5 research outputs found

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Branch-pipe: Improving graph skeletonization around branch points in 3D point clouds

    Get PDF
    Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato and tobacco plants, grown in five environments and across multiple developmental timepoints. Compared to existing methods for 3D skeletonization, our method efficiently and more accurately estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes containing networks of complex cylindrical shapes

    Data-Driven Synthetic Modeling of Trees

    No full text
    In this paper, we develop a data-driven technique to model trees from a single laser scan. A multi-layer representation of the tree structure is proposed to guide the modeling process. In this process, a marching cylinder algorithm is first developed to construct visible branches from the laser scan data. Three levels of crown feature points are then extracted from the scan data to synthesize three layers of non-visible branches. Based on the hierarchical particle flow technique, the branch synthesis method has the advantage of producing visually convincing tree models that are consistent with scan data. User intervention is extremely limited. The robustness of this technique has been validated on both conifer and broadleaf trees
    corecore