denotes the ith row of the matrix.
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2.3 STATE ESTIMATION

• Time update as a 2n vector x̂ik can be obtained from:

x̂
(i)
k = f(x̂

(i)
k−1,uk, tk) (2.63)

• a priori state estimate can be derived by sing the above equation and is as
follows:

x̂−k =
1

2n

2n∑
i=1

x̂
(i)
k (2.64)

• a priori state estimate of error covariance is determined from:

P−k =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂−k )(x̂

(i)
k − x̂−k )T + Qk−1 (2.65)

• Measurement update steps are as follows:

x̂
(i)
k = x̂−k + x̃(i) i = 1, 2, . . . ., 2n (2.66)

x̃(i) = (
√
nP−k )Ti i = 1, 2, . . . ., n (2.67)

x̃(n+i) = −(
√
nP−k )Ti i = 1, 2, . . . .n (2.68)

• Sigma points x̂ transformed to ŷ by an output equation

ŷ
(i)
k = h(x̂

(i)
k , tk) (2.69)

• Measurement prediction at k time step is determined as follows:

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (2.70)

• Measurement covariance prediction is calculated as follows:

Py =
1

2n

2n∑
i=1

(ŷ
(i)
k − ŷk)(ŷ

(i)
k − ŷk)

T + Rk (2.71)

• Cross covariance is obtained as follows:

Pxy =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂−k )(ŷ

(i)
k − ŷk)

T (2.72)

• Finally, measurement update is performed as follows:

Kk = PxyPy
−1 (2.73)

x̂+
k = x̂−k + Kk(yk − ŷk) (2.74)

P+
k = P−k −KkPyK

T
k (2.75)

UKF can approximate mean and covariance of system states up to third-order as
compared to EKF which is first order approximation. In presence of noise, UKF is
able to represent the system with higher-order non-linearity in contrast to EKF but
the former is computationally more complex.
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State
Estimator

Identification
/Removal

Attackerz Bad Data
Detector

fail

z̄ x̂ pass

Figure 2.4: State estimation model with attacker and bad data detection test [52]

2.4 Observability Analysis

State estimation makes use of the available measurements in the system to estimate
the state of the system. The system observability analysis will check if a unique
state estimate can be obtained with the given set of measurements (and locations)
[16]. Such analysis can be performed both on-line or off-line. When off line, it is car-
ried out during the primary stage of state estimation where it can be checked if the
measurements are adequate enough. If not, further meters may have to be added
(at certain places) to cope with the observability issue. On the other hand, if on-
line, observability analysis is usually performed prior to state estimation to ensure
that the estimator has the required set of measurements. Occasionally, topology
or meter faults may prevent estimator from convergence, therefore, state can be
estimated using various observable islands.

Observability of a system is obtained from the network topology along with the
set of measurements and their locations i.e., it needs graph theoretical knowledge to
understand basic formulation of observability analysis. Without loss of generality it
is carried out on linearised model the methods includes fully coupled or decoupled
measurement equations (for details, see [4]).

2.5 Bad Data Analysis

This section includes basic arguments on bad data detection and identification the-
ory.

2.5.1 Bad Data Detection

State estimation algorithms fit measurements made on the system to a mathemati-
cal model in order to provide a reliable data base for other monitoring, security as-
sessment and control functions [44]. Usually, such algorithms are able to deal with
measurement, parameter and structural errors. A few of bad data is obvious can be
detected and removed before state estimation by simple outlier approach i.e., nega-
tive voltage magnitudes, measurements with several orders of of magnitude larger
or smaller than expected values or large differences between incoming and leaving
currents at connection node within a substation, as stated in [4]. Fig. 2.4 shows how
a simple bad data detection algorithm works. Detection and identification meth-
ods to deal with bad data highly depend on the SE technique however, the most

26



2.5 BAD DATA ANALYSIS

widely used is WLS estimator among others (reported in section 2.3). Depending
upon various factors, bad data may arise in several ways. They can be categorised
into single or multiple bad data. Further, multiple bad data are classified as (as
mentioned in [8]):

• Multiple non-interacting bad data which has weakly correlated measure-
ment residuals.

• Multiple interacting and non-conforming bad data with strongly correlated
measurement residuals.

• Multiple interacting and conforming bad data with strongly correlated mea-
surement residuals.

There are several bad data detection methods, however the most common ones
are described below:

2.5.1.1 Largest Normalized Residual Test (LNRT)

It has been seen that the Largest Normalized Residual Test (LNRT) works quite well
for single/multiple non-interacting bad data [4]. The residues vector is defined by:

r(x) = z− h(x) (2.76)

normalize the residue is necessary to calculate the residues covariance matrix, de-
fined by the equation:

Ω = R(x)−H(x).G−1(x).Ht(x) (2.77)

Thus, the normalized residue is calculated by:

rNi (x) =
ri(x)√
Ωii(x)

(2.78)

where Ωii(x) is the ith diagonal element of the residues covariance matrix.
We assume measurements errors ei to be independent random variables hav-

ing zero mean and known variance i.e., presenting normal distribution. Also, it
is proved that the elements of the normalized residues are standard normal dis-
tributed i.e.,

rNi ∼ N(0, 1) (2.79)

Thus, the bad data detection test is as follows:

• If |rN | < β, with i = 1, ...,m, bad data exist

• If all |rN | ≥ β, with i = 1, · · · ,m, there is no bad data

Usually, β is assumed to be 3.
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2.5.1.2 Hypothesis Testing

A bad datum can be detected, and eventually removed, if it is not critical or, in
other words, its removal does not make the system unobservable. The detection of
bad data or structural errors can be viewed as an hypothesis testing problem with
two hypothesis H0 and H1, where

• H0 denotes the case with no bad data

• H1 denotes that H0 is not true.

(For more detail about the traditional bad data detection please refers to [4]).

• The J(x) Test: Consider a random variable J(x) and its observation J(x̄)
as provided by state estimator. Then, this observation must be checked if it
belongs to the hypothesized χ2 distribution or not. In addition, measurement
error/noise is also checked for normal distribution N(0, σ2

j ). Hypothesis test
can be performed by:

– If J(x̂) ≤ C, accept H0;
– If J(x̂) > C, accept H1.

where C is the constant to be determined. If α is the significance level of the
test, C is

C = χ2
m−n,1−α

i.e., when H0 is true, the probability of J(x̂) > C is α and∫ C

0
f(t)dt = 1− α with f(t) =

t
ν
2
−1e−

t
2

2
ν
2 Γ(ν2 )

where f(t) is the probability density function of the χ2
ν distribution, where

ν = m− n degrees of freedom and Γ is the Gamma function.

2.6 Decentralised State Estimation

With the evolution of smart grid environment, power systems are now more con-
nected and there exists thousands of substations under one network. All of these
call for a Multi-area/decentralised state estimation in which, whole network is de-
composed into certain number of sub-systems to make state estimation more peace-
ful. There are further two categories on the basis of levels:

• Single-level distributed state estimation: It is also known as distributed state es-
timation (DSE) in which the whole network is decomposed into a number
of overlapping or non-overlapping areas. Each sub-area estimates its own
state using the locally available measurements then either share the estimated
states with neighbouring areas and without any central entity, state of the
whole system is determined (fully DSE) or the local estimates are sent to the
central coordinator to determine the state of the entire network (DSE).
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• Multi-level distributed state estimation: It is called hierarchical state estimation
(HSE) in which whole system is divided into certain regions to make the state
estimation less complicated. This way, firstly, at the bottom level, the states
are being determined for each area separately and send over to the upper
level as measurement set and finally, at the upper most level, the system state
is determined and pass on to the lower levels for the functions like contin-
gency analysis.

2.6.1 Distributed and Fully Distributed State Estimation

The difference between the distributed and fully distributed lies in the obligation
of central entity in distributed whereas no such requisite for fully distributed state
estimation. The relevant state of the art can be found in section 3.1. Let us consider
a power system having n buses, which is decomposed into s non-overlapping re-
gions (areas) Si having ni buses each connected by tie-lines. Each area is regulated
by its own local control centre and credited for its own local state and connected to
the system control centre via communication channels. We assume (without loss of
generality) the global reference bus to be contained in region S1.

The non-linear multi-area measurement model is framed as

zi = fi(xi) + ei, i = 1, · · · , r (2.80)

where
zi mi × 1 local measurement vector of region Si;
xi 2ni × 1 local state vector (Voltage magnitudes and phasors) of region Si;
x 2n× 1 state vector for the entire system;
ei corresponding Gaussian measurement noise with covariance matrix as Ri.

The measurement vector includes (but not limited to) voltage magnitudes Vl
and real and reactive power injections Pl, Ql for every bus and real and reactive
power flows Plm, Qlm for each branch l − m. If l is the border bus of the region
Si then the injections become boundary injections and flow become tie-line flows.
The state estimation for each region can be written as a minimization WLS problem

Minimize J = rTi R−1
i ri

Subject to ri = zi − fi(xi), 1 ≤ i ≤ l
(2.81)

where J is the objective function and Wi = R−1
i is the weighting matrix. First

optimality condition gives the iterative procedure for every region

[FT
i WiFi]∆x

i+1 = FT
i Wi[z− fi] (2.82)

where Fi = ∂fi/∂xi is the Jacobian matrix and Gi = FT
i WiFi is the gain matrix.

Once local state estimation is prosecuted, the estimates from every region are
sent to the central coordinator along with the boundary measurements for the co-
ordination step. If the need for the coordinator is alleviated, regions can also com-
pute the system state by exchanging the necessary information with neighbouring
regions and then that distributed system is called fully distributed state estimation.
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2.6.2 Hierarchical State Estimation

The conventional or centralized state estimation which is currently in use world-
wide can be followed by a multi-area hierarchical procedure in which local state
estimators processes all the raw measurements available locally, hence transferring
only a manageable data set to its immediate higher level. This process continues
until the highest level where the state for the whole system is evaluated and con-
veyed to the lower levels for other crucial tasks for example bad data processing
[33]. Firstly, a general multi-area hierarchical state estimation is proposed. Let us
consider a k-level case with the assumption that each area will perform its own
state estimation with its own measurement set along with the information coming
from lower level if its not the lowest level itself. A multi-level state estimation can
be expressed as:

y0,j1 = f1,j1(y1,j1) + e1,j1 , j1 = 1, · · · , r1

y0,b1 = f1,b1(y1) + e1,b1

(2.83)

y1,j2 = f2,j2(y2,j2) + e2,j2 , j2 = 1, · · · , r2

y1,b2 = f2,b2(y2) + e2,b2

(2.84)

...

y0,b1 = f1,b1(y1) + e1,b1 (2.85)

where
y0,j1 local measurement vector in Sj1 at level 1;
y0,b1 border measurement vector at level 1;
y1,j2 local measurement vector in Sj2 at level 2;
y1,b2 border measurement vector at level 2;
yk state vector of over all system;
fl corresponding non-linear measurement functions for each level l;
el corresponding Gaussian measurement noise vector.

Now, let us formulate each level

2.6.2.1 Level 1 Multi-area State Estimation:

For level 1, each area Sj estimates its own state ỹ1j by solving the corresponding
Normal Equations iteratively

[FT
1,j1R

−1
1,j1

F1,j1 ]∆ỹ1,j1 = FT
1,j1R

−1
1,j1

[y0,j1 − f1,j1(y1,j1(k))]

[FT
1,b1R

−1
1,b1

F1,b1 ]∆ỹ1,j1 = FT
1,b1R

−1
1,b1

[y0,b1 − f1,b1(y1,j1(k))]
(2.86)

where the inputs at this level include the measurement vectors y0,j1 and y0,b1 and
the Jacobian matrices, F1,j1 and F1,b1 and the gain matrices R1,j1 and R1,b1 . Note
that the Jacobian matrices are updated at every iteration.
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2.6.2.2 Level i Multi-area State Estimation:

The following two equations must be solved for each intermediate level hierarchi-
cally from the lower levels. Using the estimate ỹi−1,ji−1 from the level l − 1 as the
measurements in a distributed approach, ỹi,ji can be obtained from [10]

[FT
i,ji−1

Gi−1,ji−1Fi,ji−1 ]∆ỹi−1,ji−1(k) = FT
i,ji−1

Gi−1,ji−1 [ỹi−1,ji−1 − fi,ji−1(yi(k))]

[FT
i,bi

Gi−1,bi−1
Fi,bi ]∆ỹi−1(k) = FT

1,b1Gi−1,bi−1
[ỹi−1 − fi(yi(k))]

(2.87)
Based on the estimates from level i and i+ 1, the Jacobian matrices are revised.

2.6.2.3 Level l Multi-area State Estimation:

Using the vector ỹl1 supplied by the lower level l − 1 as the measurement vector,
the system state can be estimated by iteratively solving the following equations

[FT
l,jl−1

Gl−1,jl−1
Fl,jl−1

]∆ỹl−1,jl−1
(k) = FT

l,jl−1
Gl−1,jl−1

[ỹl−1,jl−1
− fl,jl−1

(yl(k))]

[FT
l,bl

Gl−1,bl−1
Fl,bl ]∆ỹl−1(k) = FT

1,b1Gl−1,bl−1
[ỹl−1 − fl(yl(k))]

(2.88)
Now, Let us simplify the multi-level approach to two level for better understand-
ing. Then the two-level model can be explained as

y0,j = f1,j(y1,j) + e1,j , j = 1, 2

y0,b = f1,b(y1,b) + e1,b

y1 = f2(x) + e2

(2.89)

where, the measurement vectors y0,j and y0,b, the state vectors y1,j and yb,j and
the non-linear measurement functions f1,j and f1,b are as described earlier. For
making the process more simpler, lets assume that there are no border variables
and the measurement functions are linear as well. Now, more simplified version of
two-level can be seen as

y0j = F1jy1j + e1j , j = 1, 2

y1 = F2x + e2
(2.90)

where F1j and F2 are the Jacobian matrices of the corresponding measurement
functions. For each area, the state estimator carries out iterative solution algorithm
(given in section 2.2) and determines the local state vector along with another iter-
ative process among the two levels [10]:

• Level 1: The inputs at the first level are y1j for area j = 1, 2 (assuming two
areas) and the weighting matrix R−1

1j . The output is the local state vector ŷ1j

for each area, Normal equations to be solved by each area iteratively are

[FT
1jR

−1
1j FT

1j ]ŷ1j = FT
1jR

−1
1j y0j (2.91)

• Level 2: The inputs of this level are state vectors of level-1 ŷ1 and the gain
matrices G1j = FT

1jR
−1
1j FT

1j as the weighting matrix. The output x̂ is the state
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of the entire system when solving the following Normal equations for the
second level

[FT
2 G−1

1 FT
2 ]x̂ = FT

2 G−1
1 ŷ1 (2.92)

where y1 and G1 can be found by juxtaposing the corresponding y1j an G1j

respectively.
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Chapter 3

Literature Review

In this chapter, our main focus is to review some of the well-known previous work
on the type and characteristics of attack schemes on power system state estimation.
However, mitigation is out of our scope. Furthermore, we will develop an argu-
ment for the choice of our stated research questions by motivating from existing
gaps.

We start with an overview of centralized and decentralized state estimation and
the commonly used methods for estimating the states. State estimation particularly
in power systems was first introduced by Schweppe [80] and attracted adequate
number of research groups. Along with state estimation, bad data analysis remain
an integral part of discussion throughout.

Bad data analysis includes the methods for detecting bad data independent of
its cause. A volume of theoretical work is to design an attack such as it can avoid
detection from these methods. Such attacks are undetectable or stealth attacks and
the criterion on which they work is the stealth condition. There is another category
where attacker deliberately maximizes the detection probability to harm the system
that is known as detectable attacks.

In addition, there are other attacks not directly related to bad data detection
but affect system topology by opening/closing switches or circuit breakers. Such
attacks are topology-related attacks. They include line failures, induced topology
faults and even (switch) status tempering physically. To cope with topology errors,
methods including phasor measurements are well explored. Synchrophasor traffic
has varying levels of latency requirements, ranging from 20 ms to 200 ms depend-
ing on the applications [46]. The required bandwidth is a few hundreds of kbps
and it is determined by the number of phasor measurement units, word length,
number of samples, and frequency [46].

In the last section, a discussion on centralized and distributed state estimation
is presented. It also includes various multi-area and/or multi-level state estimation
theories developed until now and analyse their shortcomings.

However, the assumptions made by several authors are mostly for ideal case
scenario far away from reality. Also, the imposed conditions are generally not
implementable at operational level. Therefore, there is no existing work that can
answer the raised research questions satisfactorily.

3.1 Power System State Estimation

State estimator determines the most likely state of the system by filtering and pro-
cessing the measurements from metering devices e.g., Remote Terminal units (RTUs)
installed in the system via transmission lines. There are two familiar methods to
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Figure 3.1: State estimation model with attacker and detection test [52]

solve the state estimation problem i.e., Weighted Least Square (WLS) Method and
Weighted Least Absolute Value (WLAV) Method. Other methods include the Least
Median of Squares (LMS), the Least Trimmed Squares (LTS) and Generalised Max-
imumlikelihood (GM) estimator. The Least Median of Squares (LMS) estimator
minimizes a certain ordered squared residual and is considered as a min-max bias
robust estimator [57] while Least Trimmed Squares (LTS) estimator minimizes the
sum of the smallest ordered squared residuals up to a certain rank. Generalized
Maximum likelihood (GM) estimator was introduced to increase the robustness of
SE, i.e., [94], where normalized residuals (rn) are used through a convex score func-
tions in formulating the objective function.

Although, WLAV is robust and stable in the face of bad data but it has some ma-
jor downsides, i.e., it requires time consuming Linear Programming (LP) method,
inclusion of auxiliary variables reduces convergence pace while minimizing and
unreliable in presence of leverage points (i.e., ill-conditionality may occur). Hence,
WLS (although not overly efficient in the presence of bad data) is considered as the
most commonly used method to solve SE problems. For more details on WLAV,
please see [5]. The WLS problem is explained in chapter 2 and reported extensively
in [70].

Along with centralised state estimation, decentralised state estimation is getting
much attention as well. An approach that leads to the development of a fully dis-
tributed state estimator, named the SuperCalibrator (SC) is described in [66] which
is a three-phase state estimator that operates at the substation level and requires at
least one PMU at each substation. The computed substation state estimate is trans-
ferred to the control centre where the overall system state is synthesized from the
substation states [66]. A distributed state estimation method is proposed that takes
the PMU installation locations as alternative points of the partition, and takes the
scale of sub-zone, the number of real-time measurement, and the DG configuration
position as the partition criteria, and then conducts distributed state estimation
[19].

A multi-area (fully distributed) state estimator is proposed where each sub-
system independently conducts its state estimation according to the local measure-
ments, and only limited information of consensus variables and boundary-bus state
variables is shared among adjacent regions, while the system-level global optimal
solution can be obtained within several iterations [90]. Merging the high speed of
Modified Moving Horizon Estimation (mMHE), the accuracy of Moving Horizon
Estimation (MHE), and the advantage of Partitioned Moving Horizon Estimation
(PMHE) to implement the MHE in a distributed way, a distributed state estimation
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method named the modified PMHE (mPMHE) is proposed [18]. Authors in [91]
presented a fully distributed state estimation algorithm for wide-area monitoring
in power systems with the differences from existing methods are; the condition
of local observability of all the control areas being no longer needed and that the
topology changes are also incorporated. In addition, another fully distributed state
estimation approach is proposed using matrix splitting methods [67].

Naziri and Kerrari presented a robust hierarchical state estimation algorithm
that make use of the combination of data from PMUs and RTUs for a better estima-
tion [71]. A relatively new hierarchical multi-area power system state estimation
method is proposed which is based on exchanging the sensitivity functions of local
state estimators instead of exchanging boundary measurements or state estimates
[42].

Numerical stability refers to the impact of an incorrect/false input on the ex-
ecution algorithm, therefore for a sound state estimation, the estimators must be
numerically stable (although it is not the case always especially while using WLS
state estimator [11]).

Bad data analysis is the ability of the state estimator to reject the bad measure-
ments. For example, if there exist some faulty meter or the bad data induced by an
attacker, Eq. (2.1) will become

z = h(x) + e + a (3.1)

where a denotes, the induced bias and its detection/identification is known as bad
data analysis. Few of the bad data detection methods are stated in chapter 2.3.
Other than that, to enhance the robustness of a power system state estimator to
topology errors, bad critical measurements, multiple non-interacting, or interacting
bad data (BD), [94] presents a new robust bad data detection method by exploiting
the temporal correlation and the statistical consistency of measurements.

There are various ways that an attacker injects false data i.e., either by com-
promising some meter measurements by physical means or by hacking or manip-
ulating transmission line(s). We divide the attack regimes into two categories i.e.,
data-related and topology-related attacks and presented a survey [38]. A new clas-
sification of attacks against the cyber-physical security of smart grids is also pro-
posed [31]. There are surveys in literature for both types of attacks and mitigation
schemes. Authors in [30] provided a survey that comprehensively overviews the
literature on FDI attacks, their impacts and defence against them. Moreover, a re-
vised version of a comprehensive overview of different security aspects of smart
grid e.g., attack and defence schemes is presented [32]. Recently, another sur-
vey on state estimation techniques and challenges in smart distribution systems is
published [26]. Considering advanced metering infrastructure, a review of cyber-
physical attacks and counter defence is given [87]. Another comprehensive survey
of vulnerabilities, threats, challenges and solutions of power grid is given by [79].

3.2 Data-attack Strategies

This section is devoted to the study of data-related attacks on state estimation. The
reason why we included these is to educate the reader about the surrounding re-
search and how our contribution covers some of the previous gaps. In addition,
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this chapter is designed to help the reader understanding most of the related types
of attacks to get the understanding of any discrepancies/gaps if present.

The symbols in some of the works have been slightly adjusted to keep nota-
tional harmony. As a reference point, we follow the formulation of [70] which we
used in chapter 2 as well. Throughout this section, the common features upon
which it relies are as follows: 1). model under consideration is steady state lin-
earised DC state estimation model and the category of attacks considered is data
driven attacks unless otherwise specified. We define two attack classes upon which
the following work lie; injection and non-injection attacks. Injection attacks cover
false data injection in meters (section 3.2.1), data injection on SCADA systems (sec-
tion 3.2.3), false data injection in limited number of meters (section 3.2.4), injection
involving just one control centre (section 3.2.5), attacks include multiple adver-
saries (section 3.2.9) and attacks that are detectable in nature (section 3.2.7). Non-
injection attacks include delay attacks (section 3.2.6), jamming or suppression of
measurements (section 3.2.8).

Soon after the pioneering work of false data injection attacks by Liu et al., Bobba
et al. proposed a notable protection scheme for such attacks stated in section 3.2.2.

3.2.1 Origin of False Data Injection Attacks

Substations are generally provided with metering devices whether the conven-
tional RTUs or the smart IEDs. Meter readings can be manipulated physically or
the computers in which all the data is saved can be hacked. Then, the resulting
bad data can initialize cascading failures if not detected/identified in finite time.
There are various methods to cope with bad data e.g., shown in [70]. Usually, these
techniques use Largest Normalized Residual Test (LNRT) as stated in section 2.5.1.1.

In a novel approach proposed by Liu et al., to orchestrate a type of coordinated
attack that can thwart the conventional detection schemes by dodging the system
operators. Such attacks are called false data injection (FDI) attacks or stealthy/hidden
attacks [61].

3.2.1.1 Description

A power network is considered with m meters providing m measurements. There
are n state variables associated with them by a measurement function h as given in
section 2.3.1.2. Firstly, it is proved that if the attack vector can be designed by com-
bining linearly the columns of the Jacobian matrix H (already defined in section
II) or a = Hc, it can evade the detection scheme (provided earlier). On this basis,
Liu et al. examined two attack goals [61]: 1) Random False Data Injection Attacks: The
attacker intends to find any attack vector satisfying the above condition. 2) Targeted
False Data Injection Attacks: The attacker attempts to determine a specific attack
vector to force certain state variables to be fallacious. It can be deduced that while
former are easier to perform, the latter are more damaging. Under targeted FDI
attacks, further two cases are observed: unconstrained case: in which attacks are
designed to manipulate certain state variable irrespective of their impact on others
and constrained case: in which attacks are performed to compromise certain vari-
able while keeping others unaffected. Two logical attack scenarios are taken into
account: In Scenario I: Limited access to meters, the attacker is constrained to attack
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only a particular set of measurements mainly due to the higher physical security.
In Scenario II: Limited resources available to compromise measurements, the attacker is
restricted to some specific number of readings to attack due to the finite resources.
These attacks are also extended to the notion of generalized false data injection
attacks. These are the kind of attacks which can further increase the impact by
exploiting measurement errors typically tolerated in state estimation. Simulations
proved their capability of launching more strong attacks than the false data injec-
tion attacks. However, these attacks are restricted by real world constraints and
therefore not very threatening at the moment.

3.2.1.2 Discussion

• Attacker is assumed to have the knowledge of the system topology or the Ja-
cobian matrix H [61]. It is an open question for future research to orchestrate
false data injection attacks with partial topology knowledge or even with no
knowledge of H, for example, GPS spoofing in [82], delay and jitter attacks in
[9] and measurement jamming in [29] among others.

• For theoretical observation, a linear model state estimation is presented in [61]
while simulations to verify the possibility of the attacks are shown on non-
linear models based on SCADA/EMS test bed. Therefore, modelling non-
linear state estimator for false data injection attacks can be explored.

• Also, the simulations tested each scenario for only 103 times on a random ba-
sis leaving some space unexplored [61]. The optimal solution to which mea-
surements to be manipulated is almost unknown. Following this, there are
multiple papers like [54] where a low complexity attack strategy is proposed
and in [76] where security indices are proposed to find the optimal attack.

3.2.2 Immunity by Protecting Critical Measurements

While Liu et al. presented the stealthy attack strategies from the attacker’s point
of view and demonstrated what the attacker require to perform an attack without
being detected, Bobba et al. looked at the problem from the system operator’s per-
spective. Bobba et al. in [14], demonstrated a practical scheme instead of providing
new algorithms for detection. It is proved that after protecting a particular set of mea-
surements (equal to the number of state variables), the system can be made immune
to false data injection. On this basis, it is quite useful to protect the whole system
only by protecting a small set. An alternative can be independent verification of
certain carefully chosen state variables or it is also possible for the operator to get
benefited from both by using them side by side.

3.2.2.1 Description

The mathematical model to determine the measurements to be protected is as fol-
lows [14]: Let M be the set of measurement indices and Im̄ denote the indices of
protected measurements while Im denoting its complement. Similarly, let V be the
set of indices of state variables and Iv̄ denote the indices of independently verified
state variables while its complement is Iv. For any stealthy attack vector ai = Hci,
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if i ∈ Im̄ or i ∈ Iv̄, ai = 0 which implies that attacker cannot find such stealthy at-
tack vector a. It is now clear that the system operator have to protect the minimum
Im̄ or Iv̄ in order to make the system secure. The problem now is to find identify
the optimal Im̄ and Iv̄. Two approaches are used:

Approach I Brute-Force Search: This attempt to determine Im̄ and Iv̄ is a straight
forward brute-force approach. Let p =| Im̄ | or q =| Iv̄ | where 0 ≤ p ≤ m and
0 ≤ q ≤ n. System operators need to search from (mp ) ∗ (nq ) combinations for their
choice of p and q to find the optimal sets such that after protecting, no stealthy
attack is possible.

Approach II Protecting Basic Measurements: A set of basic measurements in state
estimation is a minimum set of measurements which make the system observable
[14]. It is evident that cardinality of such set must be n. In this approach, basic
measurements are made protected by defining an equivalent mapping by which
all measurements are identified either as basic or as redundant. Some adaptations
of these methods with some modifications can be seen in [76].

3.2.2.2 Discussion

• Note that, the set of basic measurements is equal in number to the state vari-
ables i.e, n. To make the system resilient in case of attacks, protecting such
a large set is very unlikely due to cost and time constraints [76]. Being an
active research area, numerous researchers approach this problem with the
construction of greedy algorithms by [54] where a subset of measurements is
made to be attack proof and [12] where a low complexity sub-optimal algo-
rithm is proposed to protect a certain estimates.

• [92] identified the threat to state estimation in power grids and formulated
the problem of attack-resilient state estimation exploiting consistency among
sensor measurements and develop several algorithms for attack-resilient state
estimation accordingly.

3.2.3 Minimum Cost Stealth Attacks

In [76], it is proved that stealthy attacks can be launched on SCADA systems and two
security indices αk and βk are formulated defining sparse attacks and small mag-
nitude attacks respectively. Hence, in [25] the security index αk quantifying the
minimum measurements to be modified in performing the successful attacks (or
minimum cost attacks) is computed.

3.2.3.1 Description

The research considered by Dan and Sandberg [25] is threefold, firstly, a security
index αk for minimum cost attack is computed. It is the least number of measure-
ments that need to be manipulated to perform a specific attack. Then, a partitioning
of the set of measurements is defined in such a way that a cluster of measurements
is available to attacker at the unit cost. This can be the case when attack is per-
formed from a substation and technically, all of its measurements can be attacked
at once. Finally, protection schemes are devised utilizing the same cluster strategy.
Two approaches are defined for this purpose:
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1. Perfect protection: is the set of protected measurements P such that no stealthy
attack is possible. It has further two categories, i.e, protecting stealthy meter
attacks and protecting RTUs from attacks. The cost of perfectly securing all
measurements from attacks is quite expensive, and cost is equal to n =| P |.
Whereas, we can find a dominating set of RTUs such that no RTU is vulnera-
ble to stealthy attack with the cost much less than n.

2. Non-perfect protection: is the set of maximal secured measurements such that
stealthy attacks can be minimum. For this purpose, two possible metrics are
inspected i.e, maximal minimum attack cost and maximal average attack cost
[25]. For the former, the operator intends to maximize the minimum attack
cost for all the measurements that can possibly be attacked and for the later
one, the operator aims to maximize the average minimum cost for the likely
attackable measurements. For both, simple greedy algorithms that aim to find
the optimal solution can be leveraged.

3.2.3.2 Discussion

• Perfect protection against stealthy meter attacks is quite difficult to attain as
it requires at least n measurements to be protected (same as provided by [14])
while for the security against RTU attacks, Dominating Set Augmentation Algo-
rithm(DSA) is used with initiating the set of protected measurements P with a
minimal dominating set rather than a flat start. One research question might
be giving a flat start to see the efficiency of the algorithm.

• For non-perfection protection, high-level redundancy is required by both greedy
algorithms to reach the optimal solution. Results are quite favourable but no
argument on the convergence time is made. Resilience and time limitations
of greedy algorithms by lowering the redundancy might be tested in future.

3.2.4 Sparse Attacks Corrupting Two Injection Meters

A discrepancy in [61] is rectified as the scheme did not answer which measurements
to be compromised. In [36] by Giani et al., a resilient algorithm is proposed to
determine (≤ 5) sparse attacks involving only two power meters and arbitrary line
meters. Precisely 3, 4 and 5 sparse attacks can be devised when all lines are metered.

3.2.4.1 Description

Failures occur in the power system mainly because of either some faulty compo-
nent/meter or due to some malicious activity that leaves the system unobserv-
able, and these unobservable stealthy attacks need coordination to evade detection.
Here, in [36] low-sparsity stealthy attack is under consideration that requires coor-
dination of at most five meters. Stealthy attacks involving large number of meters
are uncertain because of the level of coordination required to perform them. An
effective algorithm is proposed by Giani et al. in [36] to determine all the possible
unobservable attacks that require only two injection meters and arbitrary line me-
ters to be manipulated withO(n2m) computational complexity with n buses andm
line meters. In the specific situations when there are meters on each line, canonical
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forms for 3, 4 and 5 sparse unobservable attacks can be derived by the algorithms
from graph theory requiring complexity of O(n2) to determine the possibility of
these canonical forms.

As far as the detection of stealthy unobservable attacks (not compulsory to be
sparse) are concerned, utilizing the known-secure PMUs is proposed [36]. Loca-
tion of PMUs is identified by buses at which PMUs must be installed to thwart the
stealthy attacks. Problem of determining the minimal sufficient PMUs is NP-hard,
therefore it is verified that by placing p+1 known secure PMUs, system can be pro-
tected from P unobservable attacks. An efficient algorithm to find this placement
has complexity of O(n2p).

3.2.4.2 Discussion

• Although PMUs are considered to be the most reliable source of data base
as they use GPS to provide synchronous measurements. Here, known secure
PMUs are assumed to ignore any fault occurred in PMUs or in GPS that pro-
vide the time-stamped signals. For example, GPS spoofing attacks in [82] can
cause extensive damage to the power systems hence, unfolding numerous
future research questions.

• Another yet interesting question is to explore the applicability of these models
on decentralised state estimation.

3.2.5 Stealth Attacks Involving Exactly One Control Centre

False data injection attacks are also possible in decentralised state estimation struc-
ture [35]. Ognjen and Gyorgy in [85] presented five attack strategies for distributed
state estimation (DSE) provided the attacker require the knowledge of the system
topology. Further, an attack involving a single control centre is considered in DSE
that seems to be successful in either divergence or the erroneous convergence of
the system. A similar approach [86] in which attacker aims to compromise the in-
frastructure of a single control centre.

3.2.5.1 Description

The work [86] is an equivalent version of the previous work of Vukovic and Dan
in [85]. Additionally, stealthy attacks on the fully distributed state estimation is
being considered for the first time. In the former, stealthy attack that requires the
corruption of a single control centre is examined whereas in this paper, authors fo-
cussed on the manipulation of the communication infrastructure of a single control
centre. Byzantine consensus problem is considered as a baseline in which there are
processors that have to consent on a single value even if an error is reported by a
processor. In this work, regions act as processors but attack is different. Therefore,
resulting in a successful denial of service attack i.e, this attack can blind the system
operators of the individual area. First singular vector (FSV) attacks and uniform
rotation (UR) attacks are applied, and it is verified that even small FSV attacks can
cause the desired damage when the state estimation converges with a minimum of
10% error.
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Also, an efficient and novel mitigation scheme that not only support conver-
gence but also let the attack to be localized. Starting with the token assumption
that every region uses to express their beliefs. Empirical frequency (of token vis-
its) is evaluated for every region. A high empirical frequency determine the likely
corrupted region. Exploiting Markov chain to model this random walk of a global
observer, the belief consensus localization algorithm (BCL) for regional operators
is proposed. Any compromised region is identified and after isolating the infected
region, state estimation is re-run until convergence.

3.2.5.2 Discussion

• Although the attacker is not assumed tz have access to all entries ofH rather it
knows the estimate of the previous iteration which is helpful in launching the
attack. The subject of the future work is to study the impacts while alleviating
this requisite.

• Numerical results proved the argument of both the attack performance and
their diminution. However, it can be seen that smaller weak attacks can not
be detected in polynomial time that can make the convergence fallacious as
can be observed in the first part of [86]. Hence, a fair research might examine
this in future.

3.2.6 Random and Structured Delay Attacks

It is assumed that installing PMUs is the most genuine solution to stealthy attacks.
But Shepard and Humphreys, in [82], introduced GPS spoofing attacks that has the
ability to change the measurement of PMUs just by delaying the signal for some
µs. In the last decade, civil GPS spoofing is becoming a serious threat to smart
grids which are heavily relied on PMUs. On the argument of GPS spoofing attacks,
Baiocco et al. defined random and structured delay attacks in HSE [9]. In these kind
of attacks, adversary do not require the complete knowledge of the topology, and
with very few trivial assumptions, severe impacts in form of ill-conditionality of
the Jacobian matrix or instability of power systems can be observed.

3.2.6.1 Description

On hierarchical state estimation, Baiocco et.al in [9] exploited delay and jitter at-
tacks considered with their possible applicability on CSE and DSE as well with
very low constraints. Three-level hierarchy is proposed where, either top-down or
bottom-up synchro-upgrade procedure is followed. In either case, estimated states
of every level has to pass on to the next in a synchronous manner so that the whole
system state can be evaluated in time upon which contingency analysis heavily
rely.

With the introduction of delay between the levels, stealthy attacks are possible.
Two types of attacks are examined, 1) Random delay (jitter) and 2) Structured de-
lay (jitter). It can be observed that while random delay/jitter attacks are easier to
perform, the structured have more adverse impacts. These attacks produce strong
outcomes in the form of ill-conditionality of the Jacobian matrix or instability of
the power system. Majority of the above mentioned stealthy attacks need to be
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coordinated to avoid detection. For this purpose, system topology or Jacobian H
in addition to the manipulated measurements or state variables is assumed to be
known to the attacker. Surprisingly, to launch delay or jitter attacks, its not neces-
sary for the attacker to have the in-depth knowledge of the topology.

3.2.6.2 Discussion

• Random delays require no prior knowledge of the system (in depth) and
therefore are less effective than structured delays with the assumption of
known Jacobian H. One might examine impacts of small structured delay
attacks with partial or no knowledge of H for future study.

• An active research area for further research might be on the mitigation poli-
cies for the delay and jitter attacks (for both random and structured). In addi-
tion, these attacks might be explored in fully distributed state estimation.

• [81] studied load frequency control of a one area power system under denial-
of-service attacks where the time delay of the communication channels is
taken into account.

3.2.7 Subspace Methods for Data Attacks

Major part of previous work on the security of power system state estimation focus
on stealthy attacks that avoid bad data detection tests. To our knowledge, data
framing attacks by Kim et al. is the first piece of work towards detectable attacks
that proves to be successful despite detection by misleading the error identifier
[52]. Subspace methods for constructing data framing attacks have recently been
formulated in [53] while assuming that the attacker is only capable of manipulating
a subset of the measurement vector without the detailed knowledge of H or the
system parameters.

3.2.7.1 Description

The research by Kim et al. in [53] is twofold: firstly, unobservable data attacks are
designed with the help of subspace methods with only partial measurements and
secondly, subspace information, is used to orchestrate data framing attacks with
the similar requirement of partial measurements.

All information that an attacker require is the subspace of H i.e, R(H). Two
algorithms are proposed to perform successful data-driven attacks: 1) Attack with
full measurements and 2) Attack with partial measurements. Due to similarity, we
will discuss the latter while interested readers are advised to see [53] for details.
Algorithm for data attacks with partial measurements is as follows:

• Step 1) Subspace Estimation: Based on the available measurements, estimate
the basis matrix U of R(H) (subspace of H).

• Step 2) Null Space Estimation: Calculate the null space of the matrix obtained
by removing from basis matrix the rows corresponding to the critical set C
just to ensure the non-attack positions.
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• Step 3) Attack: Corrupt the data fromC by corresponding values of α.U where
α being a scalar.

The subspace related data framing attacks exploit the bad data detection and re-
moval techniques. Particularly, the attacker maximizes the residual of the framed
measurements to trigger the false alarm purposely hence misguiding the system
operator. After removing such data, despite of the consistency with the model, ex-
isting false measurements result in spurious estimates. Algorithm for data framing
attack with partial measurements executes the same way as for unobservable data
attacks given above (for details see [53]).

3.2.7.2 Discussion

• Majority of literature in countermeasures focus on protecting certain number
of measurements to made the system un-attackable while assuming that the
adversary has the knowledge of H or the system parameters. This paper
opens many questions to rescale the mitigation and protection measures.

• On the other hand, it is revealed that today’s power systems are not secure
under these orthodox bad data detection and identification techniques. More
work on bad data monitoring mechanism is required.

3.2.8 Detectable Jamming Attacks

Deka et al. in [27], later discovered that cardinality of the detectable framing attacks
(introduced in previous subsection) can be reduced to more than 50% of the stealthy
attacks by controlling the presence of certain protected measurements. Further-
more, the authors maximize the attack impact by the inclusion of measurement jam-
ming into the detectable attacks [29].

3.2.8.1 Description

False data injection attacks are considered as unobservable when they remain un-
detected while testing through traditional schemes. All of the above mentioned
work in section 4 verifies adequate success of these stealthy/hidden attacks (with
some assumptions) and their corresponding counter measures. But the concept of
data framing detectable attacks in [52] have pressed the power security researchers.
On this basis, [27] is the first known work (to our best knowledge) to examine the
detectable false data injection attacks by Deka et al.. Following this, the authors
present detectable jamming attacks by adding measurement jamming into it [29] to
maximize the impact.

Earlier, it is proved by the same authors that the cardinality of detectable attacks
can be reduced to more than half of that of stealthy attacks (or atleast half) [27]. In
addition to performing detectable attacks, the adversary here is capable of jam-
ming/blocking some measurements/communication in the network. Compared
to bad data injection, jamming is less cost-intensive (can also be observed from sec-
tion 4.6) and therefore its cost varies from 0 to the maximum of Pd (where Pd be the
cost of detectable attack without jamming). This way, jamming cost is partitioned
into two regions to obtain the optimal attack by graph-theoretic means. One of the
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essential findings in this work is the ability of attacker to apply jamming only if the
jamming cost is less than half of that of injection cost [29]. Since, determining the
optimal detectable jamming attack is NP-hard, a polynomial time approximation is
obtained to verify the results.

3.2.8.2 Discussion

• [29] is one of the the most recent works (to our best knowledge) in this men-
tion and protection against such attacks might be devised in near future to
overcome the potential threats by detectable jamming attacks.

• In the perspective of an adversary, designing optimal detectable jamming at-
tack must be the next task. In addition, data jamming in decentralised state
estimation can be one of the areas of further study.

3.2.9 Data Injection Attacks with Multiple Adversaries

Till the end of 2015, almost all of the ongoing research focussed on investigating a
kind of false data injection attacks involving a single attacker and examining the
attack impacts on the security of the grid. Along with this, countermeasures are
also proposed to cope with the mentioned class of attacks. Interestingly, no work
on the notion of multiple adversaries is seen until Sanjab and Saad studied the impact
of two attackers simultaneously [77].

3.2.9.1 Description

Following the above mentioned proposition for multiple attackers, the authors in
[78] constructed two models from game theory relied on linearised/DC state esti-
mation while considering centralized case. Successful attacks can manipulate the
price and hence have financial benefits causing loss for the grid operators.

In the first model, Stackelberg game paradigm is used in which defender or the
system operator act as a leader and the attackers as its followers. Thus, a non-
cooperative game is played between the defender and the attackers noting that in
this game, leader can predict the adversary’s actions prior to playing its defence
strategy (e.g., selecting the measurements to protect). Solution to this game is stud-
ied where defender needs to minimize the attack impacts and in parallel attacker
chooses its strategy to maximize the trade off between benefits and attack cost. The
only difference in the second game which is Nash equilibrium model (see reference
[78] for details) is that now the defender can not anticipate the actions of adver-
saries and hence play to meet its certain objective regarding defence. In both of the
mentioned paradigms, two situations can be observed: 1) The attackers can cancel
the effect of each other resulting in no manipulation and hence no need to defend
and 2) The attackers can help each other achieving their targets and therefore can
be destructive for the grid.

3.2.9.2 Discussion

• Recently in Dec. 2015, Ukraine’s power plant has been hacked so badly that
the control centre operators have to manually operate the breakers for so
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many days following the attack. It is reported that the hack involved mul-
tiple adversaries [93].

• After this attack, it is also shown that the grids in the US are more vulnerable
to these attacks as they have more automated breakers than Ukraine had. All
of this call for more strategic defence of our power grids.

• Later, Pilz et. al in [75] proposed a class of false data injection attacks that
are based on modifying forecasted demand data and studied its impacts on
system’s parameters. Monitoring approaches are demonstrated that the con-
trol centre may employ to deal with such attacks. A game-theoretic method
is used to support the utility company’s decision-making process for the allo-
cation of their defence resources [75].

3.3 Topology Detection and Identification

The topology state such as status of circuit breaker and switches along with the pri-
mary topology graph can be regarded as binary data. Such data is used by a topol-
ogy processor to estimate the current topology prior to state estimation, which then
determines the most likely system state that is essential for taking control decisions
and contingency analysis.

In this section, we review some of the previous works on topology (change)
detection and identification. So far, there are mainly three types of methods to
detect/identify topology changes, namely (1) numerical (analytical) methods, (2)
rule-based, and (3) synchrophasor methods. Analytical methods are the ones where
data is verified along with the state estimation using network graph. Rule-based
methods make use of control centre information to verify the changes in switch
position [62] and synchrophasor methods are the ones which depend on Phasor
Measurement Unit (PMU) for their deployment.

Each of the above methods allow topology change detection, but has different
drawbacks. For instance, in numerical methods, converged state estimation is de-
sired to detect/identify changes in topology— however, the very topology errors
sought may result in a failure of the state estimator to converge [62]. On the other
hand, rule-based methods may have problems detecting topology errors when the
measurements used for validation process include bad data. Finally, the use of syn-
chrophasor measurements to validate switch positions is attractive, but at present
difficult to achieve given limited installation of synchrophasors; even then it is un-
likely to see deployment of such devices at each bus which also may be vulnerable
e.g. to spoofing attacks [82].

One of the pioneering works in this regard is by Clements and Davis [21] as
they developed a method for detecting topology errors in electric power networks
by providing a geometric interpretation of the measurement residuals caused by
such errors. Hines et al. [45] elaborated topological and electrical structure of the
power grid while proposing a graph theoretic method for generating random net-
works similar to the power grid to better notice topology changes. Monitoring of
power system topology in real-time is achieved currently by observing the circuit
breaker’s (CB) operation and statuses by using Regional Transmission Units (RTUs)
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of SCADA system. However, changes such as trip conditions, etc. cannot be deter-
mined solely by this SCADA approach. Kezunovic proposed a solution based on a
new CB Monitor (CBM) which would be permanently connected to the substation
CBs [49]. This CBM scheme can be extended to the system level, but deployment
cost cannot be ignored.

In [62], Lu et. al proposed a rule-based topology error/change detection method
in which all analogue data are screened before applying the heuristic rules to de-
tect the errors. Lefebrve et al. [58] proposed a pre-processing method for detecting
and identifying topology errors and bad measurements before a state estimation
solution. Similarly, a pre-estimation algorithm depending on PMU measurements
examines the change for each new received set of data in order to locate anoma-
lies and apply countermeasures [73]. Another approach is to take the status of
switching devices as new state variables estimated together with usual ones while
considering three state variables for one switch status [55].

Steady state simulations of power system with changes in topology are shown
in [3] by collecting all the possible topologies as a result of isolation of transmission
lines from the system. Placing PMUs at strategic points can help quickly detecting
topology changes caused by events such as lines going down or large voltage drops
[88]. A quick change algorithm is proposed to be applied on the data provided by
high-speed PMUs to detect the change-point that corresponds to the system topol-
ogy change instant [47]. A systematic bus selection scheme is presented for the
minimum required PMUs. Taking into account the load dynamics and measure-
ment error, the topology detection algorithm is constructed based on data from
synchrophasors [17]. [7] proposed that the minimal difference between measured
and calculated voltage angle or magnitude indicates the actual topology and hence
a method based on multiple synchrophasors is devised.

3.4 Topology attack Schemes

Bad data errors (attacks) and their detection/mitigation is a widely researched area
in power system state estimation, with a large body of work emerging since study
of bad data injection was proposed in work by Liu et al. in [61]. However, sub-
stantially less attention has been paid to the other main cause of the faults namely
topology errors. However, topology attacks is getting much attention these days.
Therefore, in this section, we aim to provide most of the (existing) considerable
literatures on topology related faults and attacks.

3.4.1 Man-in-the-Middle (MiM) Topology Attack

Most of the previously studied area involving topology errors discussed general
faults, their impacts, detection and identification methods. To the best of our knowl-
edge, Kim and Tong are the first ones to examine a type of undetectable topology
attacks.

3.4.1.1 Description

This paper proposed a form of “man-in-the-middle” (MiM) attack on the topology
of a power grid [51]. It studied two main attack regimes depending on the set of
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information I available to attacker.
First is the global information regime in which the attacker can ideally observe all

meter and network data before altering few of them. Although such scenario is
unrealistic, it is stated just as a base case to analyse the worst case attack by giving
the attacker extra power. A necessary and sufficient condition is presented alge-
braically that, having the controlled meters known, an undetectable attack exists
that can launch targeted topology attack by misleading the control centre. This
condition provides the methods to check grid vulnerability to such attacks in addi-
tion to giving a defence insight on which meters to protect first.

A more realistic scenario is the local information regime where the adversary can
only observe a certain number of meters which are in the local information set
Ilocal. Similar to the first technique, some particular conditions are proposed for
such attacks to exist. Another interesting finding was providing the conditions
when such attacks cannot be made undetectable. Such conditions give insights for
defence mechanisms and therefore it is shown that, by protecting certain meters,
system can be made such that no topology attack could go undetected.

3.4.1.2 Discussion

• Jinsub and Tong proposed the attack on DC framework. As demonstrated
earlier, DC models for state estimation exaggerates the effects of such MiM
undetectable topology faults while AC model limits the impact. Also, the
Global attack regime has too strong assumptions to be practically applicable.

3.4.2 Hidden Topology Attack Using One Breaker

A coordinated cyber-attack on meter readings and breaker statuses is proposed that
can lead to incorrect state estimation subsequently destabilize the grid [28].

3.4.2.1 Description

This model focuses on stealthy/hidden attacks that basically depends on topology
changes (change in breaker statuses). Particularly, attacker changes the statuses
of a few operational breakers from 1 (closed) to 0 (open), as well as jams (blocks
the communication) of flow measurements on a subset of transmission lines in the
grid [28]. However, the attacker does not compromise any meter measurement
to some arbitrary value. These attacks are termed as ’breaker-jammer’ attacks by
the authors. This attack framework can be generalised to any grid with meters for
measuring line flows and injections. The optimal stealthy attack is obtained using
a novel graph-colouring analysis.

The attacker is assumed to be agnostic i.e., having no system knowledge yet
capable of changing a few statuses along with blocking the corresponding mea-
surements to make the hidden attack possible. One of the main results was the
existence of optimal topology based attacks involving just one breaker.

3.4.2.2 Discussion

• Another related regime is proposed by Liu et al. [60] where outages of some
lines can be masked by injecting false data into a set of measurements and
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therefore the residual in the line outage detection is increased such that the
line outage cannot be detected by phasor measurement unit data.

• Recently, a similar approach is proposed by [20], where the term masking (the
measurements) is used instead of jamming which results in wrong topology
information being sent to the control centre.

3.4.3 Recovery following a Joint Cyber and Physical Topology Attack

A cyber-physical attack cause obstruction in information flow along with physical
tampering to the breaker’s status(es). Information recovery after such attack is the
main focus of this work [84]. Methods of power grid state estimation after a joint
cyber and physical attack are developed and resilience to various topologies and
different kinds of attacks is studied.

3.4.3.1 Description

The commonly used linearised Direct-Current (DC) power flow model is consid-
ered. The modified version of the control network model that includes PMUs and
Phasor Data Concentrator (PDC) is examined. A zone is defined as a set of buses
(nodes), power lines (edges), PMUs and an associated PDC. Attack analysis is per-
formed for an adversary that disconnects lines within a zone (physical attack) and
obstructs the flow of information from the PMUs within the zone to the control cen-
ter (cyber attack) [84]. For instance, a cyber attack can be launched by making the
associated PDC disable or by attacking the communication line between the PMUs
and corresponding PDC. As a consequence, the phase angle and the line status (of
the missing lines) become unavailable. Main objective here is the recovery of phase
angle and detection of the missing transmission lines.

Particularly, by applying matrix algebra and graph theory techniques to the
region outside the attacked zone, methods to retrieve missing state variable and
line information (of the attacked zone) are developed. In addition, depending on
the zone structure, necessary and sufficient conditions to guarantee the recovery
are presented. It is proved that if there exists a matching between the inside and
outside nodes of the attacked zone that covers the inside nodes (VH , then the phase
angles of the nodes in the attacked zone are recoverable by solving a set of linear
equations of size |VH | [84]. As far as recovery of disconnected lines are concerned,
it is shown that if H is acyclic, missing lines can be detected solving size |EH | set
of linear equations. However, if H is planar, missing lines can be detected solving
a Linear Programming (LP) problem.

3.4.3.2 Discussion

• Illustrations shown in this work include base line 14 and 30-bus systems
therefore leaving the large scale application for further research. In addi-
tion, limited PMUs or PMUs on selected buses can make the approach more
promising.

• A similar attack regime where adversary aims to provide data that paints
a completely safe picture for the grid which is consistent with the net load
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change, while at the same time disguising large line overloads, a fundamen-
tally dangerous situation that may lead to a cascading failure [13].

• On the other hand, there are methods proposed to distinguish cyber attacks
from physical faults. A data-driven approach is provided where labelled data
are projected in a new low-dimensional subspace using Principal Component
Analysis (PCA) [6].

Last decade seems to be quite devoted in the study of attacks (both state and
topology) and their mitigations on power system state estimation. In this chapter,
we examined the most convincing of them. The reason behind including recovery
study section 3.4.3 in the literature review chapter is to make the reader aware of
the level of damage a cyber-physical attack can cause and also the cost of recovery
after that. In addition, it is relevant to our ongoing work as well.

A general observation can be: such type of attacks are a genuine threat to the power
grids. Two essential reviews after analysing above significant papers are: 1) Almost
all of the above mentioned attacks proved their success against the weaker bad
data detection test that relies on residuals (i.e, residual method). 2) Most of the
work considered the traditional WLS method for state estimation rather than using
some better and advanced methods like Kalman Filter. Therefore, interactions with
models other than WLS and residual method is an uncovered and open research
question.

Most of the work previewed in this chapter supported our motivation in terms
of research questions already stated. Particularly, data attacks guided us towards
swapping attacks whereas topology attacks took us to in-cycle line failures. In other
words, by specifically examining the assumptions and parameter choices, we come
across the idea to design such new type of attacks.
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Chapter 4

Reordering Attacks

A number of attacks have been proposed ranging from bad data injection as may
be achievable by direct manipulation of sensors to indirect attacks such as manip-
ulating the signal timing proposed by Shepard and Humphreys [82], jamming of
signals proposed by Deka et al. [27] or delays in communication channels proposed
by Baiocco et al. [9]. Unlike the work mentioned before, most of attacks, however,
rely on the assumption that arbitrary values may be injected by an adversary. We
argue that this assumption is quite strong and that instead, it is of considerable interest
to study cases where measurements and communication channels are protected, at
least using authentication and integrity protection as provided e.g. by the ISO/IEC
62351 standard. This offers a more realistic adversary model compared to that in-
troduced by Liu et al. [61]. In other words, in FDI attacks, measurements are com-
promised but here only the time-stamp is compromised. Note that the study of
countermeasures against proposed measurement re-ordering is our ongoing work
which based on detection probability.

In Fig. 4.1, communication between the N (remote) sensors (could be meters
apart) and the state estimator is shown where the communication network is au-
thenticated and integrity protected. Measurement data packets generated by the
sensors respectively are conveyed to the state estimator for processing in a certain
defined order.

In particular, this chapter provides swapping attack impacts (both theoretical
and numerical) for both the conventional and hierarchical state estimation.

4.1 Attack Model for Conventional State Estimation

Our aim, here, is to highlight the vulnerabilities in the existing communication in-
frastructure by introducing a novel attack relying solely on re-ordering of the mea-
surement vector which result in spurious estimates. ISO/IEC 62351 supports mes-
sage authentication and integrity protection but not time-stamped authentication
of messages that means, a MITM attack who is re-ordering just the time-stamps. We
formulate targeted re-ordering attack considering two scenarios for this: 1) swap-
ping the measurements by the previous plausible vector. In the first scenario, we
are assuming some attacker that is manipulating the communication network. In
other words, the attack is about to re-order the time-stamps of the measurement
vectors and not swapping the measurement vectors themselves hence avoiding the
standards. 2) manipulating sensor readings in a constrained way such that it looks
like swapping the measurements by some scalar multiple of previous measurement
vector. For example, sensors usually do not give a true value but the true values
need to be calibrated. The scaling factor in this scenario can be built in the calibra-
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Figure 4.1: Communication network from sensors to estimator

tion phase. Therefore, these attacks can be named as calibration attacks. It is worth
noting that we assume that the preceding and present measurement vectors are known to
the attacker. For both the scenarios, we prove validity of our attacks through the
simulation results.

The developments in the notion of attacks and their countermeasures flourished
much in the last decade. But as far as mitigation/protection is concerned, the ma-
jority of the work focused on integrity protection as one of the possible counter-
measures. The attack we are proposing is novel in the sense that it can be launched
successfully despite of these modern restrictions. In chapter 2, a continuous model
for state estimation is presented, however, to study attacks and their impacts, dis-
crete approximation of the model is widely used [4] and from now onward we will
also follow discrete time approximation model.

z = Hx + e (4.1)

where H ∈ Rm×n is a constant Jacobian matrix. Then the estimation problem can
be solved by

x̂ = (HTR−1H)−1HTR−1z (4.2)

The active power flows can be estimated by the phase angle estimate x̂

ẑ = Hx̂ = H(HTR−1H)−1HTR−1z := Kz (4.3)
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where K is the hat matrix. Bad data detection system identify faulty sensors and
bad data by calculating the measurement residue which is defined as

r := z− ẑ = z−Hx̂ = (I−K)z (4.4)

If the residue r is larger than the threshold τ , then an alarm is triggered and bad
measurements zi are identified and removed.

In case of False Data Injection (FDI), a generally denotes the attack vector that
shows the amount of change to the original measurement vector [61].

a = Hc (4.5)

where c is a vector denotes the magnitude of change and is bounded by some
stealthy condition. A necessary condition for a stealthy FDI attack is that the bad data
detection alarm is not triggered if a lies in the null-space of I−K. Whereas, in jam-
ming or delay attacks, there is no attack vector to be added, rather adversary
just drop/block or jitter the measurements irrespective of whether they are se-
cure/protected. Similarly, re-ordering of the measurement vector is introduced
where the goal of the adversary is to misguide the system operators about the type
and strength of attack while keeping itself in the communication network. In other
words, it is like a man-in-the-middle attack on communication network e.g., in
Fig. 4.2 where adversary can re-order the time-stamps of the data packets trans-
mitting from substation to the control center via SCADA. Once, the re-ordering
attack launched successfully, manipulated information will flow from substation
to the control center (can be seen in figure 4.2) where critical decisions will be made
depending upon the false data. Therefore, the objective of the attack is to be suc-
cessful in state forcing or convergence with errors while being in-noticed by the
model-based bad data detection. There may be more sophisticated detection crite-
ria, of course, but these apply mostly to determining whether measurement devices
(vector entries) are compromised, and that does not apply here. Other models rely
on redundancy among measurements to determine compromise, but for a network-
based attack this does not match very well.

Now, z∗ is the new measurement vector obtained after swapping/ re-ordering
the measurements

z∗ = z + a (4.6)

where a is the swapping attack vector. This attack is less recourse intensive as it
does not require modification or bad data injection into the sensors rather tamper-
ing the transmission lines would be enough. After re-ordering, the system model
is

z∗ = Hx∗ + e (4.7)

where and x∗ is the corresponding state vector which can be determined by

x∗ = (HTR−1H)−1HTR−1z∗ (4.8)

where H is the Jacobian matrix. As, the final result of the state estimate from the
above set of normal equations involves matrix multiplication with z∗, therefore
even the swapping of just 2 readings will change the whole state vector. We as-
sume that all data is subjected to outlier removal which is usually a residue test to
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Figure 4.2: Man-in-the-Middle attack on communication network [59]

filter bad data (see section 2.5). We have to show that the attack proposed below
will not be affected by this removal while satisfying stealth condition. To make the
swapping attack successful, attacker has to know the previous plausible measure-
ment vector (either partial or full). As in [76], Sandberg et al., defined two security
indices for sparse attacks as well as for small magnitude attacks. The first security
index αk in [76] is for sparse attacks i.e. the adversary can get the least/minimum
cost attack by solving this and the second security index βk help the attacker to find
the small magnitude false data injection attacks to avoid detection tests. The aim of
the attacker here is to maximize the impact P of swapping i.e, in terms of conver-
gence time and MSE while keeping the measurement re-ordering to the minimum.
Such that, when there is no attack, P = 0 and in the presence of attack, P > 0. This
optimization problem can be formulated as

max
ai

P s.t. ‖ ai ‖≤ µ (4.9)

where µ > 0 is the desired bound on the size of attack. As defined, P = ∞ means
that the state estimator does not converge. For a feasible attack, P must be some
definite number greater than 0.

The two scenarios defined in section I are as follows:

4.1.1 Scenario I

Here, we consider the re-ordering of measurement with some measurement vector
from the plausible preceding data sets. By plausible we mean that the difference
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between the corresponding estimates is bounded i.e.,

| xnew − xold |< µ (4.10)

where µ is some scalar. In other words, attacker is not free to choose any previous
data set for swapping attack but only the one satisfying the above condition. Here,
we are assuming that a particular set of measurements is secured such that they are
integrity protected but not encrypted. By integrity protection we mean, protection
of content and processes against injection. Assumptions regarding knowledge that
attacker has, include: 1) Order (m × n)of Jacobian matrix H, 2) Arrangement in
which the measurements are placed in H and 3) Set of protected measurements is
also known to the adversary.

Once the data set to be used in the attack is chosen, the man-in-the-middle at-
tacker now has to select which readings to swap between the two measurement
vectors, and which not i.e restricted swapping. This means the attacker can launch
minimum cost/sparse attacks with carefully chosen minimum possible swapping.
For this purpose, we define a measure to quantify the hardness to perform sparse
swapping attacks.

minimize ‖a‖0
subject to |znewi − zoldi | < ε

1

n
Σn(xnewi − xoldi )2 ≥ c

(4.11)

where ε is an upper bound on all the measurement swappings and c 6= 0 is
a scalar to ensure a non-zero attack vector. In our particular case, we (attacker)
choose ε = 3 which is the highest difference between any two respective measure-
ments and c = 0.01 as to avoid zero s.t., the optimization problem will not yield
zero vector as the optimal attack vector. Note that we found the above chosen val-
ues for ε and c by experimental evaluation. We did the experiments by setting ε =
from 1 to 20 with 1 as increment and c from 0.001 to 1 with 0.01 as increment respec-
tively. To analyse the sensitivity for the choice of ε and c respectively, if we choose ε
to be < 3, it will decrease the attack impact but if we choose it to be > 3, the attack
impact will remain the same. On the other hand, any c which is < 0.01 but > 0
will have no effect but if e.g., c = 2, it is quite likely that we miss the optimal attack
vector.

Zero norm of a vector v is ‖vi‖0 is the number of non-zero entries in vi, so-
lution to (4.11) is the minimum number of swapping required to make the attack
successful and a meter i with higher metric will be considered more secure means
the adversary need to swap several measurements to make the swapping attack
hidden. Note that In Eq. (4.11), we optimize over all re-ordering that lie under a
threshold and its solution is |a∗| that can be used to construct sparse attack. The
first constraint is to limit the attacker to manipulate relatively closer measurements
where ε is some arbitrary number. Whereas, the other constraint is to bound the im-
pact (mean squared error) to a certain value to guarantee erroneous convergence.
If we look at the sensitivity study of both of the parameters, by changing the values
of parameter, one at a time, we come to know that as the value for ε goes down, size
of attack decreases same goes for c with respect to the impact. Note that MSE is a
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convex function hence global minimum can be achieved. The sparse attack vector
can be seen as

a =

{
znewi − zoldi : zi /∈ Sm
0 : otherwise

(4.12)

where Sm denotes the set of secured measurements.

Algorithm 4.1: Re-ordering Attack for scenario I
Input: Mold = {z1, · · · zm}
Output: Mnew

Data: hole← hole in array Mnew

zi ← measurement, i = 1, · · ·m
1 for t = 1 to length(M) do
2 zt ←M [t]
3 hole = t
4 Mnew[hole] = zt while hole > 0 do
5 if |zi(new) − zi(old)| < ε then
6 zi(new) = zi(old)

7 else
8 return Mnew

9 z = Mnew

10 Solve z = h(x) + e
11 Solve Equation 4.2 for x
12 Calculate Mean Square Error (MSE)

We now combine the intuitions attained for the above scenario and propose Al-
gorithm 4.1 to design a successful re-ordering attack. Step 1 is the input for the
adversary about the knowledge of some previous plausible measurement vector
Mold. From steps 2-6, our attacker which is in fact a man-in-the-middle receive all
data packets from the sensors and construct Mnew. Steps 7 − 8 are the conditions
for measurement swapping, after which, attacker successfully swap it to the mea-
surement vector Mnew ready to use for state estimation. The following arguments
for the pre-condition prove its correctness: 1) The sufficient condition for the swap-
ping attack to be not affected by the traditional bad data detection is ε < τ and 2)
For FDI attacks, a is defined to have a non-zero entry corresponding to the attacked
measurements and zero for the non-attacked ones. Similarly, for the re-ordering at-
tack vector, as, for the swapped data packet, there will be corresponding non-zero
entries in a while with no swapping, will get a = 0. Therefore, a necessary condi-
tion for a swapping attack is same as that for stealth FDI attacks, i.e., the bad data
detection alarm is not triggered if a lies in the null-space of I−K.

To prove the attainability of optimum to the above optimization problem, we
need to state a few lemmas from [63]:

Lemma 4.1 (Existence of infimum)
Consider the following minimization problem

minimize f(x, y)

subject to (x, y) ∈ Ω
(4.13)
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where f is a given function bounded from below over a feasible region Ω. Let y = g(x) be a
given function and consider a restriction of Eq. (4.8):

minimize h(x) := f(x, g(x))

subject to x ∈ Ω̄, (x, g(x)) ∈ Ω
(4.14)

where Ω̄ is some subset ofRn. Suppose that inf(4.9) ≤ inf(4.8) and the objective function
of the problem (4.9) attains its infimum. Then inf(4.9) = inf(4.8) and the infimum of
(4.8) is also attainable.

Lemma 4.2 (Existence of infimum and lower bound)
If

minimize f(x, y0) :=
1

2
xTQx+ qTx+ (r0 + rTx)y0 + λy2

0

subject to ‖x‖0 ≤ y0, Ax+ ay0 ≤ c
(4.15)

is bounded below over a feasible region, then its optimal solution is attainable.

Proof is omitted here (please see details in [63]). Applying above lemmas to our
optimization problem, it can be seen as:

Theorem 4.3 (Existence of optimum re-ordering attack)
If the objective function in

min ‖ a ‖0
subject to |znew − zold| ≤ ε

1

n
Σn(xnewi − xoldi )2 ≥ c

(4.16)

is bounded from below, the optimum is attainable.

PROOF Let us begin from the objective function and the definition of 0-norm,

‖ a ‖0=‖ znew − zold ‖0= lim
p→0

n∑
k=1

|znewk − zoldk |p (4.17)

expanding the term on right hand side,

‖ znew − zold ‖0= lim
p→0

[|znew1 − zold1 |p + |znew2 − zold2 |p + · · ·+ |znewn − zoldn |p] (4.18)

where the number of terms inside square brackets are n. As we are looking for the
sparsest possible re-ordering attack, w.l.g, we can assume that at least one of those
n terms is non-zero which leads to

‖ znew − zold ‖0= lim
p→0

[|znew1 − zold1 |p + |0|p + · · ·+ |0|p] (4.19)

where we assume znew1 − zold1 is the only non-zero entry,

‖ znew − zold ‖0= |znew1 − zold1 |0 + |0|0 + · · ·+ |0|0] (4.20)
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which leads to

‖ znew − zold ‖0= [|znew1 − zold1 |0 + |0|0 + · · ·+ |0|0] (4.21)

and a sum of absolute values is always ≥ 0 which leads to

‖ a ‖0=‖ znew − zold ‖0= [|znew1 − zold1 |0 + |0|0 + · · ·+ |0|0] ≥ 0 (4.22)

and it is showed that the objective function is bounded below hence, optimum to
this problem is attainable. �

4.1.2 Scenario II

For this case, the model is same as for scenario I with an additional constraint of
a scalar multiple. This attack can be regarded as a constrained injection or a very
specific case of injection. Here, to make the attack more effective, the adversary
swap the measurements with a scalar multiple of one of the previous plausible
data sets. The security metric defined in Eq. (4.7) is appropriate to measure the
minimum possible sparsity pattern of the attack vector regardless of whether the
magnitude is high or low. However, it is also possible that some attack vector
may satisfy the sparsity criteria but instead due to large magnitude, be caught in
detection. Therefore, another metric to keep the magnitudes of the swapping attack
vector as low as possible while making the attack successful is required.

minimize ‖a‖1
subject to |znew − zold| ≤ ε

1

n
Σn(xnewi − xoldi )2 ≥ c

(4.23)

where the 1-norm of a vector v is ‖vi‖1 :=
∑
| vi | and ε is a predefined scalar which

will limit the attacker to swap relatively closer measurements and c is a scalar to
ensure a non-zero attack vector each time.

The above problem is a convex optimization problem and can be re-cast into a
linear program. The solution of the re-scaled problem can be used to obtain optimal
attack vector a∗ to achieve its goal of swapping and remaining unnoticed at the
same time.

The proof of existence of its solution is similar to that of scenario I as here in
scenario II, by definition of 1-norm, the objective function can be easily proved as
bounded from below and hence the optimal solution is attainable in this scenario
as well.

The corresponding small magnitude swapping attack vector obtained after solv-
ing the problem (4.18)

a =

{
znewi − d.zoldi : zi /∈ Sm
0 : otherwise

(4.24)

where d is an arbitrary scalar, “.” represents element-wise scalar multiplication and
Sm is the set of protected measurements as already defined.
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4.1.3 Results

Before going into the detail of simulation results, it should be recalled that to per-
form re-ordering attacks, the attacker does not require the topology/subspace knowl-
edge of the system unlike already proposed attack strategies. In this section, we dis-
cuss the performance of the above mentioned model in constructing the re-ordering
attacks in both scenarios by simulations on IEEE 14 and 30-bus systems. It is worth
mentioning here that for both scenarios discussed the following two conditions
hold: firstly, without any re-ordering, it only takes 4 iterations till convergence and
secondly, measurement re-ordering attack is performed after each complete round
of WLS. The technique used to estimate the state is WLS and MATPOWER is used
for loading the data for AC model.
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Figure 4.3: Optimum attack vector for Scenario I case I

Mean square error (MSE) versus re-ordering attack vector’s sparsity for sce-
nario I, is illustrated in Figs. 4.3 and 4.4 for 14 and 30-bus systems respectively.
Several plausible measurement vector samples have been re-ordered and the spar-
sity and the mean squared error is shown. It can be seen in Fig. 4.3 that the sparsest
attack vector a∗ is ‖a‖0 = 5 with the corresponding impact of MSE = 34.1. While
in Fig. 4.4, the optimum attack vector has ‖a‖0 = 11 with respective impact of 20.9
as MSE.
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Figure 4.5: Optimum Attack vector for Scenario II case I
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Figure 4.4: Optimum Attack vector for Scenario I case I

Similarly, MSE versus sparsity of re-ordering attack vector for scenario II, is
illustrated in Figs. 4.5 and 4.6 for 14 and 30-bus systems respectively. Several plau-
sible measurement vector samples have been re-ordered and the sparsity and the
mean squared error is shown. It can be seen in Fig. 4.5 that the sparsest attack
vector a∗ is ‖a‖0 = 5 with the corresponding impact of MSE = 63.9. While in Fig.
4.6, the optimum attack vector has ‖a‖0 = 8 with respective impact of 10.9 as MSE.
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Figure 4.6: Optimum Attack vector for Scenario II case I
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Figure 4.7: Optimum Attack vector for Scenario I case II

Mean square error (MSE) versus re-ordering attack vector’s magnitude for sce-
nario I, is illustrated in Figs. 4.7 and 4.8 for 14 and 30-bus systems respectively.
Several plausible measurement vector samples have been re-ordered and the spar-
sity and the mean squared error is shown. It can be seen in Fig. 4.7 that the
smallest attack vector a∗ has magnitude ‖a‖1 = 0.9 with the corresponding im-
pact of MSE = 5.1. While in Fig. 4.8, the optimum attack vector’s magnitude
as ‖a‖1 = 4.2 with respective impact of 33.75 as MSE. Mean square error (MSE)
versus magnitude of re-ordering attack vector for scenario II, is illustrated in Figs.
4.9 and 4.10 for 14 and 30-bus systems respectively. Several plausible measurement
vector samples have been re-ordered and the sparsity and the mean squared error
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Figure 4.8: Optimum Attack vector for Scenario I case II
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Figure 4.9: Optimum Attack vector for Scenario II case II

is shown. It can be seen in Fig. 4.9 that the optimum attack vector a∗ has a mag-
nitude of ‖a‖0 = 1.2 with the corresponding impact of MSE = 10.4. While in Fig.
4.10, the optimum attack vector has ‖a‖1 = 1.2 magnitude with respective impact
of 16.5 as MSE.

After examining all of the above simulation results, we can infer that these
swapping attacks are most appropriate even when a part of the system is integrity-
and confidentiality-protected. Another aspect is that for power systems, as an at-
tacker we did achieve the error in both scenarios with very low measurement re-
ordering (cost) e.g., in Figs. 4.5 and Fig. 4.10.

62



4.2 PROPAGATION OF ERROR IN HSE AFTER RE-ORDERING ATTACKS

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

109 iterations

Impact(Mean square error MSE) (p.u)2

M
ag

ni
tu

de
of

at
ta

ck
ve

ct
or

a
(p

.u
)

30-bus system

Figure 4.10: Optimum Attack vector for Scenario II case II

4.2 Propagation of Error in HSE after Re-ordering Attacks

False data and related attacks are well studied in conventional state estimation, but
analysing the attack on hierarchical state estimation is not quite common. To the
best of our knowledge, measurement swapping is not yet studied in hierarchical
structure. Although false data attacks and delay/jamming attacks on HSE is ex-
plored by [9].

Therefore, our next task is to analyse the impacts of measurement swapping on
hierarchical structure where the goal of measurement swapping on HSE is to create
disruption in the control centre [39]. To attain this, we consider that the attacker is
capable of re-ordering the measurement set y0 of only one partition S0 ∈ S in
the lower level l1 of hierarchy where S is the set of all partitions. As a result, the
untrue state variables are being transmitted to the partitions at upper levels at the
beginning of each iteration of HSE. Note that the Hierarchical formulation used
here was proposed by Baiocco and Wolthusen in [10].

A structured re-ordering attack is considered while assuming the internal knowl-
edge of the partitions to launch the re-ordering attack in a way that maximizes its
effect. The knowledge required for the success of the re-ordering attack includes
some previous plausible measurement set yold of the targeted partition. The main
objective of the attack is to have a desired/false local state estimate that propagate
to higher levels to produce certain estimate x.

The scheme we are following for the attack is a three level hierarchical structure
with the following constraints:

• Once the attack is launched on a single partition of level l1, the data exchange
between the upper two levels i.e, l2 and l3 would still remain normal. That
means there is no further attack on upper levels.

• The network configuration, i.e, the sub area partitioning at level l2 and l2
is not permitted to change over a course of full top-down synchro-upgrade
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State Estimator

Cluster 1 Cluster 2 Cluster N

Measurements

Data Aggregation

Local Estimate Sensors

Figure 4.11: Communication network from sensors to estimator in hierarchical state
estimation [64]

(This constraint is usually not required by HSE [10].

After the attack, the flow equations of the first level would be like

[FT
1jR

−1
1j FT

1j ]ŷ
∗
1j = FT

1jR
−1
1j y∗0j (4.25)

where y∗0j is the swapped measurement vector of one of the sub-areas at level one.
The inputs at the second level y∗1j for area j = 1, 2 are the false estimates from the
first level and then

[FT
2jR

−1
2j FT

2j ]ŷ
∗
2j = FT

2jR
−1
2j y∗1j (4.26)

and finally, the output x̂∗ is the state of the entire system when solving the follow-
ing Normal equations for the third level

[FT
3 G−1

2 FT
3 ]x̂∗ = FT

3 G−1
2 ŷ∗2 (4.27)

where y∗2 and G2 are as defined earlier in section 2.6.2.
In case of False Data Injection (FDI), a generally denotes the attack vector that

shows the amount of change to the original measurement vector [61].

a = Fc

where c is a vector denotes the magnitude of change and is bounded by some
stealthy condition. Jamming or delay attacks can be seen as a sub-class of re-
ordering as they resend the previous data with some time interval. Also, attacks
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performed by replaying or blocking the measurement vector can be considered a
special case of re-ordering with a time constraint on them. The common aspect
among all of the above is that there is no attack vector to be added, rather adver-
sary just drop/block or jitter the measurements irrespective of whether they are
secure/protected or not by hacking the communication infrastructure. Therefore,
a general term, re-ordering of the measurement vector is introduced where the
adversary swap the true measurement vector with the previously plausible (true)
vector.

In this case, time horizon is critical for the attacker and it determines the strength
of the attack. Being realist, we assume that the attacker has the measurement in-
formation from the present till some particular limited point in time. Within these
time instances, the attacker can choose the measurement vector to be swapped the
present one while avoiding detection. In other words, an attack that is successful
in state forcing or non-convergence while being in-noticed by the model-based bad
data detection. There may be more sophisticated detection criteria, of course, but
these apply mostly to determining whether measurement devices (vector entries)
are compromised, and that does not apply here. Other models rely on redundancy
among measurements to determine compromise, but for a network-based attack
this does not match very well.
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Figure 4.12: Bus-bars distribution of 118-bus system
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4.2.1 Re-ordering Attack Cost and Attack Impact

We quantify the minimum attack cost as the attacking cost where attacker needs to
put the least effort to get the maximum Mean Square Error (MSE) and denote it by
Γy. All the regions in the power grid can be secured in one of the three ways,
i.e. non tamper proof authentication (Sntp ⊆ Sm), tamper-proof authentication
(Stp ⊆ Sm) or protected. Non-tamper proof authentication is of Bump-in-the-Wire
(BITW) type device authentication or a Remote Terminal Unit (RTU) with a non
tamper-proof authentication module. The regions with this type of authentication
are only susceptible to attacks by some physical access to the region from where the
data is originated. Tamper-proof authentication is not susceptible to attacks in any
case. Other cases of protection are also possible by guards or video surveillance and
generally this type is also not vulnerable to attacks. But realistically, all regions of
the power grid can not be made protected by all means and there must be at least
one region that is vulnerable (Sm′). If the region where the measurement vector
to be attacked is located is protected and uses non tamper-proof authentication or
tamper-proof authentication then the measurement is not vulnerable and we define
Γy =∞. Otherwise, for a measurement y, we define Γy as
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Figure 4.13: Information flow in Hierarchical State Estimation

min ‖a‖
s.t. ŷnew − ŷold ≤ ε

(4.28)

and when a(y) 6= 0 it implies |S(m′)| 6= 0, such that S = S(m) ∪ S(m′) where
Sm denotes authenticated areas/regions and Sm′ denotes the vulnerable areas s.t.
S = S(m) ∪ S(m′).
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Similar to the one in re-ordering attacks on conventional state estimation, this
optimization problem is convex and can be proved on the same lines to be attain-
able to the optimum value. Therefore, the proof is omitted here.

In addition, we assume that the attacker is free to choose the set from plausible
measurements in a particular time frame to be used for re-ordering attack. As a
result of this freedom and the attack cost (Γy) mentioned above, we quantify the
maximum attack impact as the attacker’s outcome and denote it by Iy

Iy = max I =
√∑

(ỹnew − ỹold)2

s.t. tnew − told > ε
(4.29)

where t denotes the time slot among the available time frames to the attacker and
ε is the pre-defined threshold to limit the attacker’s choice. Superscripts “old” and
“new” denotes the measurement used in the swapping and the measurement to be
swapped respectively.

Theorem 4.4 (Existence of optimum attack in hierarchical structure)
Consider the following optimization problem

max
√∑

(ỹnew − ỹold)2

s.t. tnew − told > ε
(4.30)

its optimum solution is attainable if the objective function is bounded below.

PROOF First, we transform the optimization problem into standard form as

min −
√∑

(ỹnew − ỹold)2

s.t. told − tnew ≤ ε
(4.31)

The objective function can be then written as

f =
√

(−1)2

√∑
(ỹnew − ỹold)2 (4.32)

or
f =

√
(−1)2

∑
(ỹnew − ỹold)2 (4.33)

which is
f =

√∑
(ỹnew − ỹold)2 (4.34)

w.l.g., at least one term inside square root on right hand side will be non-zero in
case of attack, therefore

f =
√∑

(ỹnew − ỹold)2 ≥ 0 (4.35)

and it is proved that the objective function is bounded from below. Hence optimum
of this problem is attainable. �
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4.2.2 Numerical Results

Before going into the detail of simulation results, it should be recalled that to per-
form re-ordering attacks, the attacker requires the topology/subspace knowledge
of the system and it is assumed that the topology is not changing or it is static in
the duration of the attack. In this section, we discuss the performance of the above
mentioned model in constructing the re-ordering attacks on each region of a hier-
archical state estimation by simulations on IEEE 118-bus systems. We divide the
118-bus system into 6 sub-areas/regions and additionally there is an intermediate
level between the top and bottom layers (shown in Fig. 4.12). Since the presented
hierarchical model is two-way synchro-upgrade model as shown in Fig. 4.13, i.e.,
at first, from lower level to the top-most and then the way back to the bottom levels
again, it is very interesting to see the error propagation after the proposed attack.
The attacker is free to choose the particular data set from a certain time frame i.e,
attacker has a limited amount previous data knowledge. The technique used to
estimate the state is WLS and MATPOWER is used for loading the data for AC
model.
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Figure 4.14: Effect of re-ordering at lower level of HSE

Mean square error (MSE) after performing least cost re-ordering attack of de-
scribed earlier, is illustrated in Fig. 4.14 for 118-bus system. Figure denotes the
logarithm (base 10) of MSE for one complete round of WLS state estimation i.e.,
from the lower layer to the top (Fig. 4.14) and all the way down detailing how that
error propagates from the lower level to the top and back again. We can clearly see
that in the end of a complete round after re-ordering attack, all areas are affected
no matter what the intensity is and which area is re-ordered individually. The im-
portant point to notice is the epidemic property of the attack and it shows the error
propagation from one infected area at lower level to all the areas at lower level.
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The plot illustrates how a single area from lower level hierarchy influence all the
areas at lower level such that the attacker can choose for the cheapest and the most
vulnerable area to perform the attack. An obvious observation is that the error is
maximum for the areas from where the attack originates. In the given partitioning
of 118-bus system, area-5 seems to be the most vulnerable as the system diverges
when the input data is re-ordered. It is worth noting here that the partitioning of
118-bus system for the re-ordering is a particular one and other cases may exist.

4.3 Countermeasures of Re-ordering Attacks

Generally, the process of estimating the states is based on data gathering, observ-
ability analysis and topology processing i.e., to check if there are enough measure-
ments in the power grid to determine its state to provides protection, monitoring
and control. Hence, IEEE C37.118 (details in section 2.1.1.1) and IEC 61850-90-5
(details in section 2.1.1.2) emerged as two well known communication frameworks
for data transmission in the grid.

Furthermore, protocols like IEEE C37.118 and IEC 618-90-5 have built-in com-
mands to accept messages only up to a certain time interval i.e., each of them have
their particular time limits for measurement acceptance. While IEEE C37.118 is sus-
ceptible to timing related attacks, IEC 618-90-5 has a definite acceptable range (in
context of time) for measurement reporting [50].

The study on countermeasures for the proposed re-ordering attacks (for both
conventional and hierarchical infrastructure) is one of our ongoing works. How-
ever, to prove the effectiveness of these attacks, a discussion on potential counter-
measures is desirable. As analysed in the previous sections 4.1 and 4.2 , there exist
control system’s protocols that are not robust against measurement re-ordering at-
tack.

Two of the possible countermeasures are timestamp based and Cryptographic
nonce based methods (as shown in Fig. 4.15, packets are transmitted from sensor to
the control centre using timestamp or cryptographic nonce) which are as follows:

4.3.1 Timestamp Based Countermeasure

In timestamp based countermeasure, synchronized and secured time clocks can
be used such that swapping attacks can be prevented. A typical timestamp based
scheme via digital signature Ek(M ||t), t is time stamp, M is the message or data, k
is the key and E represents encryption.

is a mechanism where we transmit the signature along with the data packet and
the timestamp. The control center check the timestamps to ensure them to be in an
acceptable range of current time.

In case of PMU for example, the demand for additional processing and com-
munication overhead will increase due to the addition of time stamp value in the
packet size, and encryption and decryption functions at both ends may be expen-
sive. Secondly, it may add little delay in communication due to additional time
to encrypt E and decrypt D each packet before sending and after receiving respec-
tively. The other main issue is trusted time source to ensure the freshness of each
packet i.e., synchronization of nodes with the trusted time source will be required.
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Figure 4.15: Timestamp based and Cryptography based order validation

4.3.2 Using Cryptographic nonce

We can also deploy cryptographic encryption to detect if somebody has sent these
measurements before by keeping history of measurements. A typical symmetric
encryption using cryptographic nonce is such that, for each data packet M from
sensors, attach a nonce n Encrypt the hash with the public key Ek(M ||n) and then
transmit the signature along with the data packet and the nonce.

Using cryptographic nonce can prevent message swapping but the calculations
are expensive and not constant time, i.e. it differs for each system along with the
requirement of additional storage. Also, reporting delay caused by encryption and
decryption must be incorporated.

The nonce requires some level of persistence, since it only works if uniqueness
is guaranteed and checked. Also, if the man in the middle can interrupt the sender,
get the nonce, and keep the sender from sending it, the man in the middle attack
could still be successful.

4.4 Conclusion

The measurement re-ordering attack as described in section 4.1.1 is made to work
even if some parts of power system are integrity protected. Key observation is
that currently in our power grid, the measurements are not authenticated time-
stamped to detect such re-ordering and such authentication for detection purposes
is adequately expensive to implement at least till near future. But, even assuming
time-stamped authentication, which is offered by ISO/IEC 62351 but not widely
deployed at present, re-ordering attacks may still succeed when combined with
message spoofing. This implies that as long as there are old components in our
power network, there can be a chance of these kind of attacks. But, in ten years
time, cryptographically time-stamped authentication can be made possible leaving
the re-ordering attack less effective.

We have introduced a new attack on power systems termed as re-ordering at-
tacks, where the adversary uses swapping as a tool to change the order of data
while not injecting or modifying any data. Due to targeted re-ordering, it become
very difficult for the system operator to detect the source of the error. Two cases
for the attacker depending upon the nature of swapping are discussed, and it is
demonstrated that, in all of the described cases, we can be successful in achieving
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malicious goals i.e. state estimation converges for both cases but with an adequate
error and even divergence. The significance of the presented attack lies in its appli-
cability despite modern protections.

We proposed an attack termed as re-ordering attacks on hierarchical state esti-
mation as well that we introduced earlier where the adversary uses swapping of
data sets as a tool to swap the order of data with some previous data set while not
injecting or modifying any data. The present work relied on the fact that not all
parts of the grid can be made tamper/non-tamper proof authenticated over night.
Therefore, a targeted re-ordering attack on the most vulnerable region of the sys-
tem is studied that can provide desirable propagation of error all over the system
and not just the attacked area. Moreover, it can be clearly seen that such an attacker
can force the estimate of a authenticated region by launching an intelligent attack
in less protected region.
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Chapter 5

Topology Related Attacks

The deployment of PMUs allows topology change detection schemes that are sub-
stantially faster and more accurate than existing approaches [88, 7]. The major issue
related to this advancement is the cost of these advanced devices. Due to this con-
straint, there are still thousands of branches with no PMUs, thereby leaving room
for the attackers. Even if it is possible to have PMUs at every line, these devices are
themselves possible to attack such as by targeting the all-important time reference
signal obtained typically from GNSS satellite configurations. As PMUs generally
rely on un-authenticated civilian signals such as the NAVSTAR (GPS) C/A code,
spoofing or denial of service (DoS) is easily and inexpensively achieved [82].

5.1 General Line Failures

An undetectable topology fault (attack) is a line failure deliberately induced by at-
tacker by changing a single switch/breaker status (e.g. via SCADA or in a phys-
ical attack) to create misconceptions among system operators while suppressing
the resulting alert or response to polling requests. Alternatively, an attacker may
seek to fool a TSO/DSO system operator into believing that a topology change has
occurred, while no such change has taken place; this is again possible to achieve
through network-based attacks on the monitoring system whose realisation are
beyond the scope of our work. Un-planned topology errors may also arise from
natural causes such as lightning strikes, earthquakes, high winds, ice formation, or
flooding. Here, however, we are focusing only on deliberate topology attacks.

To understand the power grid behaviour upon these changes, we need to estate
some facts. Liu. et al. proposed undetectable data attacks on state estimation and
the undetectability condition is:

Theorem 5.1 (Stealth Condition for False Data Injection Attack [61])
Suppose the original measurements z can pass the bad measurement detection. The mali-
cious measurements z̄ = z+a can pass the bad measurement detection if a lies in a column
space of H i.e., a ∈ Col(H).

PROOF Since z can pass the detection, we have ‖ z − Ĥx ‖≤ τ , where τ is the
detection threshold. x̂bad, the vector of estimated state variables obtained from za,
can be represented as x̂ + c. If a = Hc, i.e., a is a linear combination of the column
vectors h1, · · · , hn of H, then the resulting L2-norm of the measurement residual is

‖ za −Hx̂bad ‖= ‖ z + a−H(x̂ + c) ‖
= ‖ z−Hx̂ + (a−Hc) ‖
= ‖ z−Hx̂ ‖≤ τ

(5.1)
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Thus, the L2-norm of the measurement residual of za is less than the threshold τ .
This means that za can also pass the bad measurement direction. �

For a topology attack Ḡ, the above undetectability condition will be:

Theorem 5.2 (Stealth Condition for Topology Attack)
Suppose the original measurement set (z; s) can pass the bad measurement detection. The
malicious measurements z̄ = z + a can pass the bad measurement detection if z̄ lies in a
column space of Ĥ where s denotes the topological data and Ĥ is the measurement matrix
after topology attack Ḡ [51].

5.1.1 Attack Model

In this section, we aim to review the adversary model for topology change in power
grid state estimation. The attacker intends to change the current topology G to a
desired topology Ḡ = (V, Ē). We are only considering line faults, therefore, the
number of vertices V (bus-bars) will remain the same during the attack but the
number of edges E (transmission lines) will become Ē where Ē ⊂ E . The lines that
are not common in E and Ē are called attacked lines and the buses with which target
lines are connected are called attacked buses.

To launch the topology attack, the attacker needs to change the topology and
send over the false topology Ḡ to the control center by commencing e.g., a man-
in-the-middle attack initially. This way, the attacker obstructs the input data (s, z)
from RTUs, alters the desired information and send the revised data (̄s, z̄) to the
control center. Prior to the attack, a very small fraction of the input data (s, z)
is assumed to be known to the attacker. Such a restricted access to the system
parameters and information is the key point in this work. In our ongoing work, we
seek to efficiently recover the missing information after such dominant attacks and
hence the impact of such attacks.

The attack model to alter the topology from G to Ḡ is as follows:

z̄ = z + a, a ∈ A
s̄ = s + b, b ∈ {0, 1}

(5.2)

where z̄ is the new measurement vector, a is the attack vector to be added up, A is
the attack vector subspace for all the feasible attacks and b is the binary vector to
be added up in the network topology data s. Here, the term feasible is related to
sparsity and low magnitude of the attack vectors. Therefore, a is any attack vector
in A that satisfies the sparsity and low magnitude criteria as in [37].

The combination of data and topology attacks will allow it to be undetectable as
otherwise, if there is only the topology that the attacker can modify, it can easily be
caught in detection through the data of the missing lines. We assume the noiseless
case to begin with and leaving the noisy measurement case for future research.

We assume that it is not possible for the attacker to modify more than a couple of
switch/breaker statuses to launch undetectable topology attacks and similarly for
the data attack to alter the measurement vector due to the access/cost constraints
for the attacker. Therefore, the attack vector a is usually sparse, which shows the
validity of the attack as if the attacker has access to a desired substation to drop the
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line(s), she can also modify a handful of measurements to satisfy the undetectability
condition by hacking/tampering with communication to the control centre.

Even if the system is robust against single line failures, the proposed approach
ascertains the success of adversary by keeping the fault undetected. In addition,
double-line faults are also proposed focusing on concurrent failure of two lines.

5.1.2 Least Cost Topology Attack

Definition 5.1 (Cut-Set)
A cut-set is the set of edges between the two parts of a bipartition of the vertices in a graph.
So if a graph has n vertices, there are 2n−1 − 1 ways to partition those vertices into two
non-empty subsets.

Let E ′ ⊂ E be the cut-set of all such edges (1-cuts) in a graph. We call such edges
as critical edges. In power engineering terms, a critical edge is a transmission line
between a pair of buses whose removal leave the system disconnected. Once topol-
ogy changes in a power system, operator needs to check whether this change vio-
late the pre-conditions of the topology algorithm. If yes, then the best possibility is
to re-run the whole state estimation with the changed topology. Note that we are
only considering single/double line faults here.

We are considering the power network as a graph connecting bus bars (V)
through transmission lines (E). The resulting sub-graph obtained after the single
line failure (removal of one edge) must satisfy the following necessary but not suf-
ficient condition in order to keep the power grid well operating:

• The resulting sub-graph should be connected.

In the perspective of attacker, the system operator must be unaware of the attack
i.e, the attack must be undetectable. Following the condition of undetectability in
the beginning of section 5.1, the attacker needs to choose the lines according to
available resources to give a desired impact. To make such undetectable attacks
possible, attackers need to modify a few entries of the measurement vector as well
to justify the changed topology. Otherwise, the meter readings would not match
the topology that operators think as true and the operators could simply reject the
data and go for contingency analysis.

We initiate the terms critical attack size p∗ and system robustness n∞(p) for
an attack size p. Critical attacks can be seen as DoS attacks or an attack in which
at least one critical line is involved, and by size we mean the total cost of all the
modifications it require to launch such attack i.e.,

p = βa + γb, a ∈ A,b ∈ {0, 1}d (5.3)

where β and γ are the coefficients which are used to give weights to the respective
attack vectors according to the effort/cost required by the attacker to get the least
cost attack and a and b are as already defined. When considering single line failure,
we assume the the false data injection to a to suppress the line failure will be a =
[a1, a2, 0, · · · , 0] and b = [1, 0, · · · , 0]. Similarly, we assume that when double line
failure

The metric for system robustness n∞(p) should ideally be 1. But, for a critical
attack p = p∗, this metric is n∞(p∗) = 0 which means a complete breakdown of the
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5. TOPOLOGY-RELATED ATTACKS

system. For all the other attack scenarios, the system robustness is greater than zero
but less 1 and so is here where the reason of limiting the system robustness n∞(p)
to a particular attack is to increase the impact of the attack. The optimal attack a∗

can be determined by solving a convex optimization problem as

minimize ‖p‖
subject to |a| = |z̄− z| ≤ η

(5.4)

where ‖.‖ of any vector v is the sum of the squares of entries in vi, p is the cost of
the attack as already defined and η is the maximum resources the attacker has. In
other words, η is a combination of number of modifications the attacker can make
and the maximum acceptable magnitude.

Following the lemmas 4.1 and 4.2, we now show that the optimization problem
(5.4) has an optimal solution. For that, considering a = {a1, a2, · · · , an} and b =
{b1, b2, · · · , bn}we can rewrite

‖p‖ = ‖βa + γb‖ (5.5)

as

‖p‖ = ‖β


a1

a2
...
an

+ γ


b1
b2
...
bn

 ‖ (5.6)

‖p‖ = ‖


βa1

βa2
...

βan

+


γb1
γb2

...
γbn

 ‖ (5.7)

‖p‖ = ‖


βa1 + γb1
βa2 + γb2

...
βan + γbn

 ‖ (5.8)

‖p‖ = (βa1 + γb1)2 + (βa2 + γb2)2 · · · (βan + γbn)2 (5.9)

Applying Lemma 4.2 to our optimization problem (5.4), it becomes

Theorem 5.3 (Existence of optimum topology attack)
If

minimize ‖p‖ = (βa1 + γb1)2 + (βa2 + γb2)2 · · ·+ (βan + γbn)2

subject to |a| ≤ η
(5.10)

is bounded below over a feasible region, then its optimal solution is attainable.

PROOF We will start by expanding a as

|a| =
√
a2

1 + a2
2 + · · ·+ a2

n (5.11)

where |a| ≤ η,
a2

1 + a2 + · · ·+ a2
n ≤ η2 = ζ (5.12)
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where ζ = η2. We are only considering single and double line faults here and b rep-
resents the topology changes, therefore either b = (1, 0, · · · , 0) or b = (1, 1, · · · , 0)
making Eq. (5.9) as

f = ‖p‖ = (βa1 + γ)2 + βa2
2 + · · ·+ βa2

n (5.13)

or
f = (βa1 + γ)2 + (βa2 + γ)2 + βa2

3 + · · ·+ βa2
n (5.14)

w.l.g, we are considering the double line failure, as follows

f = β2a2
1 + γ2 + 2βγa1 + β2a2

2 + γ2 + βγa2 + βa2
3 + · · ·+ βa2

n (5.15)

f = β2(a2
1 + a2

2 + · · ·+ a2
n) + 2γ2 + 2βγ(a1 + a2) (5.16)

It is obviously,

β2(a2
1 + a2

2 + · · ·+ a2
n) + 2γ2 + 2βγ(a1 + a2) ≥ (a2

1 + a2
2 + · · ·+ a2

n) (5.17)

Arbitrarily assuming β = γ = 1

(a2
1 + a2

2 + · · ·+ a2
n) + 2 + 2(a1 + a2) ≥ (a2

1 + a2
2 + · · ·+ a2

n) = ν (5.18)

and finally, we can show that the objective function is bounded from below to a
number ν which is the size of the measurement manipulations from the attacker.

(a2
1 + a2

2 + · · ·+ a2
n) + 2 + 2(a1 + a2) ≥ ν (5.19)

as the function f is bounded below, it is proved that the optimum is attainable. �

The theorem about existence of infimum can be validated in Figure 5.1.

Example 2 Observe that the attacker can solve the above optimization problem
(5.4) with only a fraction of the entire measurement vector information. For exam-
ple, for 14-bus system as in Fig. 5.2, if the attacker want to initialize a single-line
fault, with the parameters as β = γ = 1, the cost (number of modifications re-
quired) will be 3 if the targeted line is non-critical and the value of the metric is
higher if the line to be attacked is the critical line due to the presence of additional
protection that system operators have deployed to secure that line. 2

5.2 Results

Before going into the detail of simulation results, it should be recalled that as an
adversary, we consider undetectable (single/double line) topology attacks consid-
ering the conventional centralised state estimation. The technique used to estimate
the state is WLS and MATPOWER is used for loading the data for IEEE 118 and 300
test beds. Note that without any topology error 118-bus system takes 5 iterations to
convergence and for 300, convergence needs 14 iterations. As the attacker desires
an undetectable topology change, the number of iterations in this case remains the
same.
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Figure 5.1: Solution plot for a single line failure (axis have scalars therefore, no
units)

Figure 5.2: Single-line diagram of 14-bus system
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Table 5.1: Single-line faults in 118 and 300-bus system

Test case Failed line Criticality Error (MSE)

118-bus
system

5− 6 non-critical 0.5
86− 87 critical ∞
77− 78 non-critical 0.44

300-bus
system

20− 27 non-critical 0.92
108− 31 critical ∞
243− 244 non-critical 0.27

Table 5.2: Double-line faults in 118 and 300-bus system

Test case Failed lines Criticality Error (MSE)

118-bus
system

1− 3, 4− 5 non-critical 74.2
56− 57, 50− 57 1 critical ∞
9− 10, 86− 87 both critical ∞

300-bus
system

12− 21, 25− 26 non-critical 297
119− 75, 95− 1 both critical ∞
254−39, 35−72 1-critical ∞

We repeat the processN times for single-line fault whereas
(
N
2

)
times for double-

line faults, where N is the total number of lines in each system. Results show that
the base case i.e., single line fault has a negligible effect unless it is critical line. Af-
ter N simulations for each bus system, we got a set of critical lines i.e, for 118-bus
system, 11 lines are critical and for 300-bus system, they are 69. Note that the single
line failure is only considered as a base case while double-line faults are our main
focus.

For double-line faults, all the three cases are considered, 1) when both lines are
non-critical, 2) when both are critical and 3) when one line among the double-line
failure is critical. Generally, system operators are aware about the critical lines in
the system and usually put more effort to secure those lines/locations. We assume
that the attacker has knowledge about the criticality of the attacked line. For the
first case, the attacker achieves state forcing while for the other two cases, diver-
gence of the state estimation is guaranteed.

In tables 5.1 and 5.2, we made a comparison of the mean square error (MSE) of
the state vectors before and after single and double topology faults, respectively.
It is illustrated that our proposed attack scheme works for all cases of double-line
failures while as expected, the single-line faults are effective only if the targeted
line is critical. For the simulations, we made 3 random lines and 3 random pairs of
lines fail for both types of attacks and the test cases, respectively. In both tables, the
term∞ denotes divergence of the power system state estimation after the respec-
tive failure. The least cost topology attack would depend on how powerful is the
protection of the desired location and therefore, also on the criticality of underlying
lines.
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5.3 In-Cycle sequential Topology Attacks

With a dynamic power grid that we have today, it is fair to expect frequent topol-
ogy changes. The expertise of power engineers rely on the smooth and steady
operation of the grid despite these recurrent changes in topology. Deployment of
Phasor Measurement Units (PMUs) is allowing topology change detection schemes
to be more accurate and significantly faster [58], [88]. Hundreds of PMUs are be-
ing deployed round the globe to increase the redundancy in measurement vector
and help getting topology changes detected, therefore contributing to more secure
power grid. Due to the cost constraint, there are still thousands of branches with
no PMUs leaving room for the attackers. Even if it is possible to have PMUs at
every line, there is still a potential chance for the attacker such as by aiming at GPS,
a time reference signal upon which generally all PMUs rely. Spoofing of such sig-
nals is very common and inexpensive source to create confusion about the correct
signals in the control centre.

In general, the PMU reporting rate ranges between 10− 60 samples per second
evenly aligned to hour (min and sec). Higher reporting rates of 100− 240 samples
per second are allowed and available with advance PMU devices.

Details of the undetectable single/multiple topology attack and the related pos-
sibilities for the attacker to create misconception among the operators can be found
in [41]. Here, we are introducing a novel sequential topology attack that goes
undetected due to its reverse nature. In addition, in both of our works i.e., the
previous and the present one, we consider these faults as a result of deliberately
induced error. However, such errors can also emerge due to some natural reasons
for example thunderstorms, earthquakes, floods, or even high winds that are not
under the scope of this work.

5.3.1 Adversary Model

In this section, we intend to analyse the attack model for transient topology changes
in a single scan cycle. There are usually two scenarios when SCADA systems trans-
mit the measurement data collected from sensors i.e., I) the devices will sent a mes-
sage if something interesting/unusual happens and II) SCADA systems need to
complete its scan/poll cycle despite of some changes. Theoretically, former is cor-
rect as protocols allow one to perform it but such a synchronization is relatively
uncommon. Contrarily, later is common traditionally which is a deterministic real-
time behaviour where every deadline is maintained within a certain time period.

As an attacker, we are considering the most widely used behaviour of SCADA
systems where SCADA take a definite amount of time after coming back to the
same sensor. In fact some sensors are slightly slower or faster compared to oth-
ers. In other words, there must be an interval between each time the measurements
being integrated leaving a possibility for the attacker. As long as the attacker main-
tains operation(s) within that frame of single scan cycle while keeping itself hidden,
the attack can be made successful.

The attacker aims to change the current topology G to a desired topology Ḡ =
(V; Ē) and then reverses that change before the completion of the scan cycle such
that the final topology ¯̄G = (V; ¯̄E) would be same as it was in the start i.e., ¯̄G = G.
This attack only involves line faults, therefore, the number of vertices V (bus-bars)
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time

Scan or 1 scan cycle State Estimation

Event 1
Ev1

Event 2
Ev2

Figure 5.3: Sequential topology attack model

will remain the same during the attack but the number of edges E (transmission
lines) will become Ē or ¯̄E where E ⊂ Ē , E = ¯̄E . The lines that are not common be-
tween E and Ē and between Ē and ¯̄E are called attacked lines in the first and second
attack intervals respectively. Similarly, all the buses with which target/attacked
lines are connected are called attacked buses.

As a prerequisite, the attacker must have the knowledge of few of the time win-
dows in between two scan cycles where the success probability is maximum. In the
beginning of a particular scan cycle, the attacker closes already open circuit break-
ers/switches. The corresponding measurements from the relative sensor changes
themselves due to the change in topology. Before the end of the same cycle, the at-
tacker switch the statuses back to its original (open) position such that the topology
now ¯̄E is same as was before the manipulation i.e., ¯̄E = E .

To launch such a sequential or a two-stage attack, the attacker at first, needs
to change the status of a single breaker from 0 → 1 and then within the scan of
measurements, the attacker needs to reverse that change i.e., 1→ 0.

s̄ = s + b1, b2 ∈ {0, 1}
¯̄s = s̄ + b2, b2 ∈ {0, 1}

(5.20)

where b1 and b2 are the topology changes at first and second stage of the se-
quential attack respectively. The attacker is limited in resources in terms of time
availability and therefore, the necessary but not sufficient condition for the attacker
about time limitation will be

s̄t − ¯̄st+1 ≤ T, s̄ ∈ Ḡ, ¯̄s ∈ ¯̄G (5.21)

where ¯̄s− s̄ is the length of the attack. This constraint limit the attacker such that
he must launch and complete the attack before the next scan cycle starts. There is no
proper attack vector in both stages of this attack as the amount of topology change
induced by the attacker is reversed inside the same scan cycle. It is important to
mention that the above model can be seen as a more realistic extension of [61] where
Liu et al. introduced a as an amount of change in the true measurement data. The
difference here is of the resources available to the attacker along with very low
detection probability and the similarity is the ultimate data fault caused by the
attacker.

The measurement vector can be seen as a collection of measurements at three
instants, 1) before attack, 2) after first attack and 3) after second sequential attack
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z∗ =



1
1
...
1
0
0
0
...
0


· z′ +



0
...
0
1
...
1
0
...
0


· z′′ +



0
0
0
...
0
1
1
...
1


· z′′′ (5.22)

where z∗ = z′+ z′′+ z′′′ is the manipulated measurement vector when looking at it
cumulatively. In other words, z′ and z′′′ are the sets of true value of measurement
vectors for the interval before and after the attack respectively. Whereas, z′′ is the
set of manipulated measurement vector and hence the attack vector can be taken
as,

a = z− z∗ (5.23)

Although, the attack vector a consists of the difference between the whole vec-
tors e.g., z and z∗ but in fact the attacker is not supposed to manipulate each entry
of z but only the section of z′′ measurements.

System states can be determined by z = Hx + e as

x̂∗ = argmin(z∗ − Ĥx)tR−1(z∗ − Ĥx) (5.24)

where x̂∗ is the false state.
The success of the attack lies on how bad is its influence on the measurements

in between such sequential change and then how the compromised measurements
impact the state estimation process. If the topology before the scan cycle would not
match the topology after it, the operators could simply reject the corresponding
data and go for contingency analysis. However, even if it not a sequential attack,
the first attack alone can cause damage to the system but here, the adversary is
aiming for its desired impact or at most DoS attack.

The least cost attack can be seen as the one with optimizing the cost function
such as

min C = ‖ z− z∗ ‖1
subject to s̄− ¯̄s ≤ T,

(5.25)

where z and z∗ are the manipulated and true measurements respectively. ‖ · ‖1 is
the magnitude of a vector. Eq. (5.25) is a an optimization problem with an objec-
tive function minimizing the cost of the proposed topology attack by finding the
optimum attack vector. The cost C depends on the total number of measurements
between the two stages of the attack i.e., s̄ and ¯̄s.

Solutions to such convex optimization problems usually exist and their exis-
tence can be proved using Lemma 4.2 as follows:
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Theorem 5.4 (Existence of optimum sequential topology attack)
If the objective function in

min C = ‖ z− z∗ ‖1
subject to s̄− ¯̄s ≤ T,

(5.26)

is bounded from below, the optimum is attainable.

PROOF Let us begin from the objective function,

‖ z− z∗ ‖=‖ (z1 − z′) + (z2 − z′′) + (z3 − z′′′) ‖ (5.27)

where z is a cumulative vector of the three sections z1, z2 and z3. The first and the
last term on right hand side will be zero because these are the measurements taken
before the attacked launched and after the completion of the attack respectively.

‖ z− z∗ ‖=‖ (z2 − z′′)) ‖ (5.28)

and
‖ (z2 − z′′)) ‖= Σn

i=1|z2i − z′′i | (5.29)

and a sum of absolute values is always ≥ 0 which leads to

‖ z− z∗ =‖ (z2 − z′′)) ‖= Σn
i=1|z2i − z′′i | ≥ 0 (5.30)

and it is showed that the objective function is bounded below hence, optimum to
this problem can be attained. �

5.3.2 Results and Discussions

We note that we seek to consider undetectable topology attacks on conventional
centralised state estimation. In this section, we discuss the performance of the
above mentioned state estimation model as a result of sequential topology errors
by simulations on IEEE 14 and 30-bus systems. The technique used to estimate the
state is WLS and MATPOWER is used for loading the data for AC model. Note
that, without any topology attack both systems take 4 iterations to converge.

Our sequential attack is composed of two stages to be completed in a single
scan cycle. It is worth mentioning here that we consider the same transmission
line in both stages i.e., first stage of attack is opening a line while the second stage
is closing the same line. Table 5.3 shows that there is always an impact no matter
which line is under attack. AfterN simulations for each bus system, whereN is the
total number of lines in a system we notice that our attack model remain successful
whether it is about the error in estimated states or delayed convergence.

In above table, the first and second columns are for the considered test systems
and the attacked lines respectively. We test all the lines of both systems but only
showing few of them in table chosen randomly. We make a comparison between a
single topology attack (base case) and the proposed one. Single LF column repre-
sents a single line failure as a result of an undetectable attack whereas Sequential LF
column shows the proposed attack where the attacker opens and closes the breaker
sequentially during measurement taking process. The mean-square error (MSE)
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Table 5.3: Sequential faults in 14 and 30-bus system

Test case Failed line Convergence (iterations) Error (MSE)
Single LF Sequential

LF
Single LF Sequential

LF

14-bus
system

1− 2 4 iterations 4 iterations 83.19 3.455
2− 3 4 iterations 5 iterations 0.0003 0.6424
5− 8 4 iterations 7 iterations 0.0013 0.4731
3− 14 4 iterations 5 iterations 0.0001 0.287

30-bus
system

1− 2 4 iterations 5 iterations 0.0001 6.159
2− 4 diverge 6 iterations ∞ 108.12
4− 12 4 iterations 4 iterations 0.0001 6.53
24− 25 diverge 6 iterations ∞ 6.16

between two vectors is simply a squared Euclidean distance between them, nor-
malized by the length of the vectors. It can be seen for the two transmission lines
in 30-bus system, i.e., 2− 4 and 24− 25 that the system diverge due to singularities
after removing these lines. Even for such critical lines (a transmission line between
a pair of buses whose removal leave the system disconnected), the proposed at-
tack (Sequential LF) outperforms the single LF by forcing the state estimator and
not just breaking down the system. It is mainly due to the fact that the proposed
method can avoid detection because the topology state of the system remains the
same before and after the measurement process. Last part of table 5.3 illustrates
that the proposed model works better than the basic one in almost every respect
and shows even better results for the larger grid.

5.4 Countermeasures for Topology-Related Attacks

As described in section 5.1.1, to launch the topology attack, the attacker needs to
change the topology and send over the false topology Ḡ to the control centre by
commencing e.g., a man-in-the-middle attack initially as discussed in section 5.1.1.
We are currently working on the respective countermeasures for topology-related
attacks.

There can be multiple solutions for this type of attack but Edge addition and
anomaly detection are the two techniques we are proposing for potential mitiga-
tion.

5.4.1 Edge Addition

Unlike single line failures for which control centres are capable to deal with, mul-
tiple line faults are crucial to prevent. Adding edges (transmission lines) can over-
come the effects of multiple line failures by giving redundant measurements i.e.,
Fig. 5.4 shows a base model for edge addition. For a network like power grid, de-
ployment cost is one of the potential constraints among others. Edge addition can
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be formulated as an optimization problem giving optimum edges as solution with
an upper-bound on cost.

Vulnerable 
Edges

Added 
Edge

Figure 5.4: Edge addition as a countermeasure to topology failures

Measurement redundancy allows the control centre to help compensate the
missing information on system parameters. In addition, redundancy might be
a viable solution where there is a high requirement of reliability and successful
multi-faults attack might have a substantial impact that it justifies the cost of hav-
ing additional transmission lines (edges). For environments where redundancy is
not a potential solution because it is prohibiting costly to implement, the proposed
solution might be wild. allows the control centre to help compensate the missing
information on system parameters.

5.4.2 Anomaly Detection

Another possibility of a potential mitigation scheme might be a solution to anomaly
detection algorithm. Here, anomaly is termed as any topology fault (line failure), ir-
respective of its source/cause and is a type of screening process using measurement
pattern or trustworthiness metric. Whenever network topology is attacked i.e., a
switch/breaker status is manipulated, the corresponding measurements show ab-
normal/different behaviour. This variation in the measurement pattern can be used
to detect anomaly. Once the infected packet from a sensor is detected, the control
centre might take actions to normalize the state.

In addition, a trustworthiness metric can be used to quantify the reliability of a
certain measurement packet with a limitation of real time required to analyse each
packet. The metric works by analysing potential transient instability in the network
and prevents controller from this attack. We can assume the value of metric as 1 for
absolute trustworthy and 0 for unreliable packet respectively. To assess each packet
for reliability might be computationally expensive.
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5.5 Conclusion

Modern power networks are likely to experience more rapid and dynamic topology
changes, but require accurate state estimation even more so as they would operate
closer to safety margins and need rely on techniques such as demand response
and management. We have sought to study the effects of multiple-line failures
and the resulting topology changes when these are induced by adversaries also
capable of suppressing alerts on the occurrence of such induced faults and have
given a cost criterion for attackers to choose the lines to target efficiently based on
only incomplete information about power networks. We have demonstrated the
efficiency and success of this class of attacks also against the common IEEE 118 and
300 bus test systems.

The frequent topology changes make our grid more vulnerable to topology at-
tacks where the operator can think of the attack as the usual unplanned change.
We propose a transient topology attack involving sequential failures during a sin-
gle scan cycle. This way, the state of the topology remains same in the beginning
and the end of the process of collecting measurements therefore, making the attack
adequately undetectable. Finally, an optimization problem for the least cost attack
is formulated.
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Chapter 6

State Forcing Topology Attacks

The static arrangement of power system components e.g., transmission lines, bus-
bars, etc. is referred to as connectivity and the status of switches/circuit breakers
determine the dynamic structure of the network know as topology. Connectivity is
considered to be fixed over a certain period of time but topology changes are quite
frequent.

6.1 Topology Processing

Converting raw analogue measurements into appropriate units is the first task
of the network topology processor. Next task includes simple tests and checks
i.e., verifying operating limits, validating non-zero flows in open switches and
non-zero voltage differences across closed switching devices. Assuming that the

Start

End

1. Read input matrices

2. Changes Investigator

3. Substation  Splitting/Merging 
Analysis

4. Circuit Connectivity Analysis

5. Islanding Check

6. Energized Check

Figure 6.1: Flowchart showing topology processing Algorithm [34]
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6. TOPOLOGY FORCING ATTACKS

switching data is correct, initially, a bus-section/switching-device model is con-
sidered and data is gathered for topology processing. Then the state estimator
assumes the topology to be correct and carry on with estimating the states and
detecting/identifying bad data.

One of the classical works on topology processing was documented e.g. by
Monticelli [70]. In this section, we explicitly explain the topology processing algo-
rithm following [34]. The reason of choosing later one to replicate is is mostly to
understand the data structures and control flows so as to identify attack vectors.

Fig. 6.1 shows the 6-step procedure for topology processing. Step 1 is respon-
sible for reading the input matrix which has all the switching devices data. This
primary step does not need an algorithm as it is just about collecting the input
data. The next 5 phases can be seen in the algorithms from 1 to 5.

Each switch should be listed with one of the following four types

• Type 1: Switches which are located on a line directly connected to a generator.

• Type 2: Switches which are located on a line connecting two different substa-
tions.

• Type 3: Switches which are located within a substation.

• Type 4: Switches which are located on a shunt element, i.e. loads or capacitor
banks.

Algorithm 6.1: Changes Investigator Algorithm
Input: S = {s1, · · · sm}where sm ∈ (0, 1)
Output: Snew

1 for m = 1 to size(S) do
2 if snm(new) 6= snm(old) then
3 Determine Breaker type of sm if snm is of type 3 then
4 Save m and n and call Algorithm 2
5 else if sni is of type 2 then
6 Save m and n and go to line 13
7 else
8 go to line 13
9 else

10 Call Algorithm 3
11 return Snew

The next phase is to investigate the changes in the network. As shown in Algo-
rithm 1, the NTP compares the current snapshot of the breaker and switch statuses
with the previous one. It identifies any change in the status of the switches within a
substation or on the line connecting two substations. All other changes will be left
unsaved as breakers and switches elsewhere have no role in connections of circuit.

The output of algorithm 1 will be Snew i.e., the set of revised statuses which is
to be used as input for algorithm 2 which is a substation splitting/merging algo-

88



6.2 ATTACK MODEL

Algorithm 6.2: Substation Splitting/merging Algorithm
Input: Snew = {s1, · · · sm}where sm ∈ (0, 1)

1 for any breaker of type 3 do
2 while snm(new) 6= snm(old) do
3 Determine all such breakers and circuits
4 if Any breaker with snm = 0 is left then
5 Start a new list with one of m and n are connected
6 Save all such n that are located through closed path in L
7 else
8 Call Algorithm 3

rithm. It runs only when there is a change of status within the substation. Then, the
program identifies and saves all the substations with updated status information.

Algorithm 6.3: Circuit Connectivity Analysis
Input: Snew = {s1, · · · sm}where sm ∈ (0, 1)
E = {e1, · · · et}

1 for t = 1 to size(E) do
2 if et = 0 in Algorithm 2 then
3 The line is disconnected
4 else if Any type 2 breaker with si being changed and Corresponding

si = 0 then
5 The line is disconnected
6 Call Algorithm 4

Connectivity analysis (Algorithm 3) has two steps: first is performed during
the splitting/merging analysis to report if a circuit under investigation is open/
disconnected. Second step is carried out on all the switches on the lines connecting
two substations. The engine checks if the status is open, it reports the correspond-
ing line to be a disconnected one and vice versa.

Next step is islanding check (Algorithm 6.4) which is quite similar to the changes
investigator phase. All mutually connected substations are added in a list and if
there are more than one lists, that means there are more than one islands in the
network [34].

In the last phase of topology processing, energization check (Algorithm 5) is
performed. This is done by checking the switches on the shunt elements i.e., loads
or capacitors.

6.2 Attack Model

Topology errors can occur as a result of false manufacturing data/line length or
environmental conditions including others. The impact of such errors could be
unreliable SE results or correct data being filtered out as bad due to inconsistencies
with network parameters. A part from this, these errors can also be adversary
based, where attack is formulated in such a way to damage the system.
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6. TOPOLOGY FORCING ATTACKS

Algorithm 6.4: Islanding Check
Input: Snew = {s1, · · · sm}where si ∈ (0, 1)
E = {e1, · · · sn}
Data: L be the List of substations initially singleton i.e., L = {l1} and M be

the set of all substations
1 for t = 1 to length M do
2 if ∃ a mutually connected li then
3 Include li into L
4 and update L else if Any li still not investigated then
5 Prepare for investigation if li ∈ L then
6 Call Algorithm 5
7 else
8 Go to line 2
9 return L

Algorithm 6.5: Energized Check
Input: List of Substations from Algorithm 4 L = {l1, · · · sm}
Data: L be the List of substations initially singleton i.e., L = {l1} and M be

the set of all substations
1 for t = 1 to length M do
2 if ∃ a mutually connected li then
3 Include li into L
4 and update L else if Any li still not investigated then
5 Prepare for investigation if li ∈ L then
6 Call Algorithm 5
7 else
8 Go to line 2
9 return L

There are two ways for SCADA to transmit the sensor data to the control centre
i.e., it responds to any interesting change that happens or it takes its time to com-
plete the poll cycle despite of any change. Former is theoretically correct but later is
commonly practised. As an adversary, we are considering two cases to induce tar-
geted errors, i.e., in-cycle and inter-cycle. In-cycle attack is a type of topology attack
in which the attacker is limited to one scan cycle (see details in [40]). On the other
hand, inter-cycle attacks are the ones which are not limited to a single cycle for
their launch or impact. Few examples of topology attacks include single/double
topology failures along with their impacts among others [41].

As an attacker, we have the following goals to be achieved for state estimation:

• Non-Convergence of state estimator

• Adequate errors in state estimation results

• Forcing the state estimator for a certain state
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Attack activity starts with changes investigator algorithm

Type of the breaker?

Attacker masks type 3 switches with type 1

skipped because of
type 1 switches

not excuted as there is
no change in type 2 switches

False islands because of wrong status information

A complete incorrect topology is achieved as a result

Go to Algorithm 2

Go to Algorithm 3

Go to Algorithm 4

→

Figure 6.2: Erroneous State estimation due to tampered topology

By following the step-by-step topology processor algorithm (in section 6.1), the
objectives stated above can be achieved by exploiting the vulnerability in sub-
algorithm (Algorithm 6.1). Then, we will show how the goals are attained by prop-
agating the error from the start.

6.2.0.1 Non-convergence

The attacker can push the state estimator to non-convergence by sending the wrong
status information that will make the network topology invalid.

6.2.0.2 Error bounds

Generally, there is a certain threshold on the SE error tolerance. But sometimes, the
errors become significant and make the system operators take crucial decisions.It
can be the one, where the attacker make you believe that there is a certain topology
which is false.
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initialize in-
put matrices

investigate
the changes

substaion
splitting/mergingAttack model

circuit connec-
tivity analysis

islanding check

energized check

scenario II

scenario I, scenario III

Figure 6.3: Target algorithms of attack in different scenarios

Fig. 6.3 shows the details of which algorithm to manipulate for each of scenarios
I, II and III respectively. In other words, for scenario I (non-convergence) type
attack, attacker will mask the true topology change with a false one in algorithm 6.1
and for scenario II type attack, attacker will manipulate the true list of connected
substations hence resulting a different topology (algorithm 6.4). Finally, scenario
III type attacks are similar to launch as scenario I (i.e., on algorithm 6.1 ), except for
the type of attack.

6.2.0.3 State Forcing

Here, we aim to review the adversary model for topology changes that result in a
particular state in state estimation. The adversary needs to manipulate the breakers
status that effect the adjacent network such as to force a certain state.

In state forcing scenario, the attacker needs to compromise certain circuit break-
ers while keeping the resources to the minimum. Resources here include the access
to breakers and number of attacked breakers. Such attack involve the changes in
statuses that are non-linear in nature and hence attacker needs to approximate a
highly non-linear function.

To approximate such a function, most widely used techniques are Weighted
Least Square (WLS) method, Weighted Least Absolute Value (WLAV) method and
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Kalman Filter. Relatively low complexity and the ability to provide a quality esti-
mate are the main advantages of Kalman filter over the other two. However, for a
non-linear approximation, unscented Kalman filter could be a suitable choice.

The attacker will perform its own state estimation of the non-linear dynamic
system based on the information set I. Attacker has access to all the data on I
which includes the placement information of critical and non-critical switches and
also a subset of the topology graph. For a non-zero topology attack, the problem of
discrete-time, dynamical system will become

x̄k+1 = f(xk,vk) (6.1)

ȳk = h(xk,nk) + ak (6.2)

x̄k+1 is the desired state, ȳk is the false measurement input after the topology is
being changed and a is the change in topology.

These attacks are formulated as the ones defined in [61]. Particularly, an attack
vector a belongs to this category if

ak = h(xk + ck,nk)− h(xk,nk) (6.3)

for some ck. Adversary changes the topology in a way that the true state xk and the
false state xk + ck are both valid network states. Hence, the control centre believe
xk + ck to be the true one. As, the arbitrary vector ck can be scaled according to
the topology changes that attacker made, the desired state can be attained while
fulfilling the stealth condition

ak = h(ck,nk) (6.4)

Attacks in this regime have the following constraints, which are:

• Attacks are unobservable under the condition (6.4).

• Attacker must have the access (either physical or cyber) to change the switch-
ing device(s) status(es)

• Attacker is limited in resources i.e the placement and magnitude of changes

• The desired states which the attacker needs to force are

xtargetk = {x1
k, · · · ,xtk}

• The information Ia available to the attacker is considered to be the optimal
information set.

Therefore, this attack is defined as the smallest l-sparse vector s.t

min |ak|
subject to ‖ yk − ȳk ‖1≤ α

(6.5)

Assuming the optimization run is faster than the change in topology, the solu-
tion set is the least switch statuses that needs to be modified. Constraint in (6.5) is
to ensure the changes in topology are limited. This condition along with the above
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will help finding out the modifications but it will still work even if the information
set is incomplete. Any Kalman Filter method will be able to approximate the func-
tion even if a single status is unknown. Particularly, UKF can approximate without
major constraints unlike other approximation techniques.

The above optimization problem is convex and the convexity can be proved by
the positive-definiteness of its Hessian matrix ytHy. Existence of its solution can
be seen by the theorem below:

Theorem 6.1 (Existence of optimum state forcing attack)
If the objective function in

min |ak|
subject to ‖ yk − ȳk ‖1≤ α

(6.6)

is bounded from below, the problem has an optimal solution.

PROOF Its proof is quite straight forward as |a| ≥ 0. �

It seems that a depends on H but results show that it only depends on the topology
of the system [56]. For that reason, topology attacks [40] are the best choice for the
attacker.

Note that the system can be considered as unobservable if there are insufficient
measurements including breaker and switch statuses due to some system error.
Un-observability caused by attacker is different in a sense that for former case, the
control centre knows exactly about the discrepancies and how they are going to
impact the state. On the other hand, if the system is unobservable due to some
malicious activity, the control centre would have no idea about the missing network
information and their impact on system state.

Example 3 (Convergence to a false value) The attack can result the state estima-
tor to converge to a false value by launching attack on Changes Investigator Phase
where the physical location of the breaker is to be determined. The attacker will
mask the true switch location with a false one. Then, Splitting and Merging will
have the impact as the switches located within the substation are wrongly consid-
ered as the ones connected to a generator(s). In the end, when Island-ing occurs,
produced islands in form of a list of substations are incorrect. Hence, the wrong
breaker type results in a complete different topology. Consequently, state estimator
gives the inaccurate estimates. 2

Example 4 (Non-convergence) The attack can result the state estimator to non-
convergence by launching attack on Energized Islands Check phase where the
engine is checking for the energized islands. Attacker will mask the true energized
substations as de-energized and therefore cause non-convergence. 2

Example 5 Forced Convergence to a desired value Consider the IEEE 30-bus test
system, shown in Fig. 6.4. Take I = {(12, 16), (14, 15)} as the information set that
means the attacker has the ability to read and modify statuses on these branches.
When attacker changes the statuses from 1 − 0 or 0 − 1 , the measurement data on
the branches (12, 16), (16, 17), (12, 13), (4, 12), (12, 14), (12, 15), (15, 18), and (15, 23)
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Figure 6.4: Bus-bars distribution in 30-bus system

will change. In other words, the data on adjacent buses/branches to the attacked
branch will be affected. This new set of measurements would be sent over to control
centre for state estimation via SCADA systems. Therefore, as an attacker, we can
force the state variables x12

k , x14
k and x15

k by modifying the data in the information
set. In other words, attacker can choose which branches to add in its I depending
upon its desired state.

6.3 Countermeasures for State Forcing Topology Attacks

The proposed attack in section 6.2.0.3 makes the state estimator think that the actual
topology is something different which forces an error in the true state. While the
focus here is to propose state forcing topology attacks, we are also currently in the
process of producing a manuscript discussing the potential solutions which detect
the state forcing topology attack and also prevents it.

Having topology knowledge is a prerequisite for state estimation. The coun-
termeasure needs to be in a way in which we can then conclusively ensure that
the topology information is as close to the real topology as possible. Therefore,
any countermeasure must deal with the ways in which we can reduce the error or
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closes the gap between the estimated and the real topology. A fast and better way
of detecting topology might be a potential countermeasure with a constraint on the
available time for detection. In addition, a way of preventing fake topology updates
might be another countermeasure by topology validation for each state estimation
cycle. Both the topology detection and prevention techniques might be efficient but
computationally complex as to validate each and topology update while staying in
the state estimation poll is crucial.

6.4 Conclusions

Faults in power system state estimation can be induced maliciously by various
manners. False data injection or manipulation both in sensor measurements or
in communication network is widely known approach. Launching attack prior to
these processes e.g., in topology processing phase is relatively new.

We proposed a type of state forcing attack which is initiated in topology pro-
cessing phase and propagate through the state estimation while assuming that the
attacker has certain topology knowledge i.e., about switch statuses. For a success-
ful state forcing attack, the attacker needs to manipulate some of the switches in-
formation in the topology processing phase such that the desired system state can
be achieved. Furthermore, we formulated an optimization problem for optimum
state forcing attack.
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Chapter 7

Analysis and Discussions

In this chapter, we will summarize our research first, followed by key contributions,
directions for future work and then adoption of thesis findings will be discussed.

7.1 Summary

We introduced adversary models for power system state estimators, considering
measurement data and topology being attacked. The models enabled us to anal-
yse the vulnerabilities and hence impacts of such malicious approaches on power
system. It also enabled us to propose certain criteria to make such schemes unde-
tectable by system based detection.

We emphasised on measurement swapping (which is a novel approach to the
best our knowledge) as a source of attack while considering a power network that is
equipped with security protocols. As compared to existing work on Replay Attacks
(RAs) e.g., in [69], repetition of measurement vectors is used as an attack while as-
suming that attacker has access to the sensors and can monitor them, our approach
does not have such limitations on knowledge, access and time. As an attacker, we
found out that such an attack can be made possible even with relatively less strong
assumptions.

Moreover, we translated swapping attack to multi-level hierarchical state esti-
mation which is novel to the best of our knowledge and demonstrated how error
propagates from regions of lower/intermediate levels to upper and vice versa.

In addition, we found out that topology related attacks are comparatively less
explored and therefore, we studied two types of topology attacks/failures: i.e., line
faults and in-cycle topology attacks. We introduced a type of sequential faults that
can be made unnoticed by system operators due to their reverse nature. We termed
them as in-cycle topology attacks which are novel to the best of our knowledge
because the attacker exploits the available time window between two scan cycles
to launch the attack. A scan cycle is the time SCADA takes to collect a single round
of measurement taking process for state estimation.

Topology processing has vital role in reliable state estimation and in turn to a
smooth power system operation. Hence, we elaborated each of the steps involved
in topology processing (which is relatively new in comprehensiveness that we pro-
vided) and found vulnerabilities for the attacker. We considered State forcing as a
consequence of undetectable topology faults while supposing that the attacker is
restricted for certain location and magnitude of the possible change.
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7.2 Key Contributions

• We showed that measurement re-ordering is adequate to cause misconcep-
tions in state estimation or avert convergence. We defined two security met-
rics to ensure sparsity and to limit the attack magnitude respectively assum-
ing only the restricted knowledge available to the attacker. Also, we exam-
ined three level system where there is an intermediate level between bottom
and top layer which act as a coordinator for local state estimation and input
data for the top layer (final state of the system). We also examined the effect
of a single compromised (measurement vector of) sub-area other sub-areas.
Thus, we successfully answered our first research question from section 1.1
in this chapter.

• In context of line faults, we considered line outages and termed them as single
and double line failures. We combined data modification of the attacked lines
along with line failures to ensure the attack’s undetectability while attacker is
assumed to have limited knowledge of system’s parameters. Therefore, the
second research question from section 1.1 is answered.

• We showed that the condition of undetectability is coming from the fact that
the topology state in the beginning and end of the measurement taking pro-
cess remains the same. Also, we formulated an optimization problem to
achieve optimum topology attack. By this, we managed to answer our third
research question from section 1.1.

• We demonstrated how a desired state can be forced by creating misconcep-
tion among the system operators about an adversary who is capable of mak-
ing undetectable topology changes. As compared to already known state
forcing attacks, the proposed one is novel in the sense of the cause i.e., topol-
ogy faults. Finally, we approached our last research question as introduced
in section 1.1.

7.3 Directions for Future Work

It is obvious from the chapters above that the research carried out in this disserta-
tion can not be considered concluded. It is certainly because the research area of
emerging smart grid is quite vast and there is adequate amount of work to be done
to cope with the advancement.

• An investigation on how to provide practical feasibility of the proposed at-
tacks by analysing the vulnerabilities in current IEEE standards for synchropha-
sors etc. is quite interesting to analyse.

• An implementation of measurement re-ordering model by giving weights to
certain parameters depending upon the criticality of the measurements is one
of the future works. Similarly, an analysis on how we can translate such at-
tacks in a hierarchical or full distributed setting will be preferable to make the
future grid more resilient.
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• A study of countermeasures for measurement re-ordering is helpful by propos-
ing a timestamp based and cryptography based method that guarantees pre-
vention to make the power system robust against attacks.

• One of the reasonable mitigation techniques, we are working on, is edge ad-
dition and anomaly detection to force all the topology attacks to be detected
using a certain criteria.

• We are also currently in the process of producing possible mitigation tech-
nique against state forcing topology attacks which detects and also prevents
them. It based on detecting fake links by analysing transient instability in the
network and prevents controller from this attack.

7.4 Adoption of Thesis Findings

C37.118-2005 is one of the IEEE standards for synchrophasors for power system.
According to which synchrophasor measurements shall be tagged with the Uni-
versal Time Coordinated (UTC) time corresponding to the time of measurement.
Synchrophasor estimates shall be made and transmitted as data packets at a rate
that is an integer number of times per second. The PMU supports data reporting
and the reporting rate depends on the frequency of the system i.e, for a 50 Hz sys-
tem, reporting rate varies from 10-25 data packets per second and for 60hz system,
it varies from 10-30 data packets per second.

To launch measurement re-ordering in the above case, consider that MitM would
have knowledge about information flow from PMUs and attacker re-order the data
packets, hence causing the system operator to make actions depending on the
wrong packet. Multiple packet swapping is also possible on the same lines. There-
fore, it is advised that standards of this kind are vulnerable to proposed attacks and
for long term, the standards should be modified.

IEC 62351 is an industry standard aimed at improving security in automation
systems in the power system domain. It contains provisions to ensure the integrity,
authenticity and confidentiality for different protocols used in power systems. Fur-
thermore, it provides end-end encryption. With all of these in place, in-cycle topol-
ogy attack is possible as the messages during this attacks will be integrity and confi-
dentiality protected and authenticated. End-to-end encryption comes from the fact
the topology before and after a single scan cycle is same. Hence, to make industry
standards more robust against these type of attacks, modifications will be required.
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