15,970 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    EYES - Energy Efficient Sensor Networks

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This document gives an overview of the EYES project

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Market fields structure & dynamics in industrial automation

    Get PDF
    There is a research tradition in the economics of standards which addresses standards wars, antitrust concerns or positive externalities from standards. Recent research has also dealt with the process characteristics of standardisation, de facto standard-setting consortia and intellectual property concerns in the technology specification or implementation phase. Nonetheless, there are no studies which analyse capabilities, comparative industry dynamics or incentive structures sufficiently in the context of standard-setting. In my study, I address the characteristics of collaborative research and standard-setting as a new mode of deploying assets beyond motivations well-known from R&D consortia or market alliances. On the basis of a case study of a leading user organisation in the market for industrial automation technology, but also a descriptive network analysis of cross-community affiliations, I demonstrate that there must be a paradoxical relationship between cooperation and competition. More precisely, I explain how there can be a dual relationship between value creation and value capture respecting exploration and exploitation. My case study emphasises the dynamics between knowledge stocks (knowledge alignment, narrowing and deepening) produced by collaborative standard setting and innovation; it also sheds light on an evolutional relationship between the exploration of assets and use cases and each firm's exploitation activities in the market. I derive standard-setting capabilities from an empirical analysis of membership structures, policies and incumbent firm characteristics in selected, but leading, user organisations. The results are as follows: the market for industrial automation technology is characterised by collaboration on standards, high technology influences of other industries and network effects on standards. Further, system integrators play a decisive role in value creation in the customer-specific business case. Standard-setting activities appear to be loosely coupled to the products offered on the market. Core leaders in world standards in industrial automation own a variety of assets and they are affiliated to many standard-setting communities rather than exclusively committed to a few standards. Furthermore, their R&D ratios outperform those of peripheral members and experience in standard-setting processes can be assumed. Standard-setting communities specify common core concepts as the basis for the development of each member's proprietary products, complementary technologies and industrial services. From a knowledge-based perspective, the targeted disclosure of certain knowledge can be used to achieve high innovation returns through systemic products which add proprietary features to open standards. Finally, the interplay between exploitation and exploration respecting the deployment of standard-setting capabilities linked to cooperative, pre-competitive processes leads to an evolution in common technology owned and exploited by the standard-setting community as a particular kind of innovation ecosystem. --standard-setting,innovation,industry dynamics and context,industrial automation
    • 

    corecore