1,535 research outputs found

    An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration

    Full text link
    We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1H^1- or H2H^2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field rendering the deformation incompressible and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. We use a preconditioned, globalized, matrix-free, inexact Newton-Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton-Krylov methods with a globalized preconditioned gradient descent. We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation regularity, and computational efficiency with an optional control on local mass conservation. The Newton-Krylov methods clearly outperform the Picard method if high accuracy of the inversion is required.Comment: 32 pages; 10 figures; 9 table

    Multiple Shape Registration using Constrained Optimal Control

    Get PDF
    Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM) only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces

    Symmetric image registration with directly calculated inverse deformation field

    Get PDF
    This paper presents a novel technique for a symmetric deformable image registration based on a new method for fast and accurate direct inversion of a large motion model deformation field. The proposed image registration algorithm maintain a one-to-one mapping between registered images by symmetrically warping them to each other, and by ensuring the inverse consistency criterion at each iteration. This makes the final estimation of forward and backward deformation fields anatomically plausible. The quantitative validation of the method has been performed on magnetic resonance data obtained for a pelvis area demonstrating applicability of the method to adaptive prostate radiotherapy. The experiments demonstrate the improved robustness in terms of inverse consistency error when compared to previously proposed methods for symmetric image registration

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease
    corecore