42,501 research outputs found

    Tracing scientific influence

    Full text link
    Scientometrics is the field of quantitative studies of scholarly activity. It has been used for systematic studies of the fundamentals of scholarly practice as well as for evaluation purposes. Although advocated from the very beginning the use of scientometrics as an additional method for science history is still under explored. In this paper we show how a scientometric analysis can be used to shed light on the reception history of certain outstanding scholars. As a case, we look into citation patterns of a specific paper by the American sociologist Robert K. Merton.Comment: 25 pages LaTe

    Knowledge management, innovation and big data: Implications for sustainability, policy making and competitiveness

    Get PDF
    This Special Issue of Sustainability devoted to the topic of “Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness” attracted exponential attention of scholars, practitioners, and policy-makers from all over the world. Locating themselves at the expanding cross-section of the uses of sophisticated information and communication technology (ICT) and insights from social science and engineering, all papers included in this Special Issue contribute to the opening of new avenues of research in the field of innovation, knowledge management, and big data. By triggering a lively debate on diverse challenges that companies are exposed to today, this Special Issue offers an in-depth, informative, well-structured, comparative insight into the most salient developments shaping the corresponding fields of research and policymaking

    A grid-based approach for processing group activity log files

    Get PDF
    The information collected regarding group activity in a collaborative learning environment requires classifying, structuring and processing. The aim is to process this information in order to extract, reveal and provide students and tutors with valuable knowledge, awareness and feedback in order to successfully perform the collaborative learning activity. However, the large amount of information generated during online group activity may be time-consuming to process and, hence, can hinder the real-time delivery of the information. In this study we show how a Grid-based paradigm can be used to effectively process and present the information regarding group activity gathered in the log files under a collaborative environment. The computational power of the Grid makes it possible to process a huge amount of event information, compute statistical results and present them, when needed, to the members of the online group and the tutors, who are geographically distributed.Peer ReviewedPostprint (author's final draft

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Creative Thinking and Modelling for the Decision Support in Water Management

    Get PDF
    This paper reviews the state of art in knowledge and preferences elicitation techniques. The purpose of the study was to evaluate various cognitive mapping techniques in order to conclude with the identification of the optimal technique for the NetSyMod methodology. Network Analysis – Creative System Modelling (NetSyMod) methodology has been designed for the improvement of decision support systems (DSS) with respect to the environmental problems. In the paper the difference is made between experts and stakeholders knowledge and preference elicitation methods. The suggested technique is very similar to the Nominal Group Techniques (NGT) with the external representation of the analysed problem by means of the Hodgson Hexagons. The evolving methodology is undergoing tests within several EU-funded projects such as: ITAES, IISIM, NostrumDSS.Creative modelling, Cognitive mapping, Preference elicitation techniques, Decision support

    Network Analysis, Creative System Modelling and Decision Support: The NetSyMoD Approach

    Get PDF
    This paper presents the NetSyMoD approach – where NetSyMod stands for Network Analysis – Creative System Modelling – Decision Support. It represents the outcome of several years of research at FEEM in the field of natural resources management, environmental evaluation and decision-making, within the Natural Resources Management Research Programme. NetSyMoD is a flexible and comprehensive methodological framework, which uses a suite of support tools, aimed at facilitating the involvement of stakeholders or experts in decision-making processes. The main phases envisaged for the process are: (i) the identification of relevant actors, (ii) the analysis of social networks, (iii) the creative system modelling and modelling of the reality being considered (i.e. the local socio-economic and environmental system), and (iv) the analysis of alternative options available for the management of the specific case (e.g. alternative projects, plans, strategies). The strategies for participation are necessarily context-dependent, and thus not all the NetSyMod phases may be needed in every application. Furthermore, the practical solutions for their implementation may significantly differ from one case to another, depending not only on the context, but also on the available resources (human and financial). The various applications of NetSyMoD have nonetheless in common the same approach for problem analysis and communication within a group of actors, based upon the use of creative thinking techniques, the formalisation of human-environment relationships through the DPSIR framework, and the use of multi-criteria analysis through the mDSS software.Social Network, Integrated Analysis, Participatory Modelling, Decision Support

    Can Intellectual Processes in the Sciences Also Be Simulated? The Anticipation and Visualization of Possible Future States

    Get PDF
    Socio-cognitive action reproduces and changes both social and cognitive structures. The analytical distinction between these dimensions of structure provides us with richer models of scientific development. In this study, I assume that (i) social structures organize expectations into belief structures that can be attributed to individuals and communities; (ii) expectations are specified in scholarly literature; and (iii) intellectually the sciences (disciplines, specialties) tend to self-organize as systems of rationalized expectations. Whereas social organizations remain localized, academic writings can circulate, and expectations can be stabilized and globalized using symbolically generalized codes of communication. The intellectual restructuring, however, remains latent as a second-order dynamics that can be accessed by participants only reflexively. Yet, the emerging "horizons of meaning" provide feedback to the historically developing organizations by constraining the possible future states as boundary conditions. I propose to model these possible future states using incursive and hyper-incursive equations from the computation of anticipatory systems. Simulations of these equations enable us to visualize the couplings among the historical--i.e., recursive--progression of social structures along trajectories, the evolutionary--i.e., hyper-incursive--development of systems of expectations at the regime level, and the incursive instantiations of expectations in actions, organizations, and texts.Comment: accepted for publication in Scientometrics (June 2015
    • …
    corecore